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Abstract

This paper presents bootstrapped p-value white noise tests based on the max-correlation, for
a time series that may be weakly dependent under the null hypothesis. The time series may be
prefiltered residuals based on a

√
n-convergent estimator. Our test statistic is a scaled maximum

sample correlation coefficient
√
nmax1≤h≤Ln |ρ̂n(h)|where the maximum lagLn increases at a rate

slower than the sample size n. We only require uncorrelatedness under the null hypothesis, along
with a moment contraction dependence property that includes mixing and non-mixing sequences,
and exploit two wild bootstrap methods for p-value computation. We operate either on a first order
expansion of the sample correlation, or Delgado and Velasco’s (2011) orthogonalized correlation for
fixed Ln = L, both to control for the impact of residual estimation. A numerical study shows the first
order expansion is superior, especially when L is large. When the filter involves a GARCH model
then the orthogonalization breaks down, while the first order expansion works quite well. We show
Shao’s (2011) dependent wild bootstrap is valid for a much larger class of processes than originally
considered. Since only the most relevant sample serial correlation is exploited amongst a set of
sample correlations that are consistent asymptotically, empirical size tends to be sharp and power
is comparatively large for many time series processes. The test has non-trivial local power against√
n-local alternatives, and can detect very weak and distant serial dependence better than a variety

of other tests. Finally, we prove that our bootstrapped p-value leads to a valid test without exploiting
extreme value theoretic arguments, the standard in the literature.

AMS classifications : 62J07, 62F03 ,62F40. JEL classifications : C12, C52.

1 Introduction
We present a bootstrap white noise test based on the maximum serial correlation. The data may be

observed, or filtered residuals, and a large class of dependent processes and estimators (for computing
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regression residuals) are allowed. A new asymptotic theory approach is used relative to the literature,

one that sidesteps deriving the asymptotic distribution of a max-correlation statistic (e.g. Xiao and Wu,

2014). We instead operate solely on the bootstrapped p-value and exploit weak convergence of the

correlation process to prove validity and consistency (asymptotic power of one) of the test. Our theory

for a dependent wild bootstrap is more general than Shao’s (2011), covering a large array of mixing and

non-mixing processes.

The class of time series models considered here are

yt = f(xt−1, φ0) + ut and ut = εtσt(θ0) (1)

where φ ∈ Rkφ , kφ ≥ 0, and f(x, φ) is a level response function. The error εt satisfies E[εt] = 0, E[ε2t ] <

∞, and the regressors are xt ∈ Rkx , kx ≥ 0. We assume {xt, yt} are strictly stationary in order to focus

ideas. Volatility σ2
t (θ0) is a process measurable with respect to Ft−1 ≡ σ(yτ , xτ : τ ≤ t − 1), where θ0

is decomposed as [φ′0, δ
′
0] and δ0 ∈ Rkδ are volatility-specific parameters, kδ ≥ 0. The dimensions of φ0

and δ0 may be zero, depending on the model desired and the interpretation of the test variable εt. Thus,

kφ = 0 implies a volatility model yt = εtσt(θ0), and kδ = 0 implies a level model yt = f(xt−1, φ0) + εt.

Similarly, the dimension kθ = kφ + kδ of θ0 is kθ = 0 when we want to test whether the observed yt =

εt is white noise. We want to test if {εt} is a white noise process:

H0 : E [εtεt−h] = 0 ∀h ∈ N against H1 : E [εtεt−h] 6= 0 for some h ∈ N.

Model (1) is assumed correct in some sense, whether H0 is true or not. Thus, θ0 should be thought

of as a pseudo-true value that can be identified, usually by a moment condition (Kullback and Leibler,

1951, Sawa, 1978, White, 1982). We ignore the possibility of nuisance parameters that arise under either

hypothesis, including ARMA models with common roots, and GARCH volatility with a particular start

condition (Andrews and Ploberger, 1996, Andrews, 2001).

Unless yt = εt, let θ̂n = [φ̂′n, δ̂
′
n] estimate θ0 where n is the sample size, and define the residual, and

its sample serial covariance and correlation coefficients:

εt(θ̂n) ≡ ut(φ̂n)

σt(θ̂n)
≡ yt − f(xt−1, φ̂n)

σt(θ̂n)
and γ̂n(h) ≡ 1

n

n∑
t=1+h

εt(θ̂n)εt−h(θ̂n) and ρ̂n(h) ≡ γ̂n(h)

γ̂n(0)
.
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In the pure volatility model set f(xt−1, φ̂n) = 0, and in the level model set σt(θ̂n) = 1. Our primary test

statistic is the sample max-correlation,

T̂n ≡
√
n max

1≤h≤Ln
|ρ̂n(h)| .

Note that {Ln} is a sequence of integers, Ln→∞ as n→∞ ensures a white noise test, and Ln = o(n)

implies γ̂n(h) = E[εtεt−h] + Op(1/
√
n) for each h ∈ {1, ...,Ln}. The max-correlation delivers only

the most informative sample correlation (amongst a set of consistent sample correlations), and therefore

ignores all others as though they were simply zeros, much like a shrinkage estimator.

