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Abstract

Recently, Independent Component Analysis (ICA) has
been applied to not only problems of blind signal separa-
tion, but also feature extraction of images and sounds.
However, it is not easy to obtain high-performance fea-
tures from real data by using conventional ICA algo-
rithms. This might be originated in the fact that class
information is not taken into consideration when feature
extraction is carried out. It is considered that a remedy
for this problem is to introduce a supervisor into ICA.
Hence, in this paper, we shall study the effectiveness of
Umeyama’s Supervised ICA (SICA) for feature extrac-
tion of handwritten characters. Two types of control
vectors (supervisor) are proposed for SICA: (1) aver-
age patterns (Type-I) and (2) eigen-patterns (Type-II).
To demonstrate the usefulness of SICA, recognition per-
formance is evaluated for handwritten digits that are
included in the MNIST database. From the results of
recognition experiments, we certify that SICAs with both
types of control vectors work effective for feature extrac-
tion. Actually, the within-class variance between-class
variance ratio of SICA features with Type-I control vec-
tors becomes slightly larger as compared with a conven-
tional ICA.

1 Introduction

Recently, independent component analysis (ICA) has
been widely known as a decorrelation technique based
on high-order moment of input signals [1]. ICA has been
so far applied to problems of blind signal separation such
as sound/image separation and EEG signal separation.
On the other hand, feature extraction of images and
sounds has been also focused as one of prominent ap-
plications of ICA [2, 3, 4, 5]. Bartlett & Sejnowski ex-
tracted feature vectors from images of human faces using
ICA, and showed that these feature vectors had greater
viewpoint invariance for human faces as compared with
Principal Component Analysis (PCA) ones [6]. Since

PCA decorrelates only the second order statistics of in-
put signals, this result indicates that higher-order fea-
tures are useful for capturing invariant features of face
patterns as well as the second-order features. Such in-
variant characteristics of features extracted with ICA
might be attractive for other pattern recognition prob-
lems.

In our previous works [7], we have presented two types
of feature selection based on the cumulative proportion
of eigenvalues and kurtosis. The former selection is car-
ried out for principal components (PCs) of inputs and
the latter is done for independent components (ICs). In
the recognition experiments, we have shown that a hy-
brid method, in which feature selection was carried out
for ICs as well as for PCs, had interesting characteris-
tics when low-dimensional feature vectors were used in
recognition. However, the recognition performance was
not high from the practical point of view. It might be
originated in the fact that class information is not taken
into consideration when feature extraction is carried out.

Recently, Umeyama has proposed supervised ICA
(SICA) [8], in which class information can be consid-
ered in the learning of a separation matrix. To overcome
the above problem, we shall study the effectiveness of
Umeyama’s SICA for feature extraction of handwritten
characters.

2 Independent Component Analysis (ICA)

2.1 A Conventional ICA
Several ICA algorithms have been proposed so far,
which are different in objective functions (or contrast
functions) for statistical independence and how to de-
rive ICA algorithms [1, 9, 10]. In general, estimated in-
dependent components obtained by these algorithms are
different each other. However, it is difficult to discuss
which algorithms are most appropriate for feature ex-
traction. Therefore, we are not concerned here with the



adequacy for ICA algorithms. In the followings, we shall
adopt the bigradient algorithm proposed by Karhunen
and Oja [11] because supervised ICA adopted here is a
extended version of this algorithm.

