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ABSTRACT

When neural networks are used for approximating action-
values of Reinforcement Learning (RL) agents, the “inter-
ference” caused by incremental learning can be serious. To
solve this problem, in this paper, a neural network model
with incremental learning ability was applied to RL prob-
lems. In this model, correctly acquired input-output rela-
tions are stored into long-term memory, and the memorized
data are effectively recalled in order to suppress the interfer-
ence. In order to evaluate the incremental learning ability,
the proposed model was applied to two problems: Extended
Random-Walk Task and Extended Mountain-Car Task. In
these tasks, the working space of agents is extended as the
learning proceeds. In the simulations, we certified that the
proposed model could acquire proper action-values as com-
pared with the following three approaches to the approxima-
tion of action-value functions: tile coding, a conventional
neural network model and the previously proposed neural
network model.

1. INTRODUCTION

In Reinforcement Learning (RL) tasks, an agent is learn-
ing what to do through some experiences involving trial and
errors[1]. RL agents adapt itself to the environment so as to
maximize the total amount of rewards (positive returns) it
receives over long run. To maximize the returns, RL agents
estimates action-value functions, which are defined for the
relations between state-action pairs and their estimates of
returns that the agents will earn in the future.

In a simple RL task with several states and actions, it is
possible to memorize all action-values into a look-up table.
In many cases of practical interest, however, there are far
more states than could possibly be entries in such a table. In
this case, it is effective to acquire action-value functions us-
ing several function approximation methods. One of these is
linear method[1], in which action-values are approximated
by linear functions of feature vectors that roughly code agent’s
states. In general, this method tends to need large memories
especially when the state space has large dimensions and/or

wide area. To solve this problem, it is useful to use continu-
ous approximation functions like neural networks[1]. How-
ever it is well known that the learning of neural networks
becomes difficult when the distribution of given training
data is temporally varied and training data are incrementally
given[2]. In such a situation, input-output relations acquired
in the past are easy to be collapsed by the learning of new
training data.

This disruption in neural networks is called “interfer-
ence” that is caused by the excessive adaptation of connec-
tion weights for new training data. The interference can also
arise in RL problems because the rewards for agent actions
are incrementally given by the environments. In this con-
text, it is important to learn action-value functions such that
the interference is suppressed as much as possible.

There have been proposed several approaches to sup-
pressing the interference in supervised learning[2, 3, 4, 5].
We have proposed an incremental learning model for su-
pervised learning tasks[2, 5], in which Long-Term Memory
(LTM) was introduced into Resource Allocating Network
(RAN)[6]. For the notational convenience, this model is de-
noted as RAN-LTM in the followings.

In RAN-LTM, storage data in LTM (noted as ”LTM
data”) are produced from inputs and outputs of networks
whose relationships are accurately approximated. In su-
pervised learning, the exact errors between network outputs
and their target values are given. In RL problem, however,
the agents is generally given only Temporal Difference (TD)
errors calculated from currently estimated action-values and
immediate rewards instead of exact errors[7]. Therefore,
LTM data generated in the past do not always hold proper
action-values. In this context, the procedures of updating
LTM data should be introduced into RAN-LTM. In this pa-
per, we propose a new version of RAN-LTM whose LTM
data are updated.

2. APPROXIMATION OF ACTION-VALUE
FUNCTION USING NEURAL NETWORKS

Figure 1 shows the architecture of RAN-LTM that consists
of two modules: Resource Allocating Network (RAN)[6]
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Figure 1: RAN-LTM model.

and Long Term Memory (LTM). To approximate action-
value functions, RAN with normalized radial basis func-
tions is adopted here, in which the outputs of hidden units
are normalized. When the training gets started in RAN, the
number of hidden units is set to one initially; hence, RAN
possesses simple approximation ability at first. As the trials
proceed, the approximation ability of RAN is developed by
allocating additional hidden units.

The inputs of RAN at timet, x(t) = {x1(t), · · · , xI(t)}′,
are the agent’s statess(t) = {s1(t), · · · , sI(t)}′. Here,
I is the number of input units of RAN. We associate net-
work outputsz(t)={z1(t), · · · , zK(t)}′ with action-values
Qt(x(t), ak) that are utilized for selecting agent’s action
a(t); i.e. zk(t)=Qt(x(t), ak). Hence, the number of output
units,K, is equal to the number of agent’s actions,A. The
outputsz(t) are given as follows:

zk(t) =
J∑

j=1

wkjyj(t) + γk (k = 1, · · · ,K) (1)

yj(t) =
y′j(t)∑J

k=1 y
′
k(t)

(j = 1, · · · , J) (2)

y′k(t) = exp(−‖ x(t)− cj ‖2
σj

2
). (3)

Here,wkj andγk are a connection weight from thejth hid-
den unit to thekth output unit and a bias of thekth out-
put unit, respectively.yj(t), J andσ2

j are respectively the
jth output of hidden unit, the number of hidden units and
the variance of thejth radial basis function. As shown in
Eq.(2), the outputs of hidden units are normalized by the
sum of all hidden outputs. The agent’s action is selected
based on the outputs of RAN. The TD errorek for thekth
output is defined as follows:

ek(t) =



r(t) + γmaxaQt(x(t+ 1), a)

−Qt(x(t), ak)) (k = k′)
0 (otherwise).

