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Abstract— When environments are dynamically varied for
agents, the knowledge acquired from an environment would be
useless in the future environments. Thus, agents should be able to
not only acquire new knowledge but also modify old knowledge
in learning. However, modifying all acquired knowledge is not
always efficient. Because the knowledge once acquired may be
useful again when the same (or similar) environment reappears.
Moreover, some of the knowledge can be shared among differ-
ent environments. To learn efficiently in such a situation, we
propose a neural network model that consists of the following
four modules: resource allocating network, long-term memory,
association buffer, and environmental change detector. We apply
this model to a simple dynamic environment in which several
target functions to be approximated are varied in turn.

I. INTRODUCTION

A most distinctive feature of human is to learn continuously
from many experiences in the lifetime. Once a concept is
acquired, it is not only accumulated in memory but also used
to generalize other concepts from extremely few examples [1].
In other words, we can transfer the knowledge about a concept
into other concepts to be formed through the so-called lifelong
learning. To allow machines to imitate such a human ability,
we should incorporate at least the following abilities:

1) the ability to represent many experiences in an efficient
form of knowledge,

2) the ability to generalize the knowledge to cope with
unknown situations,

3) the ability to learn new knowledge incrementally without
unexpected forgetting,

4) the ability to discriminate different tasks,
5) the ability to utilize proper knowledge for handing a task

experienced before,
6) the ability to extract sharable knowledge from different

tasks and to transfer it into unknown tasks.

The first ability gives an efficient way to memorize the
huge number of knowledge those are acquired through lifelong
learning. The second ability is needed to make proper decision
even from not so many experiences. To realize these two
abilities, neural networks are often used. In neural networks,
however, knowledge is dispersively stored in their connection
weights. Hence, when a new training sample is given, the
input-output relations acquired in the past are easy to be
collapsed by the learning of the new sample. This disruption
in neural networks is called ‘catastrophic interference’ [2] and
it makes difficult to realize the third ability. To solve the

problem of catastrophic interference, there have been proposed
several approaches [2], [3], [4], [5]. A promising approach
is that some representative input-output pairs are extracted
from sequentially given training samples and some of them are
trained with a current training sample. Based on this approach,
we have proposed an extended version of RBF networks
called Resource Allocating Network with Long-Term Memory
(RAN-LTM) [5]. Although RAN-LTM is one of memory-
based neural networks, it does not need so much memory
capacity and it realizes robust incremental learning ability. In
this sense, RAN-LTM has the first three abilities.

The fourth and fifth abilities are needed to realize the
autonomous agents that can learn efficiently in multi-task en-
vironments. For this purpose, we have proposed Resource Al-
locating Network with Associative Long-Term Memory (RAN-
ALTM) [6], in which two extra modules are added to RAN-
LTM. This model was applied to the learning in a class of
dynamical environments where a stationary environment con-
tinues for a while and then it changes to another environment.
In this problem, a task (e.g., function approximation, pattern
recognition) is given from each stationary environment.

The last ability realizes so-called knowledge transfer to
facilitate the learning of future tasks. To realize this ability,
sharable knowledge among different tasks should be identified
from all knowledge acquired before, and then it should be
utilized as a bias of the subsequent learning. In this paper,
we propose an extended RAN-ALTM model in which such
a knowledge transfer mechanism is incorporated into the
original RAN-ALTM model. More concretely, an additional
information called ‘invariability parameter’ is introduced into
each memory item to measure the retrieval frequency of the
memory item. Then the memory items with large invariability
are used to determine the initial structure of a neural network
for the subsequent environment.

II. A MEMORY-BASED NEURAL NETWORK MODEL

A. Assumption for Dynamic Environment

In general, there are various definitions of dynamic envi-
ronments depending on what sensory signals are processed by
agents; that is, the time scales of the environmental changes
could be ranged from seconds to lifetime. Therefore, when we
discuss a learning mechanism of agents, first we should define
the relation between the time scales of the agents’ adaptation
and the environmental changes.
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Fig. 1. Structure of RAN-ALTM.