Suppose that we observe a m-dimensional zero-mean in-
put signal at time t, v(t) = {v1, · · · , vm}′, where ′ means
the transposition of matrices and vectors. Then the n-
dimensional whitening signal, x(t), is given by the fol-
lowing equation:

x(t) = Mv(t) = D−1/2E′v(t), (1)

where M means a n×m (n ≤ m) whitening matrix
that is given by a matrix of eigenvalues, D, and a ma-
trix of eigenvectors, E. Here, assume that v(t) is com-
posed of n statistically independent components (ICs),
s(t) = {s1(t), · · · , sn(t)}′. Then, the following linear
transformation from x(t) to s(t) exists:

s(t) = Wx(t). (2)

W={w1, · · · , wn}′ is often called a separation matrix,
and it can be obtained through the training of a two-
layer feedforward neural network. This neural network
has n outputs denoted as s̃(t) ={s̃1(t), · · · , s̃n(t)}′ and
the ith row vector, w′

i(i = 1, · · · , n), of W corresponds
to a weight vector from inputs to the ith output, s̃i.

The term ‘independent’ is used here according to the
following definition in statistics:

p[s1(t), · · · , sn(t)] =
n∏

i=1

pi[si(t)], (3)

where p[·] is a probability density function. Since the
above probability density function is not preliminary
unknown, suitable objective functions should be devised
such that neural outputs, s̃i, are satisfied with Eq. (3)
as much as possible, i.e. s̃(t) 	 s(t). Karhunen and Oja
have proposed the following contrast function [11], J(·),
to be maximized in terms of output signals, s̃:

J(s̃) =
n∑

i=1

|E[s̃4
i ]− 3{E[s̃2

i ]}2|, (4)

where E[·] means expectation. As well known, Eq.
(4) corresponds to the fourth-order cumulants of s̃i(t),
called kurtosis. The following learning algorithms for a
separation matrix, W , are derived from the gradient of
Eq. (4) and the orthonormality constraints of W [12]:

W k+1 = W k + µ(tanh s̃k)x′
k

+ γ(I − W kW ′
k)W k, (5)

where k means time step.
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Figure 1: Schematic diagram of information processing in
SICA.

2.2 Supervised ICA
Umeyama has proposed a supervised version of ICA
(SICA), in which a separation matrix is trained such
that the contributions of ICs to input patterns could be
controlled by supervisor. In other words, the training
of SICA is carried out by maximizing correlations be-
tween each IC and specific sets of inputs as well as by
maximizing independency of ICs.

Let us describe the details of SICA. From Eqs. (1) and
(2), the relation between inputs and estimated ICs is
rewritten as follows:

v = (ED1/2W̃
−1

)s̃ = (ED1/2W̃
′
)s̃ = Ãs̃, (6)

where we should note that W is an orthogonal matrix.
Here, Ã corresponds to an estimated mixture matrix.
The ith column vector, ãi (i = 1, · · · , n), of Ã is called
an adjoint vector whose element values mean the con-
tribution of the ith IC, s̃i, to an input pattern, v (see
Fig. 1). Therefore, if we want to control the contri-
butions of the ith IC, we should give desired signals to
these adjoint vectors. In SICA, as shown in Fig. 1, a
normalized control vector, f i = {fi1, · · · , fim}′, is given
to ãi as its desired signal, and the following correlation,
ρi, between f i and ãi is maximized:

ρi =
f ′

iãi

‖ ãi ‖ . (7)

The update rule of a separation matrix, W , at time k
is shown as follows:

W k+1 = W k + µ(tanh s̃k)x′
k

+ γ(I − W kW ′
k)W k + ΛG, (8)



where
G = [g1, · · · , gp, 0, · · · , 0]′. (9)

Here, p is the number of ICs to be controlled. In Eq.
(9), gi is obtained from the derivative of ρi with W in
Eq. (7), and Λ is a matrix of learning coefficients shown
below:

Λ = diag(λ1, · · · , λp, 0, · · · , 0), (10)

where λi is given by

λi = λ′
µ

‖ tanh s̃ix ‖
‖ gi ‖

. (11)

Here, λ′
µ is a negative constant that determines the bal-

ance between the independence term (the second term)
and the correlation term (the fourth term) in the right
hand side of Eq. (8) (see [8] for details).

