Conditional threshold autoregression (CoTAR)

Kaiji Motegi\(^1\) John W. Dennis\(^2\) Shigeyuki Hamori\(^1\)

\(^1\)Kobe University
\(^2\)Institute for Defense Analyses

AMES 2022
Keio University (Hybrid)
August 8, 2022
A time series often has heterogeneous properties below versus above a certain threshold (threshold effects).

One of the most well-known models in this field is the threshold autoregression (TAR) proposed by Tong (1978).

In TAR, a target series \(y \) follows AR\((p)\) with coefficients being different across regimes, and a regime switch is triggered when a threshold variable \(x \) crosses a constant threshold parameter \(\mu \).

Constant-threshold models like TAR have been extended in many ways so that thresholds are time-varying or state-dependent.
We propose the conditional threshold autoregression (CoTAR), where the threshold μ_t is specified as an empirical quantile of recent observations of the threshold variable x_t.

The proposed conditional threshold μ_t traces the fluctuation of x_t, which can enhance the fit and interpretation of the model.

In CoTAR, the existence of threshold effects can be tested by the wild-bootstrap tests of Hansen (1996).

The estimation and hypothesis testing of CoTAR satisfy desired statistical properties in both large and small samples.

We fit CoTAR to daily new confirmed COVID-19 cases in Japan, finding significant conditional threshold effects.
Table of contents

1 Introduction

2 Conditional threshold autoregression (CoTAR)
 - Motivation and specification
 - Profiling estimation of parameters
 - Bootstrap test for the no-threshold-effect hypothesis

3 Empirical application on Japan’s COVID-19 cases

4 Conclusion
CoTAR: Motivation and specification

- Let \(\{y_t\}_1^n \) be a target variable; let \(\{x_t\}_1^n \) be a threshold variable.

- Consider Tong’s (1978) threshold autoregression (TAR):

\[
y_t = \begin{cases}
\alpha_1 + \sum_{k=1}^{p} \phi_1 y_{t-k} + u_t & \text{if } x_{t-d} < \mu, \\
\alpha_2 + \sum_{k=1}^{p} \phi_2 y_{t-k} + u_t & \text{if } x_{t-d} \geq \mu.
\end{cases}
\]

- \(y \) has different autocorrelation structures below vs. above the **unconditional** threshold \(\mu \).

- “Unconditional” means that \(\mu \) is time-independent and chosen from the entire memory of \(x \):

\[
X_1^n = \{x_1, \ldots, x_n\}.
\]
We propose to replace μ with a conditional threshold μ_t.

μ_t is time-dependent and chosen from a local memory of size m:

$$x_{t-m+1}^t = \{x_{t-m+1}, \ldots, x_t\}.$$

We propose the conditional threshold autoregression (CoTAR):

$$y_t = \begin{cases}
\alpha_1 + \sum_{k=1}^{p} \phi_{1k} y_{t-k} + u_t & \text{if } x_{t-d} < \mu_{t-d-1}(c), \\
\alpha_2 + \sum_{k=1}^{p} \phi_{2k} y_{t-k} + u_t & \text{if } x_{t-d} \geq \mu_{t-d-1}(c).
\end{cases}$$

$\mu_t(c)$ is the mc-th smallest value (the $100c\%$ point) of x_{t-m+1}^t.

$c \in \{1/m, 2/m, \ldots, 1\}$ signifies the relevant percentile.

When $x_t = y_t$, we have the self-exciting CoTAR (SE-CoTAR).
CoTAR: Matrix representation

- Define $\beta_r = (\alpha_r, \phi_{r1}, \ldots, \phi_{rp})^\top$ for $r \in \{1, 2\}$.
- Define $\beta = (\beta_1^\top, \beta_2^\top)^\top$ and $\gamma = (d, c)^\top$.
- Define binary variables which determine the regime:

$$I_{1t}(c) = 1 \{x_t < \mu_{t-1}(c)\}, \quad I_{2t}(c) = 1 \{x_t \geq \mu_{t-1}(c)\}.$$

- Stack the regressors:

$$z_{t-1} = (1, y_{t-1}, \ldots, y_{t-p})^\top, \quad Z_{t-1}(\gamma) = \begin{bmatrix} z_{t-1}I_{1,t-d}(c) \\ z_{t-1}I_{2,t-d}(c) \end{bmatrix}.$$

- CoTAR is rewritten in matrix form as:

$$y_t = Z_{t-1}(\gamma)^\top \beta + u_t.$$
Profiling estimation

- To estimate the regression parameter β and the nuisance parameter γ, we adopt a two-step procedure called profiling.

- If γ were given, then the least squares estimator for β would be analytically available:

$$\hat{\beta}(\gamma) = \left\{ \sum_{t=1}^{n} Z_{t-1}(\gamma) Z_{t-1}(\gamma)^\top \right\}^{-1} \left\{ \sum_{t=1}^{n} Z_{t-1}(\gamma) y_t \right\}.$$

- The profiling estimator for γ is given by:

$$\hat{\gamma} = \arg\min_{\gamma \in \Gamma} \sum_{t=1}^{n} \left\{ y_t - Z_{t-1}(\gamma)^\top \hat{\beta}(\gamma) \right\}^2.$$

- The profiling estimator for β is given by $\hat{\beta} = \beta(\hat{\gamma})$.
Asymptotic properties of the profiling estimator depends crucially on whether conditional threshold effects are present or absent.

Conditional threshold effects are **present** if $\beta_1 \neq \beta_2$, in which case γ is **identifiable**.

Conditional threshold effects are **absent** if $\beta_1 = \beta_2$, in which case CoTAR reduces to the single-regime AR(p) and γ is **unidentifiable**.