In this paper, we make an assumption that the time constant
of the agents’ adaptation is small enough as compared with the
time constants of the environmental changes. This assumption
leads to a class of dynamic environments where a stationary
environment continues for a while and then it changes to
another stationary environment. Under this condition, we can
assume that the duration of a stationary environment is long
enough to be learned.

Another assumption we make here is that agents should
learn continuously from successively appeared stationary en-
vironments, and that they may encounter the environments
experienced before. That is to say, the proposed learning
algorithm should possess the properties of lifelong learning.

B. Resource Allocating Network with Associative Long-Term
Memory

In order to adapt efficiently under this class of dynamic envi-
ronments, we have proposed a memory-based neural network
model called Resource Allocating Network with Associative
Long-Term Memory (RAN-ALTM) whose architecture is de-
picted in Fig. 1. As you can see from Fig. 1, RAN-ALTM is
composed of four modules. First, we briefly explain the basic
role of each module.

1) Resource allocating network (RAN): RAN [7] is an
extended version of Radial-Basis Function (RBF) network [8].
Let the numbers of units in input, hidden, and output layers be
I , J , and K , respectively. When an input x = {x1, · · · , xI}′
is given to RAN (see Fig. 1 (a)), the jth hidden output yj and

the kth network output zk are calculated as follows:

yj = exp

(
−‖ x− cj ‖2

2σ2
j

)
, j = 1, · · · , J (1)

zk =
J∑

j=1

wkjyj + γk, k = 1, · · · , K (2)

where cj = {cj1, · · · , cjI}′, σ2
j , wkj , and γk are the jth RBF

center, the variance, a connection weight from the jth hidden
unit to the kth output unit, and a bias of the kth output unit,
respectively.

After the calculations in Eqs. (1)-(2), a mean squared error
E between the outputs z and the targets T is evaluated. Then,
either of the following operations are selected based on E and
the activations of hidden units: the allocation of a new hidden
unit and the modification of connection weights and RBF
centers. When the latter operation is selected, some memory
items are retrieved from A-Buffer in order to learn with the
training sample.

2) Long-Term Memory (LTM): LTM is a place to store
memory items {M̃1, · · · , M̃n1}, which are extracted through
the learning and utilized for the following purposes:

1) suppressing the forgetting caused by incremental learn-
ing,

2) adapting to the current environment quickly by retrieving
useful ones acquired in the past.

To realize the above functions, memory items are composed
of not only an input-output pair but also the following infor-
mation:

i) Input-Output Pair, (x̃j , z̃j)
An input-output pair extracted from the mapping function
acquired by RAN.

ii) Hessian Information, H(x̃j)
The complexity information of the mapping function at
x̃j . In general, many RBF centers tend to be allocated
in a complicated domain; hence, the interference could
be serious in such a domain. Therefore, we quantify the
functional complexity by the Hessian. If this information
is large, the corresponding memory item should be re-
called with high probability.

iii) Linkage Information Table (LIT)
When a memory item M̃k (k �= j) is generated in the
same environment as M̃j , M̃k is added to the LIT of M̃j ,
and the relevance parameter Qjk is also registered. If Qjk

is large, it means that M̃j has strong relevance to M̃k and
it should be moved to A-Buffer.

iv) Validity Information, Vj

This information Vj is set to a constant value when
M̃j is moved to A-Buffer. If M̃j is the most similar
memory item to the current training sample, Vj is set
to a large value. Otherwise, Vj is set to a small value
that decreases by the times of recursive associations. This
value corresponds to the term of validity. Whenever a new
training sample is given, Vj decreases by 1. If Vj becomes
0, the corresponding memory item M̃j is returned to



LTM. When an environmental change is detected in ECD,
all Vj are initialized and all memory items in A-Buffer
are restored to LTM.

v) Association Flag, Fj

This flag indicates whether the association of M̃j is
permitted or not: Fj = 1 (permitted), Fj = 0 (not
permitted).