(4)

Here, k′ is the index of actiona(t) selected by agents at
time t, andr(t) is an immediate reward given by the en-

vironment. Based on the TD errorek′(t) and the hidden
outputs, the following learning procedures are conducted:

(1) If ek′(t) > ε and‖x(t) − c∗‖ > δ(t), a hidden unit
is added to RAN (i.e.J ← J + 1). Here,c∗ is the
nearest center vector tox(t). Then, the network pa-
rameters for the added hidden unit are respectively set
to the following values:

cJi = xi(t) (i = 1, · · · , I) (5)

wkJ = Ek(t) (k = 1, · · · ,K) (6)

σJ = κ‖x(t)− c∗‖, (7)

whereκ is a positive constant.δ(t) decreases with
time t as follows:

δ(t) = max[δmax exp(
t

τ
), δmin] > 0. (8)

Hereτ is a decay constant.

(2) Otherwise, in order to reduce TD errors, the network
parameters are modified as follows:

wNEW
kj = wOLD

kj + αek(t)yj (9)

cNEW
ji = cOLD

ji

+2
α

σj
(xi(t)− cji)yj

∑
k

ek(t)wkj (10)

γNEW
k = γOLD

k + αek(t), (11)

whereα is a positive learning ratio.

3. INCREMENTAL LEARNING ALGORITHM

In general, normalized hidden outputs of RAN do not have
large values in the regions where hidden units are densely
allocated[8]. Therefore, this type of RAN can suppress the
interference itself to some extent. To suppress the interfer-
ence more completely, neural network models with incre-
mental learning ability like RAN-LTM should be adopted.
However, in RL problems, only TD errors, which do not
give accurate errors for true action-values, are given by the
environments. Hence, LTM data acquired formerly in RAN-
LTM do not always hold proper action-values of agents. In
this context, it is considered that the update of LTM data

1) Learning episodes are repeatedPL times.
2) Evaluation episodes are repeatedPE times.
3) When the average steps in the evaluation episodes decrease

to a certain value, LTM data are produced and/or updated
based on the procedures shown in Fig.5.

4) If the number of repetition is equal toNe, the learning is
terminated. Otherwise, go back to1.

Figure 2: Learning algorithm of RAN-LTM.



1) Set an agent’s initial states(0) to inputsx(0).
2) Based on Eq. (1), all action-valuesQt(x(t), ak) are calcu-

lated, and then a proper actionak is selected based on the
action-values.

3) The RAN-LTM agent takes an actionak, and then the
agent’s state changes tos(t + 1). A rewardr(t) is given
to the agent. .

4) TD errors are calculated based on Eq. (4). Depending on
hidden outputs, some LTM data are retrieved based on the
procedures shown in Fig.4. Then, the errors between out-
puts and retrieved LTM data are calculated.

5) Based on the calculated errors, the center vectors, connec-
tion weights, and biases of RAN are modified.

6) If s(t + 1) is a terminal state, then the learning episode is
over. Otherwise,t← t + 1 and go to Step 2.

Figure 3: Procedures of learning episode.

1) Obtain all indicesj of hidden units whose outputsyj are
larger thanθr, and define a set of these indices asI2.

2) If I2 �= φ, then go to 3). Otherwise, no LTM datum is
retrieved and the procedure is terminated.

3) For all hidden units belonging toI2, obtain LTM datum
(x̃j , z̃j) that has the nearest distance to center vectorscj .

4) All LTM data that satisfy the condition‖cj − x̃j‖ < ξ are
retrieved.

Figure 4: Procedures for retrieving LTM data.

should be conducted as the learning of RL agents proceeds.
To determine when they should be updated, the appropriate-
ness of agent’s actions is estimated through some evaluation
episodes stated below.

The procedures of producing, updating and retrieving
LTM data are described in Figs. 2-5. As seen in Fig. 2,
the proposed algorithm has two types of episodes: learning
episode and evaluation episode. In the learning episodes, a
RL agent learns its action-value function from experiences
based on the procedures stated in Sect. 2. In the evaluation
episodes, the learning of agents are stopped, and then the
appropriateness of agent’s actions is evaluated based on the
preliminary defined criterion (e.g. the number of steps to
reach the goal). These two types of episodes are done by
turns and repeatedNe times.