3 Feature Extraction of Handwritten
Characters

3.1 Feature Extraction Using ICA
As described in Section 2, ICA algorithms allow us to
decompose input signals into their independent compo-
nents such that they are satisfied with Eq. (3) as much
as possible. Such characteristics of ICA can be applied
to feature extraction of hand-written characters.

Based on Eqs. (1) and (2), the relation between inputs
and outputs of ICA is given by

s̃(t) = W̃D−1/2E′v(t) = B̃v(t), (12)

where W̃ is a separation matrix trained by an ICA algo-
rithm and B̃ = W̃D−1/2E′ is a n×m matrix. When an
input, v(t), corresponds to the tth presentation of char-
acter images, the ICA output, s̃(t), can be considered
as its feature vector (see Fig. 1). Here, the ith row vec-
tor, b̃

′
i (i = 1, · · · , n), of B̃ corresponds to a base vector

spanning n-dimensional feature space (such base vectors
are called ICA-bases for convenience). Since E′v(t) cor-
responds to principal components (PCs) of v(t), one can
say that an ICA feature vector is given by the transfor-
mation W̃D−1/2 of a PCA feature vector∗. Therefore,
we can consider that the process of feature extraction
using ICA consists of two types of transformations (see
Fig. 2). One is the transformation from an input image
to PCA features, and the other is the transformation
from PCA features to ICA features.

Different feature selection (dimension reduction) can be
applied to outputs of the above transformations; that is,

∗For notational convenience, we denote feature vectors ex-
tracted with ICA and PCA as ICA features and PCA features,
respectively.
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Figure 2: A block diagram of feature extraction of charac-
ters using ICA.

we can reduce dimensions of PCA features and/or ICA
features. In our previous work [7], however, it is not
easy to extract useful features by reducing dimensions
of ICA features. Therefore, feature selection is carried
out only for PCA features here.

Cumulative proportion has been often used in feature
selection for PCA features as a criterion of determining
useful features. For convenience, eigenvalues of a covari-
ance matrix of training samples are denoted in order of
their magnitude: λ1 ≥ · · · ≥ λm. Then, the cumulative
proportion, cn, is defined as follows:

cn =
∑n

i=1 λi∑m
i=1 λi

, (13)

where n is the number of large eigenvalues to be selected.
Let us introduce an upper bound of cumulative pro-
portion, c0, that gives a threshold value of determining
what feature vectors should be adopted, then the largest
value of n can be determined such that cn ≤ c0 holds.
We select n eigenvectors with the largest n eigenval-
ues as PCA-bases; that is, we consider a n-dimensional
subspace spanned by eigenvectors with λ1, · · · , λn. Af-
ter this feature selection is carried out, a n-dimensional
vector of PCs, E′v(t), is obtained, then a n-dimensional
ICA feature vector, s̃(t), is calculated from Eq. (12).

3.2 Feature Extraction Using Supervised ICA
In pattern recognition problems, it is more desirable
that extracted features belonging to different classes are
mutually separated as much as possible in the feature
space. Conventional ICAs are, however, categorized
in unsupervised learning; therefore, good separatability
for extracted features is not always ensured. To over-
come this problem, we should utilize class information
(teacher signals) for extracting useful features. Hence,
supervised ICA (SICA) shown in the previous section
is adopted here for feature extraction of handwritten
characters.

As stated in Section 2, an adjoint vector, ãi (i =
1, · · · , n), in SICA indicates the contribution of the ith
IC, s̃i, to an input pattern (e.g. character image), v.
Through the learning of SICA, this contribution can be



controlled by varying a control vector, f i. However, it
is not clear how these control vectors should be designed
in order to extract good independent features. As seen
from Eq. (6), one can say that an input pattern is given
by weighted sum of some adjoint vectors. Therefore,
control vectors should be designed such that input pat-
terns are approximated by weighted sum of the control
vectors (note that adjoint vectors are trained so as to
maximize the correlation with control vectors).