Memory items are generated in the region where the outputs
are accurately approximated. In order to prevent memory items
from increasing too much, it is generated only when the
distance from the nearest memory item is larger than a constant
value. When the above two conditions are satisfied, the RBF
center c∗j of the most activated hidden unit is given to RAN,
and the outputs z are calculated. This input-output pair (c∗j , z)
is generated as a new memory item (see Generation of Memory
Items in Subsection II-D).

When a training sample (x, T ) is given to RAN-ALTM, the
most similar memory item M̃j : (x̃j , ỹj) is moved from LTM
to A-Buffer. Then, the LIT of M̃j is referred, and memory
items M̃k with the largest m1 of Qjk are associated and
moved to A-Buffer. For every M̃k, the same association is
conducted recursively and m2 memory items are moved to
A-Buffer. Such a recursive operation is repeated designated
times. Note that the association is not done for memory
items with association flag Fk = 1 (see Association of
Memory Items). Through this association mechanism, several
memory items are moved to A-Buffer from a single training
sample. The correct retrieval of these memory items is the key
mechanism to attain the fast adaptation in RAN-ALTM.

3) Association Buffer (A-Buffer): A-Buffer is the place
where the memory items generated in the same environ-
ment are temporarily stored. To suppress the forgetting
caused by incremental learning, memory items in A-Buffer
{M̂1, · · · , M̂n2} are retrieved to train in RAN. Since it is
not efficient to use all the memory items at every learning
step, the retrieved memory items are restricted to suppress the
interference effectively (see Retrieval of Memory Items).

Although the association is done from a memory item based
on its relevance parameter Qjk, the associated items could
belong to different environments each other. This can happen
when the memory item is generated around an intersection
point of the input-output functions for two different envi-
ronments. Therefore, the association for such a misleading
memory item should be prohibited. To find such a misleading
memory item, check the inconsistency among all memory
items in A-Buffer and set the association flag Fj set to 1
(see Step 5 of Learning Algorithm).

4) Environmental Change Detector (ECD): Since mem-
ory items stored in A-Buffer were generated in the same
environment, the training sample has the inconsistency to
the memory items when the environment changes. Therefore,
the environmental changes can be detected by checking the
inconsistency between the current training sample and the
most similar memory items in A-Buffer.

To realize such a mechanism, we introduce a confidence
factor for environmental changes, and this inconsistency is

accumulated into the confidence factor (see Detection of
Dynamical Changes). When this factor becomes larger than
a predetermined threshold value, the detection signal from
ECD is propagated to RAN and A-Buffer, and then these two
modules are initialized (see Initialization).

C. Incorporation of Knowledge Transfer Mechanism to RAN-
ALTM

In the original RAN-ALTM model, when an environmental
change is detected, all memory items stored in A-Buffer
is cleared regardless of their usefulness in the subsequent
stationary environment. Needless to say, this initialization is
wasteful if some of the memory items are also useful in the
next environment.

To avoid this inefficiency, we should predict the usefulness
of memory items in the subsequent environment. Unfortu-
nately, this prediction cannot be done completely in general.
In many actual situations, however, we can expect that there
are some sharable knowledge among stationary environments
(tasks) as described in Section I. Therefore, the expected use-
fulness of a memory item can be estimated by the probability
of retrieving the memory items over the recent environments.

To evaluate this probability, we introduce an invariability
parameter Zj as an additional element of the jth memory item
M̃j . Then, when an environmental change is detected, Zj of
memory items in A-Buffer are increased while those in LTM
are decreased as follows:

[LTM] Zj ← max[Zj − 1, 0] (3)

[A− Buffer] Zj ← min[Zj + 1, θz] (4)

where θz is a maximum value of Zj .
Unless the subsequent environment happens to be com-

pletely changed, it is expected that memory items with large
Zj are also useful in the new environment. Let the set of
these memory items be ΩI . The memory items M̃j (j ∈ ΩI)
are left in A-Buffer after the detection of an environmental
change, and then the input information x̃j of M̃j are utilized
for determining the initial structure of RAN: that is, the RBF
centers are initialized by x̃j (see Step 4 in Initialization).
This operation incorporates a knowledge transfer mechanism
into RAN-ALTM that enhances the adaptability to the new
environment.

