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Abstract A simple method for generation of 1-D and 2-D fractal permeability fields is presented. 
The method is based on theoretical consideration of spatial variations of permeability. The 
method is characterized by the repetition of the same procedure similar to the process of 
generating other fractal figures. Then, the statistical properties (e.g., probability density function, 
spectral density, autocorrelation function) of random fractal field generated by this method are 
examined. Although this model is quite simple, it can reproduce quite correctly the features that 
were obtained from field observations. 
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INTRODUCTION 
 
A great deal of research has been made on geostatistical models. Random-field 
generation is one of important topics. The purpose of this paper is to present the 
theoretical investigation of the spatial distribution of permeability in a stratum that is 
considered to be geologically homogeneous and proposes a methodology for numerical 
generation of more realistic non-uniform ground. Initially 1-D model will be considered, 
and expanded to 2-D model. Then, the statistical properties (e.g., probability density 
function, spectral density, autocorrelation function) of random fractal field generated by 
this method will be examined. 
 
 
PROCEDURE 
 
1-D model 
 
In the case of 1-D model, the generation procedure is described as follows. Firstly, 
1-dimensional sample of which the average permeability is K(0), is divided into two parts 
as shown in Figure 1.  
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Fig. 1 Division of sample 

 
Permeability of divided samples are defined as KL

(1) and KR
(1). Since the soil is 

non-uniform, the relationship of K(0), KL
(1) and KR

(1) is expressed as following inequality:  
 



 KL
(1) < K(0) < KR

(1)  or  KR
(1) < K(0) < KL

(1) (1) 
 
K(0) is also defined by using KL

(1) and KR
(1) as, 
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Then, the random variable α that means spatial fluctuation of permeability is introduced 
and defined as, 
 
 α = KL

(1)/ K(0) (3) 
 
By substituting α in (2), KR

(1) is given by 
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Therefore, constraint of α is given by 
 
 0.5 < α  (5) 
 
Moreover, Km

(1), Kn
(1), αm and αn are defined as,  

 
 Km

(1) = max(KL
(1), KR

(1)), Kn
(1) = min(KL

(1), KR
(1)), αm = Km

(1)/K(0), αn = Kn
(1)/K(0) (6) 

 
By using (4), (5) and (6), constraints of αm and αn are given by 
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And, assuming the probability density function of αm with exponential function as, 
 
 p(αm) = θamexp{-θam(αm-1)}  (1 < αm) (8) 
 
where p(αm) is the probability density of αm, θam  is the parameter of characterizing 
degree of spatial fluctuation of permeability. Thus, the sample is divided into 2 N parts by 
iterating the procedure mentioned above N times. The correlation in this model can be 
controlled by increasing or decreasing θam  as iteration increases. Such as, 
 
 θαm (i+1) = εθαm (i)   (1= i < N,  0<ε) (9) 
 
where ε is a constant value.  
 
 
2-D model 
 
In the case of 2-D model, the generation procedure is similar to 1-D model. Figure 2 
shows the definition of divided region.  
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Fig. 2 Division of region 

 
For x-direction, KAx

(1), KBx
(1) and Kx

(0) are defined by using K1x
(1)...K4x

(1) as, 
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Then, the random variables αx, βx and γx that mean spatial fluctuation of permeability for 
x-direction are introduced, and defined as, 
 
 αx = K1x

(1)/Kx
(0), βx = K4x

(1)/Kx
(0), γx = KAx

(1)/Kx
(0) (11) 

 
By substituting αx, βx and γx in (10), K2x

(1) and K3x
(1) are given by 
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Therefore, constraints of αx, βx and γx are given by 
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The random variables αx’, βx’ and γx’ are also introduced, and defined as 
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By using (13) and (14), constraints of αx’, βx’ and γx’ are given by 
 
 0.5<αx’,  0.5<βx’,  0.5<γx’ (15) 
 
Moreover, αmx’ βmx’ and γmx’ are defined same as for the 1-D model: 
 
 1 < αmx’, 1 < βmx’, 1 < γmx’ (16) 
 
We assume that the probability density functions of αmx’, βmx’ and γmx’ with exponential 
function are same as 1-D model. Thus, the region is divided into 4N parts by iterating this 
procedure N times. 
 