4. SIMULATION EXPERIMENTS

To examine the performance of the proposed RL agents, we
apply it to two problems:Extended Random-Walk Task and
Extended Mountain-Car Task. These problems are extended
from the original problems[1] in order to evaluate the incre-
mental learning ability. For comparative purposes, we adopt
Tile Coding (TC)[1], RAN and RAN-LTM to approximate
action-value functions. TC is one of the linear methods in
which action-values are approximated by linear functions of
feature vectors that roughly code agent’s states. In practical

1) If all outputs of hidden unitsyj (j = 1, · · · , J) for an input
x(t) are less than a threshold valueθc, this procedure is
terminated. Otherwise, go to Step 2).

2) Obtain all indicesj of hidden units whose outputsyj are
larger thanθc, and define a setI1 of these indices. The
valuerj is updated for allj ∈ I1 as follows:

rj ← rj + 2 exp(−ρE(t))− 1.

Here,E(t) is TD error andρ is a positive constant.
3) If rj > β for j ∈ I1, then go to Step 4). Otherwise, this

procedure is terminated. Here,β is a positive constant.
4) Initialize rj . If no LTM datum for thejth hidden unit has

been produced yet, then go to Step 5). Otherwise, go to
Step 6).

5) Thejth center vectorcj is given to RAN as its input̃xM ,
and the output̃zM is calculated.(x̃M , z̃M ) is stored into
LTM as theM th LTM datum. The number of LTM dataM
increases by one (i.e.M ←M +1), and then the procedure
is terminated.

6) x̃j is given to RAN as its input, and the outputz̃j is ob-
tained. Ifz̃j largely differs from the previously stored LTM
data, the nearest LTM datum is updated; that is, the LTM is
replaced with(x̃j , z̃j).

Figure 5: Procedures for producing and updating LTM data.

problems, enormous number of receptive fields (tiles) for
features could be generated for accurate approximation of
action-value functions. Moreover, we evaluate two types of
RAN-LTMs: one is the model that cannot update LTM data
(noted as RAN-LTM1) and the other is the model that can
update them (noted as RAN-LTM2).

The objective of RL agents in the above two problems
is to reach a goal as soon as possible. Therefore, we can use
the average number of steps to reach a goal as a criterion
for the appropriateness of agent’s actions. If the average
number of steps decreases to a certain value, one can say
that RAN has more accurate approximation for action-value
function; hence the procedures of producing and updating
LTM data should be carried out in this case.

4.1. Extended Random-Walk Task

In the original Random-Walk Task, there are five states 1-5
and each episode starts in the state 3 (see Fig.6). The agent
can move either left or right at each step with equal prob-
ability. On the other hand, in the Extended Random-Walk
Task, five more states 6-10 are added to the original task.
The learning of these states is conducted after the learning
of states 1-5.

1 2 3 4 5 6 7 8 9 10

Figure 6: Extended Random-Walk Task.



Table 1: Theoretical state-values in Random-Walk Task.

region 1 1 2 3 4 5
region 2 10 9 8 7 6
state-value 1/6 2/6 3/6 4/6 5/6

In Fig.6, terminal states are denoted by black squares.
The agent should learn action-value functions to select right
actions for all states. In the Extended Random-Walk Task,
each episode starts from the state ‘3’ or ‘8’. When an episode
is terminated at the central state ‘5’, a reward (+1) is given
to the agent; otherwise, the rewards are zero. There are two
actions taken by an agent; “move inside” and “move out-
side”. These actions are represented by the following two
values:+1 or −1. For the notational convenience, the left
hand side of the region including states1 ∼ 5 is called ‘re-
gion 1’, the right hand side of the region including states
6 ∼ 10 is called ‘region 2’. The number of input unitsI is
1, and state numbers is set to the input of a neural network.

In the Random-Walk Task, we can calculate the true
action-valuesQ(s, a) from the theoretical state-values as
seen in Table 1. Therefore, we can evaluate the true errors
between estimated action-valuesz and theoretical ones.

4.1.1. Results and Discussions

In the learning episodes, an agent selects an action with
equal probability because RAN and RAN-LTM agents ap-
proximate action-value function. In the evaluation episodes,
the action of an agent is determined based onQ(x(t), ak).
The numbers of the learning and evaluation episodes are re-
spectively set to the following values:PL = 10 andPE =
10. And the number of repeated cycle,Ne, is set to500.

Table 2 illustrates the experimental results. As seen in
Table 2, the approximation performances of RAN agents
and TC agents are lower than those of RAN-LTMs. More-
over, RAN-LTM2 has smaller errors as compared with RAN-
LTM1 in which LTM data are never updated.

