
Reducing Computations in Incremental Learning
for Feedforward Neural Network

with Long-Term Memory

Masataka Kobayashi† Anuar Zamani‡ Seiichi Ozawa† Shigeo Abe†

† Graduate School of Science and Technology, Kobe University, Kobe 657-8501, JAPAN
‡ Faculty of Engineering, Kobe University, Kobe 657-8501, JAPAN

kobayasi@chevrolet.eedept.kobe-u.ac.jp {ozawa, abe}@eedept.kobe-u.ac.jp

Abstract

When neural networks are trained incrementally, input-
output relationships that are trained formerly tend to
be collapsed by the learning of new training data. This
phenomenon is called “interference”. To suppress the
interference, we have proposed an incremental learning
system (called RAN-LTM), in which Long-Term Mem-
ory (LTM) is introduced into Resource Allocating Net-
work (RAN). Since RAN-LTM needs to train not only
new data but also some LTM data to suppress the in-
terference, if many LTM data are retrieved, large com-
putations are required. Therefore, it is important to de-
sign appropriate procedures for producing and retrieving
LTM data in RAN-LTM. In this paper, these procedures
in the previous version of RAN-LTM are improved. In
simulations, the improved RAN-LTM is applied to the
approximation of a one-dimensional function, and the
approximation error and the training speed are evaluated
as compared with RAN and the previous RAN-LTM.

1 Introduction

In real world problems, training data are often given in-
crementally to learning systems. It is well known that
the learning of neural networks becomes difficult espe-
cially when the distribution of given training data is
temporally varied. In such a situation, the input-output
relations acquired in the past are easy to be collapsed by
the learning of new data. This disruption in neural net-
works is called ”interference” that is caused by excessive
adaptation of connection weights for new data.

There have been proposed several approaches to sup-
pression of the interference. They can be categorized
into two types. In the first approach, the connection
weights trained formerly are not modified by new train-

ing data as much as possible; that is, connection weights
adapted for new data are separated from those for old
data. Although this approach is easily implemented by
scaling up networks (i.e. adding extra hidden units or
module networks) [1, 2], the problem is that the scale
of networks tends to be large with the increase of train-
ing data. In the second approach, some data as well as
newly given data are simultaneously trained in neural
networks to suppress the interference. Several methods
to generate these additional data have been proposed
so far [3, 4]. Yamakawa has proposed Active Data Se-
lection (ADS) in which the contribution of additional
data to the approximation accuracy of neural networks
are evaluated each time of the learning, and significant
data are left in a storage buffer (short-term memory) [3].
Yamauchi has proposed a different type of incremental
learning system in which storage data in a buffer are
dynamically produced based on the estimation of in-
terference caused by given training data [4]. In these
approaches, all storage data in a buffer are trained with
new data. The second approach has an advantage that
the scale of network does not become so large even with
the increase of training data. However, the computation
costs of learning tend to be higher as compared with the
first approach because the number of training data at
one time is larger in almost all cases.

We have proposed an incremental learning system based
on the second approach [5], in which Long-Term Mem-
ory (LTM) was introduced into Resource Allocating
Network (RAN) [6]. For the notational convenience, this
system is noted as “RAN-LTM”. In RAN-LTM, storage
data in LTM (noted as ”LTM data”) are produced from
inputs and outputs of networks whose relationships are
accurately approximated. LTM data to be recalled are
selected based on the distance to center vectors of ac-
tive hidden units; that is, LTM data that have smaller
distance to these center vectors are frequently retrieved.

Although a suitable number of LTM data tends to be
recalled in RAN-LTM, the computation costs of learn-
ing are still high to hold good approximation accuracy.
Therefore, the reduction of learning time is one of the
significant issues in our system.