 



RESULTS AND DISCUSSION 
 
Frequency distribution and variance 
 
In this section the discussion shall mainly focus on 2-D model. Figure 3 shows the 
distribution of log permeability, Y(x,y)=log(K(x,y)), generated by proposed method. The 
parameters employed are Kx

(0)=1.0, θaxm
(1)=θbxm

(1)=1.25, θgxm
(1)=2.50 and ε=1.0.  

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

-0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

-0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

-0.5 0.0 0.5 1.0

(a)

(a) (b) (c)

 
Fig.3 Distribution of log permeability Y(x,y); (a) N=4; (b) N=5; (c) N=6 

 
 
Figure 4 shows frequency distribution of permeability. It is clear that the permeability is 
lognormaly distributed although the frequency distribut ion is not specified in advance. 
The same result applies to 1-D model, but there is space only for 2-D model. However, 
these results are applied only to ε˜1.0. Therefore, it seems reasonable to suppose that ε 
should be nearly equal to 1.0. 
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Fig.4 Frequency distribution;  (a) N=4; (b) N=5; (c) N=6 

 
 

For the moment let us look closely at the variance. Figure 5 shows the relation of 
variance and iteration number N. The variance is in proportion to the number of 
iteration of generating procedure.  
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Fig.5 Ensemble mean of Variances vs iteration N (ε =1.0; 100 realizations) 
 



Spectral density 
 
The ensemble mean of spectral density for ε=1.0 and ε=1.5 with their regression lines 
are plotted in Figure 6. From this figure, spectral densities would be assumed as 
 
 ( ) ζ−∝ |||| ffS  (17) 
 
where f is a wavenumber vector, and ζ is a constant associated with ε. 
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Fig.6 The ensemble  mean of spectral density for ε=1.0 and ε=1.5 (100 realizations) 
 

Autocorrelation function and Integral Scale 
 
The autocorrelation function is written as, 
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where ρ(r) is autocorrelation function, r is displacement vector, p is location vector, and 
< > indicates the ensemble mean. Figure 7 shows the ensemble mean of autocorrelation 
function for ε=1.0. It is distributed linearly on the piece logarithm paper. From this result, 
when the autocorrelation function is approximated with exponential function, the 
integral scale appears to become nearly equal to 0.1 times of support scale. Moreover, 
this result is supported by field data presented by Gelhar (1993) and Di Federico & 
Neuman(1997). On the other hand, this figure exhibits the nugget effect. Although the 
nugget effect can be attributed to measurement error (de Marsily, 1986), this result 
shows that it can also come from spatial structure. 
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Fig.7 The ensemble  mean of autocorrelation function; (a) planimetric; (b) cross section of rx>0, ry=0 

(Kx
(0)=1.0, θaxm

(1)=θbxm
(1)=1.25, θgxm

(1)=2.50, ε=1.0; 100 realizations) 
 
 
 



Figure 8 shows comparison in the different support scale of distributions of log 
permeability generated by FFT using (17) for ζ=2.0, and ensemble mean of 
autocorrelation functions are shown in Figure 9. These results show that the integral 
scale is completely in proportion to the scale and the difference between FFT and 
iteration procedure is nugget effect. 
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Fig.8 Distribution of log permeability (by FFT, ζ=2.0); (a)1×1; (b) 0.5×0.5 
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Fig.9 Ensemble mean of autocorrelation Function (100 realizations); (a) 1×1; (b) 0.5×0.5 

 
 
 
CONCLUSIONS 
 
1. The hydraulic conductivity of the generated fields are always lognormally 

distributed although the frequency distribution is not specified in advance. 
2. The variance is in proportion to the number of iteration of generating procedure. 
3. The spectral density of a spatial variation of the permeability resulted in f -ζ type. 
4. The integral scale is nearly 0.1 times of support scale when the ensemble mean of the 

autocorrelation function obtained from f -2 type models is approximated with 
exponential model. 
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