Interest in the maximum of an increasing sequence of deviated covariances
√
n max1≤h≤Ln |γ̂n(h)

− γ(h)| dates in some form to Berman (1964) and Hannan (1974). See also Xiao and Wu (2014)

and their references. In this literature the test variable is observed, and the exact asymptotic distri-

bution form of a suitably normalized
√
nmax1≤h≤Ln |γ̂n(h) − γ(h)| is sought. Xiao and Wu (2014)

impose a moment contraction property on yt, and Ln = O(nυ) for some υ ∈ (0, 1) that is smaller with

greater allowed dependence. They show an{
√
nmax1≤h≤Ln |γ̂n(h) − γ(h)|/(

∑∞
h=0 γ(h)2)1/2 − bn}

d→

exp{− exp{−x}}, a Type I extreme value distribution (i.e. Gumbel), with normalizing sequences an, bn

∼ (2 ln(n))1/2. See, also, Jirak (2011).

Xiao and Wu (2014) do not prove their blocks-of-blocks bootstrap is valid under their assumptions,

and only observed data are allowed. The moment contraction property is also tied to the bound on Ln,

and in terms of asymptotics it is more restrictive than the Near Epoch Dependence [NED] property used

here. See the supplemental material Hill and Motegi (2016, Appendix B) for a comparison between our

NED property and their dependence assumption. We only need Ln = o(n), we allow for a very large

class of regression residuals, and we provide a complete theory for the dependent wild bootstrap.

We also use a different asymptotic theory approach. We sidestep Xiao and Wu’s (2014) popular

extreme value theoretic approach by exploiting only the weak convergence of {
√
n(γ̂n(h) − γ(h)) : 1

≤ h ≤ L} to a Gaussian process, for each L ∈ N. This suffices since we do not need to have the null

extreme value limit distribution of a suitably normalized T̂n in order to show that the bootstrapped test

statistic and T̂n have the same limit distribution function under H0.

We perform a bootstrap p-value test using Shao’s (2011) dependent wild bootstrap. In order to con-

trol for the impact of residuals estimation, we either apply the bootstrap to a first order expansion of the
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sample correlations, or we use Delgado and Velasco’s (2011) orthogonal correlation transform which

requires a fixed maximum lag L. In general, the first order expansion is superior to the orthogonal

transform, both in terms of empirical size and power, in particular when the maximum lag is large. In

a numerical study we find the max-correlation test dominates the max-transformed correlation test, and

Delgado and Velasco’s (2011) Q-test. This is logical since the orthogonal transform requires standardiz-

ing the vector [ρ̂n(1), ..., ρ̂n(L)]′ with a robust variance matrix estimator, while nonparametric estimators

are sensitive to bandwidth and are a major source of sampling error when L is large. Indeed, the orthog-

onal transform breaks down entirely when we test GARCH filtered residuals for a GARCH process: the

orthogonalized correlations are minute, irrespective of serial dependence, the maximum lag used, and

whether an identity matrix or kernel estimator are used for variance computation (in the latter case, ir-

respective of the bandwidth). Thus, both max-transformed correlation and Delgado and Velasco Q-tests

yield zero empirical size and power in this case, revealing a non-trivial shortcoming of the test statistic.

Of separate interest, we use a different asymptotic theory than Shao (2011) to show that his depen-

dent wild bootstrap is valid for either the correlation first order expansion or orthogonal transform, in a

potentially much less restrictive environment than treated in Shao (2011) or recently Zhu (2015).

The asymptotic arguments are not trivial since we want to impose little more than white noise

E[εtεt−h] = 0 ∀h ≥ 1 under the null. Similar challenges are tackled in Hong (1996), Romano and

Thombs (1996), Shao (2011), and Guay, Guerre, and Lazarova (2013) amongst others. Our NED setting

is similar to that of Lobato (2001) and Nankervis and Savin (2010, 2012), but the former works with

observed data and requires a fixed maximum lag, and we allow for a substantially larger class of filters

and plug-in estimators than the latter. NED encompasses mixing and non-mixing processes, hence our

setting is more general than Zhu’s (2015) setting for his block-wise random weighting bootstrap.

Shao (2011), Guay, Guerre, and Lazarova (2013) and Xiao and Wu (2014) use a moment contraction

property from Wu (2005) and Wu and Min (2005) with (potentially far) greater moment conditions than

imposed here. Guay, Guerre, and Lazarova (2013) require a finite 12th moment, hyperbolic memory

decay that is fourteen times faster than we require, and impose a joint weak limit theory for the residuals

process and plug-estimator that holds for linear processes and least squares. Shao (2011) requires a

finite 8th moment, a complicated eighth order cumulant summability condition that is only known to

hold under geometric memory, and residuals are not treated. Xiao and Wu (2014) only require slightly
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more than a 4th moment, as we do, but do not allow for residuals, and restrict weak dependence based

on how fast the maximum lag increases. In the supplemental material Hill and Motegi (2016, Appendix

B) we show that our NED setting is potentially far more general then the moment contraction properties

employed in Guay, Guerre, and Lazarova (2013) and Shao (2011), and allows for slower moment decay

than Xiao and Wu (2014).