Define the no-threshold-effect hypothesis:

$$H_0^* : \beta_1 = \beta_2 \quad \text{vs.} \quad H_1^* : \beta_1 \neq \beta_2.$$
Profiling estimation

Theorem 1 (Profiling estimator)

Under standard regularity conditions, the following are true:

1. \(\sqrt{n}\{\hat{\beta}(\gamma) - \beta_0\} \Rightarrow N\{0, V(\gamma)\} \) for each fixed \(\gamma \in \Gamma \).
2. \(\hat{\beta}(\gamma) \overset{p}{\to} \beta_0 \) uniformly over \(\gamma \in \Gamma \).
3. Under \(H^*_1 \), \(\hat{\gamma} - \gamma_0 = O_p(n^{-1}) \) and
 \(\sqrt{n}(\hat{\beta} - \beta_0) \overset{d}{\to} N\{0, V(\gamma_0)\} \).

- See the full paper for the regularity conditions, the construction of \(V(\gamma) \), and the proof of Theorem 1.
- Under \(H^*_0 \), the asymptotic distribution of \(\hat{\beta} \) is non-standard.
Testing the no-threshold-effect hypothesis

- Testing H_0^* requires the **wild bootstrap** of Hansen (1996), as γ is unidentified and $\hat{\beta}$ is not asymptotically normal under H_0^*.

- Formulate the no-threshold-effect hypothesis H_0^* as a linear parametric restriction:

 $H_0^*: \mathbf{R}^* \beta = 0 \quad \text{vs.} \quad H_1^*: \mathbf{R}^* \beta \neq 0.$

 where $\mathbf{R}^* = (I_{p+1}, -I_{p+1})$.

- The Wald test statistic conditional on γ is given by:

 $\mathcal{W}_n^*(\gamma) = n\hat{\beta}(\gamma)^\top (\mathbf{R}^*)^\top \left\{ \mathbf{R}^* \hat{V}_n(\gamma)(\mathbf{R}^*) \right\}^{-1} \mathbf{R}^* \hat{\beta}(\gamma)$.

- See the full paper for the construction of $\hat{V}_n(\gamma)$.
Testing the no-threshold-effect hypothesis

- Incorporate all possible values of γ as in:

$$\sup W_n^* = \sup_{\gamma \in \Gamma} W_n^*(\gamma).$$

- Let $g(W_n^*)$ be either $\sup W_n^*$, $\text{ave} W_n^*$, or $\exp W_n^*$.

- Let $\{g\{W_n^{*(b)}\}\}_{b=1}^B$ be the set of wild-bootstrap test statistics. (See the full paper for the bootstrap procedure.)

- The bootstrap p-value is defined as:

$$\hat{p}_n^B(H_0^*) = \frac{1}{B} \sum_{b=1}^B 1 \left[g \left\{ W_n^{*(b)} \right\} \geq g(W_n^*) \right].$$

- Reject H_0^* if $\hat{p}_n^B(H_0^*) < a$, where $a \in (0, 1)$ is the nominal size.
Testing the no-threshold-effect hypothesis

Theorem 2 (Bootstrap test for H_0^\ast)

Under standard regularity conditions, the following are true:

1. Under H_0^\ast, $\hat{p}_n^B(H_0^\ast)$ is asymptotically uniform on $[0, 1]$.

2. Under H_1^\ast, $\hat{p}_n^B(H_0^\ast) \xrightarrow{p} 0$ as $n \to \infty$ and $B \to \infty$.

- See the full paper for the regularity conditions and the proof.

- The bootstrap test for H_0^\ast is asymptotically valid; the test has size approaching the nominal size a under H_0^\ast, and power approaching 1 under H_1^\ast.
Empirical application: Set-up

- We analyze the number of daily new confirmed cases per million people in Japan, denoted as \(\{w_t\}_{t=1}^n \).

- Sample period: April 4, 2020 – June 23, 2021 (\(n = 446 \) days).

- We fit the SE-CoTAR model with \(p = 3 \) and \(m = 14 \) to
 \[
y_t = \Delta \ln w_t = \ln w_t - \ln w_{t-1}:
 \]
 \[
y_t = \begin{cases}
 \alpha_1 + \sum_{k=1}^3 \phi_1 k y_{t-k} + u_t & \text{if } y_{t-d} < \mu_{t-d-1}(c), \\
 \alpha_2 + \sum_{k=1}^3 \phi_2 k y_{t-k} + u_t & \text{if } y_{t-d} \geq \mu_{t-d-1}(c).
 \end{cases}
 \]

- Regime 1 is a **deceleration** phase where the change in new confirmed cases is small relative to the local memory.

- Regime 2 is an **acceleration** phase where the change is relatively large.
Several waves of the pandemic are observed in the log series.

The log-difference series is the target of the SE-CoTAR model.

The log-difference series exhibits rather complex fluctuations with persistent swings and temporary noise being combined, which suggests the presence of nonlinear effects.
The estimated conditional threshold $\mu_t(\hat{c})$ well traces the persistent swing of y_t, highlighting the virtue of CoTAR.

The p-value of the bootstrap test for H_0^* is 0.002, indicating the presence of conditional threshold effects.

Hence, we conclude that the deceleration and acceleration phases are significantly different from each other.
Conclusion

- We have proposed the conditional threshold autoregression (CoTAR), where the threshold is specified as an empirical quantile of the local memory of a threshold variable x.

- The resulting conditional threshold traces the fluctuation of x, which can enhance the fit and interpretation of the model.

- The parameters of CoTAR can be estimated via profiling.

- The bootstrap test for the no-threshold-effect hypothesis H_0^* is asymptotically valid.

- We fitted SE-CoTAR to the daily new confirmed COVID-19 cases of Japan, finding significant conditional threshold effects.