Conditional threshold autoregression (CoTAR)

Kaiji Motegi\(^1\) John W. Dennis\(^2\) Shigeyuki Hamori\(^1\)

\(^1\)Kobe University
\(^2\)Institute for Defense Analyses

EcoSta Conference 2022
Virtual Session EO269
June 4, 2022
Introduction

- A time series often has heterogeneous properties below versus above a certain threshold (threshold effects).

- One of the most well-known models in this field is the threshold autoregression (TAR) proposed by Tong (1978).

- In TAR, a target series y follows AR(p) with coefficients being different across regimes, and a regime switch is triggered when a threshold variable x crosses a constant threshold parameter μ.

- Constant-threshold models like TAR have been extended in many ways so that thresholds are time-varying or state-dependent.
We propose the conditional threshold autoregression (CoTAR), where the threshold μ_t is specified as an empirical quantile of recent observations of the threshold variable x.

The proposed conditional threshold μ_t traces the fluctuation of x_t, which can enhance the fit and interpretation of the model.

In CoTAR, the existence of threshold effects can be tested by the wild-bootstrap tests of Hansen (1996).

The estimation and hypothesis testing of CoTAR satisfy desired statistical properties in both large and small samples.

We fit CoTAR to daily new confirmed COVID-19 cases in Japan, finding significant conditional threshold effects.
Table of contents

1 Introduction

2 Conditional threshold autoregression (CoTAR)
 - Motivation and specification
 - Profiling estimation of parameters
 - Bootstrap test for the no-threshold-effect hypothesis

3 Empirical application on Japan’s COVID-19 cases

4 Conclusion
Let \(\{y_t\}_1^n \) be a target variable; let \(\{x_t\}_1^n \) be a threshold variable.

Consider Tong’s (1978) threshold autoregression (TAR):

\[
y_t = \begin{cases}
\alpha_1 + \sum_{k=1}^{p} \phi_1 k y_{t-k} + u_t & \text{if } x_{t-d} < \mu, \\
\alpha_2 + \sum_{k=1}^{p} \phi_2 k y_{t-k} + u_t & \text{if } x_{t-d} \geq \mu.
\end{cases}
\]

\(y \) has different autocorrelation structures below vs. above the unconditional threshold \(\mu \).

“Unconditional” means that \(\mu \) is time-independent and chosen from the entire memory of \(x \):

\[
\mathcal{X}_1^n = \{x_1, \ldots, x_n\}.
\]
CoTAR: Motivation and specification

- We propose to replace μ with a **conditional** threshold μ_t.
- μ_t is time-dependent and chosen from a local memory of size m:

$$\chi^t_{t-m+1} = \{x_{t-m+1}, \ldots, x_t\}.$$

- We propose the conditional threshold autoregression (**CoTAR**):

$$y_t = \begin{cases}
\alpha_1 + \sum_{k=1}^{p} \phi_1ky_{t-k} + u_t & \text{if } x_{t-d} < \mu_{t-d-1}(c), \\
\alpha_2 + \sum_{k=1}^{p} \phi_2ky_{t-k} + u_t & \text{if } x_{t-d} \geq \mu_{t-d-1}(c).
\end{cases}$$

- $\mu_t(c)$ is the mc-th smallest value (the $100c\%$ point) of χ^t_{t-m+1}.
- $c \in \{1/m, 2/m, \ldots, 1\}$ signifies the relevant percentile.
- When $x_t = y_t$, we have the self-exciting **CoTAR** (**SE-CoTAR**).
Stack the regression parameters for each regime:

$$\beta_r = (\alpha_r, \phi_{r1}, \ldots, \phi_{rp})^\top, \quad r \in \{1, 2\}.$$

Define:

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \quad \gamma = \begin{bmatrix} d \\ c \end{bmatrix}.$$