Hence, we shall present two types of control vectors
whose two-dimensional representation corresponds to
(1) average patterns (Type-I) and (2) eigen-patterns
(Type-II). As shown in Fig. 3, Type-I control vectors are
obtained by simply averaging training samples in each
category. On the other hand, Type-II control vectors
are obtained from eigenvectors for a covariance matrix
of training data in each class. Fig. 4 shows examples of
Type-II control vectors that are given by eigenvectors
with the largest two eigenvalues. The above two types
of control vectors are normalized such that their average
and variance are equal to 0 and 1, respectively.

4 Simulations

To investigate the usefulness of SICA, the recognition
performance is evaluated for handwritten digits. Six
thousands of digit patterns in the MNIST database are
used for training, and ten thousands of digit patterns
are used for evaluation. Although the MNIST database
originally includes 60,000 training samples, we use only
6,000 samples (600 samples for each digit class) in order
to reduce learning time of ICA and SICA. Each image
of handwritten digits is composed of 28x28 pixels and
no preprocessing is carried out before feature extraction.
Training samples are used for generating reference vec-
tors (prototypes) as well as learning ICA-bases. The
numbers of prototypes, P , for each class are set to the
following values: 1, 250, 500, and 600. In the case of
P = 600, all training samples are used as prototypes
without any modifications. In the other cases, proto-
types are produced based on an agglomerative hierar-
chical clustering [13] from training samples, in which
direction cosine is use for a similarity measure. In clas-
sification, we also adopt direction cosine as a similarity
measure between input images and prototypes. After
calculating similarities with all prototypes, recognition
is conducted based on the nearest neighbor rule.

In SICA, the number control vectors, n, are set to the
following values: 10, 20, 30, 40, 50. Since the number
of classes is 10, the number of control vectors for each
class is n/10: 1, 2, 3, 4, 5. For each class, n/10 of

Figure 3: Type-I control vectors.

Figure 4: Examples of Type-II control vectors. (n=20)

Type-I control vectors are given by the same average
pattern shown in Fig. 3. On the other hand, Type-II
control vectors for each class correspond to eigenvectors
with the largest n/10 eigenvalues for a covariance matrix
of training samples. Note that the number of control
vectors is equal to the dimensions of feature vectors, n.
The dimension reduction of feature vectors is carried out
by the sphering of input images.

For comparative purposes, we evaluate the usefulness
of ICA features obtained by a conventional ICA. Tables
1(a)-(c) show the results of recognition accuracy for ICA
features and those for features extracted by SICA with
Type-I / Type-II control vectors†, respectively. As you
can see from Tables 1(a)-(c), the differences in the per-
formances of ICA and SICA are not so much distinc-

†Feature vectors extracted by SICA with Type-I / Type-II con-
trol vectors are respectively noted as ’SICA (Type-I) features’ and
’SICA (Type-II) features’ for short.



Table 1: Recognition accuracy [%] for ICA features, SICA
(Type-I) features, and SICA (Type-II) features.
n means the dimensions of feature vectors and P
corresponds to the number of prototypes.

(a) Conventional ICA
P=1 P=250 P=500 P=600

n = 10 75.14 89.60 94.91 95.20
n = 20 81.01 93.71 97.17 97.24
n = 30 82.96 93.36 97.24 97.35
n = 40 84.11 92.91 97.08 97.13
n = 50 84.60 92.35 96.87 97.05

(b) SICA with Type-I control vectors
P=1 P=250 P=500 P=600

n = 10 75.14 89.59 94.90 95.19
n = 20 81.00 93.73 97.18 97.25
n = 30 83.00 93.36 97.25 97.34
n = 40 84.09 92.91 97.09 97.14
n = 50 84.61 92.33 96.90 97.07

(c) SICA with Type-II control vectors
P=1 P=250 P=500 P=600

n = 10 75.06 89.49 94.90 95.22
n = 20 81.10 93.79 97.15 97.24
n = 30 83.01 93.46 97.30 97.37
n = 40 84.19 92.92 97.07 97.15
n = 50 84.63 92.36 96.90 97.06

tive even though the dimensions of feature vectors and
the number of prototypes are varied. However, when
P=500, the performances of SICA with Type-I control
vectors are slightly better than those of ICA. The maxi-
mum performance is realized by SICA with Type-II con-
trol vectors when P=600 and n=30.