In this paper, we propose a new version of RAN-LTM
whose approximation ability and computation costs are
enhanced. Section 2 briefly explains the learning al-
gorithm of RAN. In Section 3, some problems of the
previous version of RAN-LTM are described, then we
propose a new RAN-LTM to solve these problems. To
evaluate the performance, the proposed system is ap-
plied to a function approximation problem in Section 4.
In Section 5, we present conclusions of this work.

2 Resource Allocating Network

Resource Allocating Network (RAN) proposed by Platt
[6] is an extended version of Radial Basis Function net-
works [7]. When the training gets started in RAN, the
number of hidden units is set to one initially; hence,
RAN possesses simple approximation ability at first. As
the training proceeds, the approximation ability of RAN
is developed with the increase of training data by al-
locating additional hidden units. Therefore, RAN can
adapt itself to dynamical expansion of training domain.

As shown in Eqs. (1)-(2), outputs of hidden units, y =
{y1, · · · , yJ}′, are calculated based on the distance, dj ,
between the pth network input, xp = {xp1, · · · , xpI}′,
and center vectors of hidden units, cj = {cj1, · · · , cjI}′
(j = 1, · · · , J).

dj =‖ xp − cj ‖2=
I∑

i=1

(xpi − cji)2 (j = 1, · · · , J) (1)

yj = exp(− dj

σj
2
) (j = 1, · · · , J) (2)

Here, I and J are respectively the number of input
units and hidden units. σ2

j corresponds to variance
of the jth radial basis function. Network outputs,
z = {z1, · · · , zK}′, are calculated as follows:

zk =
J∑

j=1

wkjyj + γk (k = 1, · · · ,K), (3)

where K is the number of output units. wkj and γk

are a connection weight from the jth hidden unit to
the kth output unit and a bias of the kth output unit,
respectively.

When a training datum is given to RAN, network out-
puts are calculated based on Eqs. (1)-(3), and the error,

E, between the outputs, z, and the targets for the pth
inputs, T p, is evaluated. Based on the value of E, the
following procedures are selected:

(1) E > ε and ‖xp − c∗‖ > δ(t)
If E is larger than a positive constant, ε, and the
distance between the pth input, xp, and its nearest
center vector, c∗, is larger than a positive value,
δ(t), a hidden unit is added to RAN (i.e. J ←
J +1). Then, the network parameters for the Jth
hidden unit (center vector, cJ , connection weights,
wkJ , and variance, σJ) are respectively set to the
following values:

cJi = xpi (i = 1, · · · , I) (4)

wkJ = Tpk − zk (k = 1, · · · ,K) (5)

σJ = κ‖xp − c∗‖, (6)

where κ is a positive constant. δ(t) decreases with
time t as follows:

δ(t) = max[δmax exp(
t

τ
), δmin] > 0, (7)

where τ is a decay constant.
(2) Otherwise

The network parameters are modified as follows:

wNEW
kj = wOLD

kj + α(Tpk − zk)yj (8)

cNEW
ji = cOLD

ji +2
α

σj
(xpi− cji)yj

∑

k

(Tpk− zk)σkj

(9)
γNEW

k = γOLD
k + α(Tpk − zk), (10)

where α is a positive learning ratio.

As described before, the approximation ability of RAN
can be developed even when training data are incremen-
tally given. However, the suppression of the interference
is not considered in RAN. Therefore, it is considered
that the interference cannot be suppressed completely
only by the automatic allocation of hidden units. In the
next section, we describe an extended model of RAN in
which Long-Term Memory (LTM) is introduced.

3 RAN with Long-Term Memory

3.1 Previous Model
In RAN-LTM, data stored in LTM (called ”LTM data”
for short) are utilized for suppressing the interference.
Therefore, it is important to design appropriate proce-
dures for producing and retrieving LTM data. Due to
the space limitation, only these two procedures in RAN-
LTM are described in the followings.

Production and retrieval of LTM data are simultane-
ously carried out during the learning of networks. Fig-
ures 1 and 2 show the procedures for producing and
retrieving LTM data.

