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Abstract A smple method for generation of 1-D and 2-D fractal permeability fieldsis presented.
The method is based on theoretical consideration of spatial variations of permeability. The
method is characterized by the repetition of the same procedure smilar to the process of

generating other fractal figures. Then, the statistical properties (e.g., probability density function,
spectral density, autocorrelation function) of random fractal field generated by this method are
examined. Although this modél is quite simple, it can reproduce quite correctly the features that

were obtained from field observations.
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INTRODUCTION

A great dea of research has been made on geostatistical models. Random-field
generation is one of important topics. The purpose of this paper isto present the
theoretical investigation of the spatial distribution of permeability in a stratum that is
considered to be geologically homogeneous and proposes a methodology for numerical
generation of more realistic non-uniform ground. Initially 1-D model will be considered,
and expanded to 2-D model. Then, the statistical properties (e.g., probability density
function, spectral density, autocorrelation function) of random fractal field generated by
this method will be examined.

PROCEDURE
1-D model
In the case of 1-D model, the generation procedure is described as follows. Firstly,

1-dimensioral sampleof which the average permeability isk(?, isdivided into two parts
asshownin Figure 1.
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Fig. 1 Division of sample

Permeability of divided samples are defined as K.Y and KgY. Since the soil is
norruniform, the relationship of K@, KW and K™ is expressed as following inequality:



KD < KO <Krg?® or K < KO < K@ (1)

KO isalso defined by using K. P and Kg® as,
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Then, the random variable a that means spatial fluctuation of permeability is introduced
and defined as,
a =K®/KO A3)

By substituting a in (2), Kg® is given by

O _ aK(O)
= 4
= 4
Therefore, constraint of a is given by
05<a (5)

Moreover, Kn®, K.Y, am and a,, are defined as,
Km® = max(KLY, Kr?), Kn® = min(K(Y, KgY), am = KnP/KO, a, = K,D/KO (6)
By using (4), (5) and (6), constraints of a,, and a, are given by

a
m <1
1 (7

m

l<am, 05<a,=

And, assuming the probability density function of a,, with exponential function as,

p(am) = gameXp{-dam(@m-1)} (1 <am) €
where p(an) is the probability density of am, gan IS the parameter of characterizing

degree of spatial fluctuation of permeability. Thus, the sampleisdividedinto 2 partsby
iterating the procedure mentioned above N times. The correlation in this model can be

controlled by increasing or decreasing gam as iterationincreases. Such as,
am (i+1) — €Qam 0] (1=i <N, O<e) 9)

where e is a constant value.

2-D modd

In the case of 2-D modd, the generation procedure is similar to 1-D model. Figure 2
shows the definition of divided region



K © K O [k @
T ’ Y @ tzyK w| =K, @
L'le 2X A
K (0) _> K (1) K 1)
X 3y 4y (1)
(1) o =K
y T_J<3>< T_J<4>< B

t

Fig. 2 Division of region

For x-direction, Ka?, K and K, are defined by using K1,.. K as
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Then, the random variablesa, by and g« that mean spatia fluctuationof permeability for

x-direction are introduced, and defined as,
ay = le(l) /KX(O), by = K4X(1) /KX(O), o =K AX(1) /KX(O)
By substituting a, by and g in (10), Ko™ and K3 are given by

K,0=_38 ko g o (2- g,)b, K ©
2ax_gx be+gx_2

Therefore, constraints of ay, by and g¢ are given by
g_x<ax’ ﬂ<bx1 O<gx <2
2 2

The random variables ax’, by’ and g are also introduced, and defined as

By using (13) and (14), constraints of ax’, by and g’ are given by
0.5<ay’, 0.5<b,’, 0.5<g/
Moreover, amx bk and gnx are defined same as for the 1-D modd:

1<amyx,1<bm,1<gn

(11

(12)

(13)

(14)

(15

(16)

We assume that the probability density functions of amy’, bm' and gmx’ with exponential
function are same as 1-D model. Thus, the region is divided into 4" partsby iterating this

procedure N times.



RESULTSAND DISCUSSION

Frequency distributionand variance

In this section the discussion shall mainly focus on 22D model. Figure 3 shows the
distribution of log permeability, Y(x,y)=log(K(x,y)), generated by proposed method. The
parameters employed are Ky ?=1.0, Gam™=0pm =125, ggm™=2.50 and e=1.0.
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Fig.3 Distribution of log permeability Y(x,y); (@) N=4; (b) N=5; (c) N=6

Figure 4 shows frequency distribution of permeability. It is clear that the permeability is
lognormaly distributed athough the frequency distribution is not specified in advance.
The same result applies to 1-D model, but there is space only for 2-D model. However,

these results are applied only to €71.0. Therefore, it seems reasonable to suppose that e
should be nearly equa to 1.0.
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Fig.4 Frequency distribution; (@) N=4; (b) N=5; (c) N=6

For the moment let us look closely at the variance. Figure 5 shows the relation of
variance and iteration number N. The variance is in proportion to the number of

iteration of generating procedure.
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Fig.5 Ensemble mean of Variancesvs iteration N (e =1.0; 100 realizations)



Spectral density

The ensemble mean of spectral density for e=1.0 and e=1.5 with their regression lines
are plotted in Figure 6. From this figure, spectral densities would be assumed as

SREMENE (17)

wheref isawavenumber vector, and z is a constant associated with e.
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Fig.6 The ensemble mean of spectral density for e=1.0 and e=1.5 (100 realizations)
Autocorrelationfunction and Integral Scale

The autocorrelation function is written as,

1

r(r)=1- == {Y(p+1)- Y(p}*) (18)

2
Y

wherer (r) is autocorrelation function, r is displacement vector, p is location vector, and
< > indicates the ensemble mean. Figure 7 shows the ensemble mean of autocorrelation
function for e=1.0. It isdistributed linearly on the piece logarithm paper. From thisresult,
when the autocorrelation function is approximated with exponential function, the
integral scale appears to become nearly equal to 0.1 times of support scale. Moreover,

this result is supported by field data presented by Gelhar (1993) and Di Federico &

Neuman(1997). On the other hand, this figure exhibits the nugget effect. Although the
nugget effect can be attributed to measurement error (de Marsily, 1986), this result

shows that it can also come from spatial structure.
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Fig.7 The ensemble mean of autocorrelation function; (a) planimetric; (b) cross section of rx>0, ry=0
(K 2=1.0, Qasn V=ChprtV'=1.25, Qg P=2.50, e=1.0; 100 realizations)



Figure 8 shows @mparison in the different support scale of distributions of log
permeability generated by FFT using (17) for z=2.0, and ensemble mean of
autocorrelation functiors are shown in Figure 9. These results show that the integral
scale is completely in proportion to the scale and the difference between FFT and
iteration procedure is nugget effect.
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Fig.8 Distribution of log permeability (by FFT, z=2.0); (a)1x 1; (b) 0.5x 0.5
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Fig.9 Ensemble mean of autocorrelation Function (100 realizations); (a) 1x 1; (b) 0.5x 0.5

CONCLUSIONS

AwWN

The hydraulic conductivity of the generated fields are always lognormally
distributed although the frequency distribution is not specified in advance.

The variance is in proportion to the number of iterationof generating procedure.
The spectral density of a spatial variation of the permeability resulted in f  type.
Theintegral scaleisnearly 0.1 times of support scale when the ensemble mean of the
autocorrelation function obtained from f * type models is approximated with
exponential model.
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