Define binary variables which determine the regime:

$$I_{1t}(c) = 1 \left\{ x_t < \mu_{t-1}(c) \right\}, \quad I_{2t}(c) = 1 \left\{ x_t \geq \mu_{t-1}(c) \right\}.$$

Stack the regressors:

$$z_{t-1} = (1, y_{t-1}, \ldots, y_{t-p})^\top, \quad Z_{t-1}(\gamma) = \begin{bmatrix} z_{t-1}I_{1,t-d}(c) \\ z_{t-1}I_{2,t-d}(c) \end{bmatrix}.$$

CoTAR is rewritten in matrix form as:

$$y_t = Z_{t-1}(\gamma)^\top \beta + u_t.$$
Profiling estimation

- To estimate the regression parameter β and the nuisance parameter γ, we adopt a two-step procedure called profiling.
- If γ were given, then the least squares estimator for β would be analytically available:

$$
\hat{\beta}(\gamma) = \left\{ \sum_{t=1}^{n} \mathbf{Z}_{t-1}(\gamma) \mathbf{Z}_{t-1}(\gamma)^\top \right\}^{-1} \left\{ \sum_{t=1}^{n} \mathbf{Z}_{t-1}(\gamma) y_t \right\}.
$$

- The profiling estimator for γ is given by:

$$
\hat{\gamma} = \arg \min_{\gamma \in \Gamma} \sum_{t=1}^{n} \left\{ y_t - \mathbf{Z}_{t-1}(\gamma)^\top \hat{\beta}(\gamma) \right\}^2.
$$

- The profiling estimator for β is given by $\hat{\beta} = \beta(\hat{\gamma})$.
Profiling estimation

- Asymptotic properties of the profiling estimator depends crucially on whether conditional threshold effects are present or absent.

- Conditional threshold effects are **present** if $\beta_1 \neq \beta_2$, in which case γ is **identifiable**.

- Conditional threshold effects are **absent** if $\beta_1 = \beta_2$, in which case CoTAR reduces to the single-regime AR(p) and γ is **unidentifiable**.

- Define the no-threshold-effect hypothesis:

\[H_0^*: \beta_1 = \beta_2 \quad \text{vs.} \quad H_1^*: \beta_1 \neq \beta_2. \]
Theorem 1 (Profiling estimator)

Under standard regularity conditions, the following are true:

1. \(\sqrt{n}\{\hat{\beta}(\gamma) - \beta_0\} \Rightarrow \mathcal{N}\{0, V(\gamma)\} \) for each fixed \(\gamma \in \Gamma \).

2. \(\hat{\beta}(\gamma) \xrightarrow{p} \beta_0 \) uniformly over \(\gamma \in \Gamma \).

3. Under \(H_1^* \), \(\hat{\gamma} - \gamma_0 = O_p(n^{-1}) \) and \(\sqrt{n}(\hat{\beta} - \beta_0) \xrightarrow{d} \mathcal{N}\{0, V(\gamma_0)\} \).

- See the full paper for the regularity conditions, the construction of \(V(\gamma) \), and the proof of Theorem 1.
- Under \(H_0^* \), the asymptotic distribution of \(\hat{\beta} \) is non-standard.
Testing the no-threshold-effect hypothesis

- Testing H_0^* requires the **wild bootstrap** of Hansen (1996), as γ is unidentified and $\hat{\beta}$ is not asymptotically normal under H_0^*.

- Formulate the no-threshold-effect hypothesis H_0^* as a linear parametric restriction:

\[
H_0^* : R^* \beta = 0 \quad \text{vs.} \quad H_1^* : R^* \beta \neq 0.
\]

where $R^* = (I_{p+1}, -I_{p+1})$.