1) If all outputs of hidden units, yj (j = 1, · · · , J),
for the pth input are less than a threshold
value, θc, then go to Step 5. Otherwise, go
to Step 2.

2) Obtain all indices, j, of hidden units whose out-
puts, yj, are larger than θc, and we define a set,
I1, of these indices. The following approxima-
tion criterion, rj , is updated for all j ∈ I1:

rj ← rj + f(ρE(xp,T p)),

where f(u) = 2 exp(−u)− 1.

Here, E(xp,T p) is the error between the tar-
get, T p, and the output for the pth input, xp.
ρ is a positive constant.

3) If rj > β for j ∈ I1, then rj is initialized and
go to Step 4. Otherwise, go to Step 5. Here, β
is a positive constant.

4) If no LTM datum for the jth hidden unit had
been produced yet, then the jth center vector,
cj , is given to the network as its input, x̃M ,
and the output, z̃M is calculated. (x̃M , z̃M) is
stored into LTM as the Mth LTM data. The
number of LTM data, M , increases by one (i.e.
M ←M + 1).

5) p← p+ 1 and go to Step 1.

Figure 1: Procedure for producing LTM data.

1) Obtain all indices, j, of hidden units whose out-
puts, yj , are larger than θr, and define a set of
these indices as I2.

2) If I2 �= φ, then go to Step 3. Otherwise, no
LTM datum is retrieved and goes to Step 5.

3) For all hidden units belonging to I2, obtain
LTM data that have the nearest distance to
center vectors, cj (j ∈ I2).

4) Recall these LTM data and modify connection
weights with them as well as new training data.

5) p← p+ 1 and go to Step 1.

Figure 2: Procedure for retrieving LTM data.

As seen in Fig. 2, the number of LTM data to be
retrieved is equivalent to the number of active hidden
units. Therefore, in general, so much computation costs
of learning are not needed to suppress the interference
in RAN-LTM. However, the above RAN-LTM has the
following problems in the production of LTM data.

i) As mentioned above, the maximum number of
LTM data is restricted to the number of hidden
units; that is, only one LTM datum is produced
for each hidden unit. If the variance parameters
of hidden units are set to large value in order to
enhance the generalization ability of networks, the
number of hidden units becomes small; hence the
number of LTM data also becomes small. Con-
sequently, due to the shortage of LTM data, it
becomes difficult that RAN-LTM suppresses the
interference completely.

ii) As the learning proceeds, center vectors of hid-
den units are varied to refine the approximation
ability. If this variation is large, the center vectors
might be greatly different from the LTM data that
were previously produced from the corresponding
hidden units. In this situation, retrieved LTM
data might be also greatly different from the cen-
ter vectors of active hidden units; hence, it might
be difficult to suppress the interference efficiently.

On the other hand, considering that the parameter mod-
ification for hidden units depends on their output values,
the following problems can arise through the retrieval of
LTM data in RAN-LTM.

iii) If a threshold, θr, is set to a large value, only the
nearest LTM data to the center vectors of highly
active hidden units are recalled. In this case, an-
other interference can arise by the learning of these
LTM data.

iv) If θr is set to a small value in order to avoid the
above problem, the number of retrieved LTM data
increases; hence, the computation costs in RAN-
LTM also increases.

3.2 Improved Model
To solve the above problems i)-iv), the procedures for
producing and retrieving LTM data are improved. Con-
cretely, the following points in the previous RAN-LTM
are modified:

a) For each hidden unit, only a LTM datum can be
produced from the center vector.

b) The retrieval of LTM data is determined based on
only the activation of hidden units.

3.2.1 Procedure for Producing LTM Data. As
stated in 3.1, an insufficient number of LTM data causes

the interference and the degradation of approximation
ability. To solve this problem, the number of LTM data
to be produced should be large as much as possible. As
we might expect, however, the excessive production of
LTM data results in the increase of computation costs
of learning. Hence, LTM data should be produced ade-
quately such that each LTM datum is distant from the
others to some extent. Considering this point, we pro-
pose an improved procedure for producing LTM data
shown in Fig. 3.