D. A New Learning Algorithm of RAN-ALTM

Now that we can show a new learning algorithm of
RAN-ALTM incorporating a knowledge transfer mechanism.

[Learning Algorithm]
(1) When a training sample (x, T ) is given, execute Detec-

tion of Dynamical Changes.
(2) If an environmental change is detected, execute Initial-

ization. Else if the vigilance mode is detected, go back
to Step 1 (i.e., skip the training process). Otherwise, go
to Step 3.

(3) Calculate the outputs z from Eqs. (1)-(2) in RAN.
(4) Execute Association of Memory Items.



(5) Find the inconsistency among all memory items in
A-Buffer. For all inconsistent memory items, set the
association flag Fj to 1.

(6) Calculate the mean square error E between the outputs
z and the targets T .

(7) If E > ε and ‖x − c∗‖ > δ(t), then a hidden unit is
added (i.e., J ← J+1). The centre vector cJ , connection
weight wkJ , and variance σ2

J are initialized as follows:
cJ = x, wk = T − z, and σJ = κ‖x − c∗‖, where κ
is a positive constant and δ(t) is decreased with time t.
Otherwise, the following procedure is carried out:

a) Execute Retrieval of Memory Items.
b) For the training sample and all the retrieved mem-

ory items, calculate RAN’s outputs and the mean
square error E.

c) Update the weight connections, RBF centers, and
biases based on the learning algorithm of RAN [7].

(8) Execute Generation of Memory Items.
(9) For all memory items in A-Buffer, decrease the validity

information Vj by a constant value.
(10) If Vj becomes zero, return the corresponding memory

item M̃j to LTM.
(11) Go back to Step 1.

[Detection of Dynamical Changes]
(1) Find the most similar memory item in A-Buffer, M̂∗ :

(x̂∗, ẑ∗), to the training sample (x, T ).
(2) Update the confidence B for environmental changes as

follows:
i) If ‖x− x̂∗‖ < k1/g′(x̂∗),

BNEW = ‖T − ẑ∗‖+ k2B
OLD.

Otherwise, BNEW = k2B
OLD

where g′(·) is the derivative of the RAN’s mapping
function, k1 and k2 are positive constants.

(3) If k3σz ≤ B < k4σz , then enter the vigilance mode.
Else if B ≥ k4σz , then propagate the detection signal
to RAN and A-Buffer. Here, σz is the variance of ẑj ,
and k3 and k4 are positive constants.

[Initialization]
(1) Initialize all hidden units and weight connections in

RAN.
(2) Update the invariability parameter Zj as shown in Eqs.

(3)-(4).
(3) Return the memory items to LTM whose invariability

parameter Zj is less than θz .
(4) For each memory item (x̃j , z̃j) in A-Buffer, execute

the same procedure of allocating hidden units in RAN
(see Step 6 in Learning Algorithm).

[Association of Memory Items]
(1) Search for the most similar memory item M̃j to the

training sample (x, T ), and then move it to A-Buffer.
Set the validity information Vj of M̃j to infinity.

(2) Increase the relevance parameter Qjk in LIT of M̃j to
the recently generated / retrieved memory items M̃k.

(3) If the association flag Fj is zero, go to Step 4. Otherwise,
terminate this procedure.

(4) Refer to LIT of M̃j , and move the memory items M̃k

with the m1 largest Qjk to A-Buffer. Set the validity
information Vk of M̃k to a constant value.

(5) For each M̃k, carry out the same operation in Step 4
(i.e., move m2 memory items to A-Buffer).

[Retrieval of Memory Items]

(1) For the jth hidden unit yj , find a memory item M̃j :
(x̃j , z̃j , H(x̃j)) whose input vector x̃j is the nearest to
the jth RBF centers cj . Repeat the above operation for
all hidden units.

(2) For each hidden unit, calculate the recall probability Pj

from yj and H(x̃j):

Pj =
1

1 + exp[−ν{yj + H ′(x̃j)}+ λ]
.