Table 2 shows the within-class variance between-class
variance ratio of ICA features extracted from test sam-
ples. This ratio is calculated as follows:

σ2
W =

1
n

c∑

i=1

∑

v∈Vi

(v − mi)′(v − mi) (14)

σ2
B =

1
n

c∑

i=1

ni(mi − m)′(mi − m) (15)

Jσ = σ2
B/σ2

W , (16)

where Vi means a set of class i test samples and c is
the number of classes. m is a mean vector of all test
samples, v, and mi is a mean vector of class i test
samples. As seen in Table 2, the within-class variance
between-class variance ratio for SICA (Type-I) features

Table 2: The within-class variance between-class variance
ratio, Jσ, of features extracted from 10,000 test
samples.

ICA Type-I Type-II
n = 10 0.4959 0.4961 0.4898
n = 20 0.2611 0.2611 0.2606
n = 30 0.1754 0.1755 0.1745
n = 40 0.1315 0.1317 0.1314
n = 50 0.1052 0.1053 0.1050

Table 3: Kurtosis of extracted features for 6,000 training
samples.

ICA Type-I Type-II
n = 10 1.476 0.810 0.3129
n = 20 2.382 1.1821 0.7978
n = 30 3.084 1.8257 1.9823
n = 40 3.706 2.5547 2.3387
n = 50 4.051 3.2734 2.863

is higher than that for ICA features; this means that
good features are extracted from handwritten charac-
ters by SICA with Type-I control vectors. However, by
contrast, the ratio for SICA (Type-II) features becomes
lower.

Finally, we evaluate kurtosis of features extracted from
training samples, s̃ = {s̃1, · · · , s̃n}, in order to exam-
ine their independency. The following absolute value of
kurtosis is evaluated here:

kurt(s̃) =
1
n

n∑

i=1

∣∣∣
E[s̃4

i ]
E[s̃2

i ]2
− 3

∣∣∣. (17)

If s̃ has larger kurtosis, one can say that this feature
vector is more statistically independent. Table 3 shows
the results for ICA features, SICA (Type-I) features,
and SICA (Type-II) features. As we might expect, the
independency of ICA features is the highest. The rea-
son why the kurtosis of SICA features becomes small is
that the maximization of correlation between indepen-
dent features and control vectors (supervisor) as well as
the maximization of independency is carried out.

From the above results, the characteristics of ICA and
SICA features are summarized as follows:

1. From recognition experiments and the study of
within-class variance between-class variance ra-
tio, the separability of SICA (Type-I) features is
slightly better than that of ICA features.



2. Kurtosis of SICA features is smaller than that of
ICA features. Considering the previous fact, one
can say that features whose independency is sim-
ply increased are not always effective. In other
words, this fact suggests that increasing indepen-
dency and introducing supervisor into ICA is a
key to enhancing the performance of feature ex-
traction.

5 Conclusions

We applied Supervised Independent Component Anal-
ysis (SICA) to feature extraction of handwritten digits.
Two types of control vectors were introduced into SICA
in order to examine the effectiveness of supervisor. From
the results of recognition experiments, we certified that
not only increasing independency but also introducing
supervisor into ICA could realize high-performance fea-
ture extraction. Although both types of control vectors
presented here worked effectively to extract useful fea-
tures of handwritten digits, there are slight differences in
within-class variance between-class variance ratio. This
suggests that the appropriateness in design of control
vectors can reflect the separatability of extracted fea-
tures. The appropriate design of control vectors is one
of the most important issued in this work. This is left
as our future work.
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