Next, we estimate the interference; that is, how much
action-values for region 1 are changed after the learning of
region 2. Since the states 1-5 are never presented to agents
during the learning of region 2, the action-values should de-
grade seriously if the agents cannot suppress the interfer-
ence caused by the incremental learning of region 2. Ta-
ble 3 illustrates the amount of the interference. As seen
from this result, little interference arises in TC agents. This
is because TC agents learn action-values separately for ev-
ery small fragments of state space. That is, the changes
of action-values within a single tile do not influence on the
other tiles. On the other hand, RAN-LTM2 can also sup-
press the interference effectively as compared with other
neural network models. These results suggest that the in-
terference does not arise so much in TC agents but their

Table 2: Error between theoretical and estimated action val-
ues for region 1 and region 2.

TC RAN RAN-LTM1 RAN-LTM2
region 1 0.1448 0.1940 0.1300 0.1108
region 2 0.1398 0.1378 0.1154 0.1083

Table 3: The amount of the interference cased in region 1
after the learning of region 2.

TC RAN RAN-LTM1 RAN-LTM2
0.0028 0.0828 0.0630 0.0391

approximation ability is poor. Moreover, one can say that
LTM data should be updated in RAN-LTM as the learning
proceeds.

4.2. Extended Mountain-Car Task

Extended Mountain-Car Task is a problem in which a car
driver (agent) learns an efficient policy to reach a goal lo-
cated on the hill between two basins shown in Fig.7. In the
original Mountain-Car Task, only the left basin (B1) is used
for learning. Here, the right basin (B2) is also used as an
additional learning domain.

In this problem, when a car agent reaches the left most
and right most points, its velocity is reset to zero. The goal
of the car agents is to drive up the steep incline successfully
and to reach a goal state at the top of the hill as soon as
possible. The reward in this problem is−1 at all time steps
until the car agent reaches the goal. There are three actions
to be selected; “full throttle to goal” and “zero throttle” and
“full throttle to opposite side of goal”. These actions are
coded by the following values:a(t) = {+1, 0,−1}. A car
agent is initially positioned in either of two basins at the
beginning of an episode. The positionu(t) and velocity
u̇(t) are updated by the following dynamics:

u(t+ 1)=B[u+ u̇(t)] (12)

u̇(t+ 1)=B[u̇(t) + 0.001a(t)−0.0025 cos(3u(t))]. (13)

Goal

B1 B2
u

Car

Figure 7: The landscape of the working area in Extended
Mountain-Car Task.



Table 4: The average number of steps needed in (a)B1 after
the learning ofB1, (b)B2 after the learning ofB2, and (c)
B1 after the learning ofB2.

TC RAN RAN-LTM1 RAN-LTM2

(a) 881 326 291 281
(b) 875 424 345 296
(c) 881 2178 284 268

Table 5: The average number of stalls inB1 after the learn-
ing ofB2.

TC RAN RAN-LTM RAN-LTM2

4.9 14 2.6 2.3

B1 andB2 are given as follows:B1:{u | − 1.2 ≤ u < 0.5}
andB2:{u | 0.5 ≤ u < 2.2}. The goal is located at0.5.
B[·] in Eqs. (12) (13) is used for bounding the areas ofB1

andB2. The number of input unitsI is 3. Here, the inputs
of a neural network are the positionu(t), velocity u̇(t) and
previous actiona(t− 1).

4.2.1. Results and Discussions

Table 4 illustrates the experimental results. In this experi-
ment,PL, PE andNe are set to10, respectively. As seen
in Table 4, TC agents need the most steps to reach the goal,
while RAN-LTM2 agents do not need so many steps. That
is, TC agents have poor approximation ability as compared
with neural agents. Since TC agents learn action-values sep-
arately for every tiles, the interference does not occur. How-
ever, the continuity of action-values for neighbor tiles is not
generally taken into consideration. It seems that this causes
the poor generalization ability in TC agents. On the other
hand, as seen in Table 4, the proposed agents can acquire
proper action-values after incremental learning.

Moreover, we examine the average number of the car’s
stalls inB1. If many stalls are occurred, one can say that the
agents lost a proper policy in the neighborhood of the goal.
Table 5 illustrates the results. As seen in Table 5, the RAN-
LTM2 agents experience the smallest number of stalls in
B1. These results also justify that the proposed agents out-
performs the other agents in the incremental learning ability.

5. CONCLUSIONS

In this paper, we proposed a new version of Resource Al-
locating Network with Long Term Memory (RAN-LTM),
in which LTM data were properly updated as the learning
proceeds. To evaluate the incremental learning ability, the
proposed model was applied to the following two tasks:

Extended Random-Walk Task and Extended Mountain-Car
Task. In these tasks, the working space of agents is extended
as the learning proceeds. That is to say, the learning was
conducted only for one region at first, and then the learning
for different regions was carried out. From the simulation
results, we certified that the proposed agents could learn
more accurate action-values than TC agents, RAN agents
and the previous version of RAN-LTM agents. Moreover,
it was verified that the proposed agents could suppress the
interference effectively as compared with other agents.
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