1) If all outputs of hidden units, yj (j = 1, · · · , J),
for the pth input are less than a threshold
value, θc, then go to Step 6. Otherwise, go
to Step 2.

2) Obtain all indices, j, of hidden units whose out-
puts, yj, are larger than θc, and we define a set,
I1, of these indices. The following approxima-
tion criterion, rj , is updated for all j ∈ I1:

rj ← rj + f(ρE(xp,T p)),

where f(u) = 2 exp(−u)− 1.

Here, E(xp,T p) is the error between the tar-
get, T p, and the output for the pth input, xp.
ρ is a positive constant.

3) If rj > β for j ∈ Ii, then rj is initialized and
go to Step 4. Otherwise, go to Step 6. Here, β
is a positive constant.

4) Calculate the distance between the jth center
vector, cj, and the nearest LTM data, (x̃∗, z̃∗):
‖cj − x̃∗‖. If the distance is larger than a posi-
tive constant, η, then go to Step 5. Otherwise,
go to Step 6.

5) The jth center vector, cj , is given to the net-
work as its input, x̃M , and the output, z̃M is
calculated. (x̃M , z̃M) is stored into LTM as the
Mth LTM data. The number of LTM data, M ,
increases by one (i.e. M ←M + 1).

6) p← p+ 1 and go to Step 1.

Figure 3: New procedure for producing LTM data.

3.2.2 Procedure for Retrieving LTM Data.
Needless to say, the number of LTM data to be recalled
should be large as much as possible in order to suppress
the interference completely. However, this results in the
increase of learning time. Hence, it is important to de-
vise an efficient procedure for retrieving LTM data; that
is, the number of retrieved LTM data becomes as small
as possible without increasing approximation error. To

realize this, we utilize the curvature information of the
approximated function as well as the activation infor-
mation of hidden units.

Table 1: Mean square errors of RAN-LTM, in which only
LTM data on the part of the approximated func-
tion with high (or low) curvature, are recalled.

High Curvature Low Curvature
g1 0.00496 0.04416
g2 0.00063 0.00469
g3 0.00063 0.00144
g4 0.00164 0.02908
g5 0.00131 0.00421

Ave. 0.00183 0.01672

Table 1 illustrates the results of a preliminary experi-
ment. In this experiment, the approximation errors of
RAN-LTM, in which only LTM data on the part of the
approximated function with high (or low) curvature are
recalled, are estimated for 5 different target functions:
g1 ∼ g5. As seen in Table 1, the approximation error
is small when only LTM data on high curvature parts
are trained in RAN-LTM. This experiment suggests that
LTM data on high curvature parts are more useful for
suppressing the interference as compared with those on
low curvature points. Therefore, it is expected that if
the retrieval of LTM data is determined based on the
curvature information as well as the activation of hid-
den units, we can decrease the number of LTM data to
be recalled.

Considering these results, we propose a new procedure
for retrieving LTM data (see Fig. 4).

4 Simulations

4.1 Experiment Conditions
To examine the performance of the new version of RAN-
LTM, we apply it to the approximation of the following
one-dimensional function, g(x) (see also Fig. 5):

g(x)=4 exp(− (x+ 0.02)2

0.005
) + 6 exp(− (x− 0.25)2

0.02
)

+3 exp(− (x− 0.8)2

0.01
) + 2 exp(− (x− 0.6)2

0.005
) (11)

Forty-one points are selected at intervals of 0.025 in
the input domain, {x|0 ≤ x ≤ 1}, as training data, and
different 60 points are selected at random as test data.

For comparative purposes, the performances of RAN
and two previous versions of RAN-LTMs are also exam-
ined. These two RAN-LTMs are different in the values

1) For every hidden unit, find a LTM datum in
which x̃m (m = 1, · · · ,M) has the smallest dis-
tance to the center vector. Such a LTM datum
is noted as (x̃∗

j , z̃
∗
j) (j = 1, · · · , J).