- The Wald test statistic conditional on γ is given by:

\[
W_n^*(\gamma) = n\hat{\beta}(\gamma)^\top (R^*)^\top \left\{ R^* \hat{V}_n(\gamma) (R^*)^\top \right\}^{-1} R^* \hat{\beta}(\gamma).
\]

- See the full paper for the construction of $\hat{V}_n(\gamma)$.
Testing the no-threshold-effect hypothesis

- Incorporate all possible values of γ as in:

$$\sup \mathcal{W}_n^* = \sup_{\gamma \in \Gamma} \mathcal{W}_n^*(\gamma).$$

- Let $g(\mathcal{W}_n^*)$ be either $\sup \mathcal{W}_n^*$, $\text{ave} \mathcal{W}_n^*$, or $\exp \mathcal{W}_n^*$.

- Let $\{g\{\mathcal{W}_n^{*(b)}\}\}_{b=1}^B$ be the set of wild-bootstrap test statistics. (See the full paper for the bootstrap procedure.)

- The bootstrap p-value is defined as:

$$\hat{p}_n^B(H_0^*) = \frac{1}{B} \sum_{b=1}^B 1 \left[g \left\{ \mathcal{W}_n^{*(b)} \right\} \geq g(\mathcal{W}_n^*) \right].$$

- Reject H_0^* if $\hat{p}_n^B(H_0^*) < a$, where $a \in (0, 1)$ is the nominal size.
Testing the no-threshold-effect hypothesis

Theorem 2 (Bootstrap test for H_0^*)

Under standard regularity conditions, the following are true:

1. Under H_0^*, $\hat{p}_n^B(H_0^*)$ is asymptotically uniform on $[0, 1]$.
2. Under H_1^*, $\hat{p}_n^B(H_0^*) \xrightarrow{p} 0$ as $n \to \infty$ and $B \to \infty$.

See the full paper for the regularity conditions and the proof.

The bootstrap test for H_0^* is asymptotically valid; the test has size approaching the nominal size α under H_0^*, and power approaching 1 under H_1^*.
Empirical application: Set-up

- We analyze the number of daily new confirmed cases per million people in Japan, denoted as \(\{w_t\}_{t=1}^n \).
- Sample period: April 4, 2020 – June 23, 2021 (\(n = 446 \) days).
- We fit the SE-CoTAR model with \(p = 3 \) and \(m = 14 \) to
 \[
 y_t = \Delta \ln w_t = \ln w_t - \ln w_{t-1} \text{ (i.e., the log-difference of the number of daily new confirmed cases per million people):}
 \]
 \[
 y_t = \begin{cases}
 \alpha_1 + \sum_{k=1}^{3} \phi_{1k} y_{t-k} + u_t & \text{if } y_{t-d} < \mu_{t-d-1}(c), \\
 \alpha_2 + \sum_{k=1}^{3} \phi_{2k} y_{t-k} + u_t & \text{if } y_{t-d} \geq \mu_{t-d-1}(c).
 \end{cases}
 \]
- Regime 1 represents a \textbf{deceleration} phase where the change in new confirmed cases is small relative to the local memory.
- Regime 2 represents an \textbf{acceleration} phase where the change is relatively large.
Several waves of the pandemic are observed in the log series.
The log-difference series is the target of the SE-CoTAR model.
The log-difference series exhibits rather complex fluctuations with persistent swings and temporary noise being combined, which suggests the presence of nonlinear effects.
The estimated conditional threshold $\mu_t(\hat{c})$ well traces the persistent swing of y_t, highlighting the virtue of CoTAR.

The p-value of the bootstrap test for H_0^* is 0.002, indicating the presence of conditional threshold effects.

Hence, we conclude that the deceleration and acceleration phases are significantly different from each other.
We have proposed the conditional threshold autoregression (CoTAR), where the threshold is specified as an empirical quantile of the local memory of a threshold variable x.

The resulting conditional threshold traces the fluctuation of x, which can enhance the fit and interpretation of the model.

The parameters of CoTAR can be estimated via profiling.

The bootstrap test for the no-threshold-effect hypothesis H_0^* is asymptotically valid.

We fitted SE-CoTAR to the daily new confirmed COVID-19 cases of Japan, finding significant conditional threshold effects.