Here, ν and λ are positive constants, and H ′(x̃j) is
Hessian information obtained as follows:

H ′(x̃j) = min{ |H(x̃j)|
H0

, 1}

where H0 is a positive constant.
(3) If the validity information Vj of M̃j is infinity, put the

input-output pair (x̃j , z̃j) into a retrieval candidate set
Ω with probability Pj . Otherwise, check the consistency
of (x̃j , z̃j) for the input-output relation of RAN. If it
is consistent, put (x̃j , z̃j) into Ω with probability Pj .

[Generation of Memory Items]

(1) If all hidden outputs yj are less than a threshold value
θc, then terminate this procedure. Otherwise, go to Step
2.

(2) Obtain all indices j of hidden units whose outputs yj

are larger than θc, and define a set I1 of these indices.
Update the following approximation criterion rj for all
j ∈ I1:

rNEW
j = rOLD

j + 2 exp(−ρ|E|)− 1

where E is the output error and ρ is a positive constant.
(3) If rj > β for j ∈ I1, then initialize rj and go to Step 4.

Otherwise, terminate this procedure. Here, β is a positive
constant.

(4) Calculate the minimum distance between the jth center
cj and memory items x̃m (m = 1, · · · , n2) in A-Buffer
as follows:

d∗j = min
m
‖cj − x̃m‖.

If d∗j > η for j ∈ I1, then go to Step 5. Otherwise,
terminate this procedure.

(5) Increase the number of memory items M by one (i.e.,
M ← M + 1). Give the jth center vector cj to RAN



-4

0

4

8

0 4 8 12

f1

f2

f3

x

z

(a) Experiment 1

-2

0

2

4

6

0 4 8 12

f1

f2

f3

z

x
(b) Experiment 2

Fig. 2. Two sets of one-dimensional functions, each of which corresponds
to a stationary environment.

as its input, and obtain the output z. Calculate the
determinant of Hessian matrix H(cj) whose element
(i, i′) is given as follows:

∂2z̃k

∂cji∂cji′
=

J∑
l=1

wkl

σ4
j

(cji − cli)(cji′ − cli′ )yl

(6) Increase the relevant parameter Qjk by a constant value
for the recently generated or retrieved memory items
M̃k, and set the others to zero.

(7) Set Vj to infinity, and set Fj and Zj to zero.
(8) Generate the following seven-fold information

(cj , z, H(cj), Qjk, Vj , Fj , Zj) as a new item.

III. EXPERIMENTS

A. Experimental Setup

In the defined class of dynamic environments, a stationary
environment continues for a while and then it changes to
another stationary environment in turn. To evaluate the adapt-
ability, let us consider a simple problem where a stationary
environment is represented by a one-dimensional function.

Figures 2(a)(b) are the target functions to be approximated.
These three one-dimensional functions f1 ∼ f3 are temporally
interchanged. That is, each function corresponds to the desired
input-output relation for an agent under a stationary environ-
ment. A training sample (x, z) is randomly drawn from one

of the target functions (f1 ∼ f3), and it gives to RAN-ALTM
incrementally. The learning of this target function continues
for a while, and then the target function is changed to another
one (this means that an environmental change occurs). Here,
we should note that agents do not know the duration of
stationary environments and when the environmental changes
occur at all.

As you can see from Fig. 2(b), the target functions in the
second set have a region where all functions have the same
outputs z. Therefore, training samples drawn from this region
are unchanged even if the environmental changes occur. This
means that memory items generated in this region could be
shared in all environments. Thus, if these items are transferred
to the learning of the subsequent environment, faster adapta-
tion must be realized.

To evaluate the adaptability under such dynamic environ-
ments, let us examine the following capabilities of RAN-
ALTM:

(1) whether incremental learning can be stably carried out,
(2) whether environmental changes are correctly detected,
(3) whether the fast adaptation is realized by training some

past knowledge when the corresponding environment
reappears,

(4) whether the fast adaptation is realized by extracting
sharable memory items and transferring them to the
subsequent learning.