2) Calculate the curvature, C(x̃∗
j) (j = 1, · · · , J),

for the approximated function, f̃(·), as follows:

C(x̃∗
j) = f̃(x̃∗

j +∆)− 2f̃(x̃∗
j) + f̃(x̃∗

j −∆),

where ∆ is a small constant.
3) Calculate outputs of hidden units, yj , for the

pth input, xp.
4) Obtain the following index sets, S1 ∼ S4, for

all LTM data, (x̃∗
j , z̃

∗
j) (j = 1, · · · , J):

S1 = {j|yj > θ1, C(x̃∗
j) > a1}

S2 = {j|yj > θ2, C(x̃∗
j) > a2}

S3 = {j|yj > θ3, C(x̃∗
j) > a3}

S4 = {j|yj > θ4, C(x̃∗
j) > a4}

where θ1 > θ2 > θ3 > θ4 and a1 > a2 > a3 >
a4. Here, θ1 ∼ θ4 and a1 ∼ a4 are positive
constants.

5) Based on the retrieval probability, PS1 ∼ PS4,
for S1 ∼ S4, every LTM datum is determined
to be recalled. Retrieved LTM data as well as
new training data are given to learn connection
weights.

6) p← p+ 1 and go to Step 3.

Figure 4: New procedure for retrieving LTM data.

of thresholds, θr: θr = 10−2 and 10−30. The former
RAN-LTM with small θr is denoted as RAN-LTM(O1)
and the latter is denoted as RAN-LTM(O2). On the
other hand, the new version of RAN-LTM is denoted as
RAN-LTM(N). The approximation error and learning
time are evaluated for these four models. Other param-
eters are set to the following values:

[Parameters of RAN]
ε = 0.0008, κ = 0.9, δmax = δmin = 0.5
τ = 50, α = 0.0001, σ2

j = 0.0081,

[Parameters of LTM]
θc = 0.97, ρ = 1, β = 0.98, η = 0.997
θ1 = 10−1, θ2 = 10−2, θ3 = 10−3, θ4 = 10−30

Ps1 = 0.8, Ps2 = 0.6, Ps3 = 0.4, Ps4 = 0.2.

a1 ∼ a4 are determined based on the maximum and

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1
x

g(
x)

Figure 5: Target function, g(x), to be approximated.

minimum values of curvatures.

4.2 Experiment 1
The domain of input, x, is divided into two areas,
W1 : {x|0.0 ≤ x ≤ 0.5} and W2 : {x|0.5 < x ≤ 1.0}.
After the learning in one area converges, the incremen-
tal learning is carried out in the other area. Here, two
different experiments are conducted in which the learn-
ing is carried out in the following order: W1 →W2 and
W2 → W1. The average approximation error and con-
vergence time are evaluated for the above experiments.

Table 2: Approximation errors (M.S.E.) and convergence
time (sec.). In the column of Error, numerals
in brackets correspond to errors for training data
and the others are errors for test data.

Error Time
RAN 0.079 (0.076) 222

RAN-LTM(O1) 0.055 (0.053) 259
RAN-LTM(O2) 0.013 (0.013) 437
RAN-LTM(N) 0.002 (0.002) 261

Table 2 shows the results of Experiment 1. As for
RAN, although the convergence is the fastest, the ap-
proximation error is the worst. Since the threshold,
θr, in RAN-LTM(O1) is larger than that in RAN-
LTM(O2), LTM data to be retrieved in RAN-LTM(O1)
is fewer. Therefore, as shown in Table 2, although
the convergence in RAN-LTM(O1) is faster, the ap-
proximation error becomes larger. On the other hand,
RAN-LTM(N) achieves high approximation ability with
comparatively small learning time. Therefore, one can
say that incremental learning is conducted efficiency in
RAN-LTM(N).