To verify the above four capabilities in RAN-ALTM, we
adopt two variants of RAN-ALTM: the one in which both the
functions of association and knowledge transfer are left out,
and the other in which only the function of knowledge transfer
is removed. For notational convenience, these variants are
noted as RAN-ALTM(V1) and RAN-ALTM(V2), respectively.

B. Experimental Results

The evaluation is conducted for a series of 30 stationary
environments, each of which corresponds to one of the above
three target functions f1 ∼ f3. Since the order of the transi-
tional environments and the duration are randomly determined,
we assume that agents do not know what environments are
presented next.

Figures 3 (a)(b) show the time courses of the average
errors for a fixed set of test samples. Note that these time
courses are illustrated as a typical learning process in the
whole learning period, and that all environments shown here
have been experienced at least once by an agent. The arrows
depicted in the upper part of Figs. 3 (a)(b) show the terms
of each stationary environment. For comparative purposes, the
learning processes for the original RAN are also demonstrated,
in which only adaptation to the training samples is conducted
without detecting any environmental changes.

As you can see from Figs. 3 (a)(b), although the error
suddenly increases after environmental changes, the error de-
creases immediately in RAN-ALTM and its variant models. On
the other hand, the error of RAN is not decreased so rapidly.
From these results, we can say that environmental changes are
correctly detected by ECD and the initialization triggered by
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Fig. 3. Time courses of average errors for two different dynamic environ-
ments.

the detection enhances the adaptation speed. Furthermore, after
the environmental changes, the output errors almost always
decrease monotonously. This result suggests that RAN-ALTM
and its variant models can learn stably even in incremental
settings under dynamic environments.

In Fig. 3 (a), we see that RAN-ALTM can adapt quickly
to the reappeared environments as compared with RAN-
ALTM(V1), in which no association function is introduced.
This result suggests that RAN-ALTM can accumulate the
knowledge of the experienced environments and can utilize
it for the later learning through the association function.
Furthermore, from the result in Fig. 3 (b), we can say that
the knowledge transfer mechanism works well in RAN-ALTM
because it can adapt quickly to the reappeared environments
as compared with RAN-ALTM(V2).

To verify such results more precisely, the average numbers
of training samples to detect environmental changes and to
reach the learning convergence after the detection are inves-
tigated over the whole training period (i.e., the series of 30

TABLE I

THE AVERAGE NUMBERS OF TRAINING SAMPLES NEEDED FOR (A) THE

DETECTION OF ENVIRONMENTAL CHANGES AND (B) THE LEARNING

CONVERGENCE.

(a)
RAN-ALTM(V1) RAN-ALTM(V2) RAN-ALTM

Exp. 1 6.6 6.8 6.8
Exp. 2 17.0 15.8 15.8

(b)
RAN-ALTM(V1) RAN-ALTM(V2) RAN-ALTM

Exp. 1 148.3 102.5 101.1
Exp. 2 196.8 192.0 134.8

transitional environments). Table I shows these results. As seen
from Table I, although there are little differences among RAN-
ALTM and the variant models in the detection performance,
RAN-ALTM achieves the best convergence in both two exper-
iments. Especially, we can see that the convergence is quite
fast in Experiment 2 where there are knowledge to be shared
among different stationary environments.

IV. CONCLUSION

In this paper, we proposed an extended version of Resource
Allocating Network with Associative Long-Term Memory
(RAN-ALTM), in which the knowledge transfer mechanism
was augmented from the previous model. The dynamic en-
vironment assumed here is that a stationary environment
continues for a while and then it changes to another stationary
environment in turn. And we assume that the duration of an
environment is long enough to be learned but it is unknown for
agents, stationary environments appear repeatedly over a long
period of time, and some environments may partially share the
same input-output relations.

To examine the adaptation performance of RAN-ALTM,
we defined a simple form of dynamic environments; i.e.,
three one-dimensional target functions were temporally inter-
changed. From the experimental results, we verified that the
proposed RAN-ALTM has the excellent capabilities shown in
Section I.
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