As seen in Table 2, the approximation ability of RAN-
LTM(O2) is inferior to that of RAN-LTM(N) even
though most LTM data are always recalled in RAN-
LTM(O2). The reason can be explained from the result
shown in Fig. 6. Figure 6 shows the approximation er-
ror and the location of LTM data in RAN-LTM(O2) and
RAN-LTM(N). Here, the learning is conducted in the
following order: W1 → W2. As you can see in Fig. 6, a
LTM datum does not exist in RAN-LTM(O2) at around
x = 0.3 where the error due to the interference is large.
This result demonstrates that the production of plural
LTM data for each hidden unit in RAN-LTM(N) leads
to the enhancement of suppressing the interference.

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
x

E
rr

or

W1 W2

Location of LTM data in RAN-LTM (O2)

Location of LTM data in RAN-LTM (N)

RAN-LTM (O2)

RAN-LTM(N)

Figure 6: Approximation error (M.S.E.) and location of
LTM data after incremental learning.

4.3 Experiment 2
The domain of input, x, is divided into the following
four areas, W1 : {x|0.0 ≤ x ≤ 0.25}, W2 : {x|0.25 <
x ≤ 0.5}, W3 : {x|0.5 < x ≤ 0.75}, W4 : {x|0.75 < x ≤
1.0}. After the learning in one area converges, the other
three areas are trained sequentially. In Experiment 2, 24
different learning orders can be considered. Therefore,
24 experiments are conducted and the performances of
the above four models are evaluated. As you can see in
Table 3, RAN-LTM(N) also has excellent approximation
ability with comparatively small computations even if
incremental learning is conducted repeatedly.

5 Conclusions

In this paper, a new version of RAN-LTM, in which
the procedures for producing and retrieving LTM data
were improved, was proposed and it was applied to the
approximation of a one-dimensional function. We evalu-
ated the approximation ability and the convergence time

Table 3: Approximation errors (M.S.E.) and convergence
time (sec.). In the column of Error, numerals
in brackets correspond to errors for training data
and the others are errors for test data.

Error Time
RAN 0.070 (0.069) 147

RAN-LTM(O1) 0.028 (0.027) 1376
RAN-LTM(O2) 0.004 (0.004) 4245
RAN-LTM(N) 0.005 (0.002) 1547

through the comparison with RAN and the previous ver-
sion of RAN-LTM. As a result, we certified that the pro-
posed RAN-LTM could suppress the interference more
completely with low computation costs.

References
[1] J. Mándziuk, and L. Shastri: “Incremental class
learning - an approach to longlife and scalable learning”,
CD-ROM Proc. Int. Joint Conf. on Neural Networks
(1999).
[2] M. Kotani, K. Akazawa, S. Ozawa, and H. Mat-
sumoto: “Detection of leakage sound by using modular
neural networks”, Proc. of Sixteenth Congress of the Int.
Measurement Confederation, IX, 347/351 (2000).
[3] H. Yamakawa, D. Masumoto, T. Kimoto, and S.
Nagata: “Active data selection and subsequent revision
for sequential learning” (in Japanese), Technical Report
of IEICE, NC92/99 (1993).
[4] K. Yamauchi, N. Yamaguchi, and N. Ishii: “Incre-
mental learning methods with retrieving of interfered
patterns”, IEEE Trans. on Neural Networks, 10, 6,
1351/1365 (1999).
[5] S. Ozawa, T. Tamaoki, and N. Baba: “Incremen-
tal learning for neural networks with long-term mem-
ory” (in Japanese), Proc. of the 27th Intelligent System
Symposium, 173/178 (2000).
[6] J. Platt: “A resource allocating network for func-
tion interpolation”, Neural Computation, 3, 213/225
(1991).
[7] T. Poggio and F. Girosi: “Networks for approx-
imation and learning”, Proc. IEEE Trans. on Neural
Networks, 78, 9, 1481/1497 (1990).