Test statistics that combine serial correlations as tests of serial uncorrelatedness, or more generally

white noise, have a vast history. The profoundly popular sum of squared correlations up to a fixed max-

imum lag is due to Box and Pierce (1970). There are many generalizations of the resulting Q-statistic.

This includes letting the maximum lag increase with the sample size (Hong, 1996, Hong and Lee, 2003);

bootstrapping for size correction under weak dependence (Romano and Thombs, 1996, Horowitz, Lo-

bato, Nankervis, and Savin, 2006, Zhu, 2015); re-scaling for size correction under weak dependence

(Lobato, 2001, Francq, Roy, and Zakoı̈an, 2005, Kuan and Lee, 2006); using a Lagrange Multiplier

type statistic to account for weak dependence (e.g. Lobato, Nankervis, and Savin, 2002); exploiting an

asymptotic expansion and then projection of sample correlations to produce pivotal statistics (Delgado

and Velasco, 2011); and using endogenous maximum lag selection (Escanciano and Lobato, 2009, Guay,

Guerre, and Lazarova, 2013).

A related class estimators exploits the periodogram, an increasing sum of sample correlations, dat-

ing to Grenander and Rosenblatt (1952) (e.g. Durlauf, 1991, Hong, 1996, Deo, 2000, Delgado, Hi-

dalgo, and Velasco, 2005, Hong and Lee, 2005, Escanciano and Velasco, 2006, Shao, 2011, Zhu and Li,

2015). Hong (1996) standardizes a periodogram resulting in less-than
√
n-local power, while Cramér-

von Mises and Kolmogorov-Smirnov transforms in Deo (2000), Delgado, Hidalgo, and Velasco (2005),

and Shao (2011) result in omnibus type tests, leading to
√
n-local power. Nevertheless, Guay, Guerre,

and Lazarova (2013) show that Hong’s (1996) standardized portmanteau test (but not a Cramér-von

Mises test) can detect local-to-null correlation values at a rate faster than
√
n, e.g. ρ(h) = ρn(h) =

o(n−1/2), provided an adaptive increasing maximum lag is used. Finally, a weighted sum of correlations

also arises in Andrews and Ploberger (1996) sup-LM test couched in an ARMA model (cf. Nankervis

and Savin, 2010, 2012).

In all of these cases, multiple or all possible sample correlations are combined. Sample correlations

at large lags may be a poor approximation of the true correlation. Bootstrapping, therefore begs the
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question since at best it yields a better approximation of the finite sample distribution of a combination

of possibly noisy estimates.1

Our test statistic can operate on residuals from a general regression model, and large class of esti-

mators. It does not require a covariance matrix scale, nor any type of standardization since we exploit

a dependent wild bootstrap. Thus, our test is generally not pivotal, as compared to Lobato (2001) and

Delgado and Velasco (2011). Lobato (2001) replaces a covariance estimator with a stochastic process,

leading to an asymptotically pivotal test, where critical values are computed by simulation. The maxi-

mum lag, however, is fixed and only observed data are used. See Kuan and Lee (2006) for extension to

account for residuals. Delgado and Velasco (2011) use a least squares projection method for the sample

covariances to yield a Q-statistic that is pivotal, but must therefore have a bounded maximum lag.

A simulation study shows that our test works well for unfiltered or filtered data from various time

series models, with sample sizes {100, 250, 500, 1000} and lags Ln ranging from 5 to 144 depending

on n. The errors are variously iid, martingale difference sequences [mds] and uncorrelated non-mds

processes. Our test achieves sharp empirical size and high power for all sample sizes when the wild

bootstrap is used, while the dependent wild bootstrap generally results in slightly smaller rejection fre-

quencies. We compare our test with Hong’s (1996) standardized spectral test; Delgado and Velasco’s

(2011) Q-test based on orthogonalized correlations; Shao’s (2011) dependent wild bootstrap spectral

Cramér-von Mises test, which is proposed for observed data; and Zhu and Li’s (2015) block-wise ran-

dom weighting bootstrap Cramér-von Mises test for linear regression residuals. Only Delgado and

Velasco’s (2011) Q-test requires a finite maximum lag. In the supplemental material (Hill and Motegi,

2016, Appendix E) we also compare our tests with an asymptotic and bootstrapped Ljung-Box test, and

a bootstrapped Andrews and Ploberger’s (1996) sup-LM white noise test.

The remainder of the paper is as follows. Section 2 contains the assumptions and main results for

the max-correlation white noise test. In Section 3 we work with a fixed maximum lag and Delgado and

Velasco’s (2011) orthogonal correlation transform, followed by a variety of examples in Section 4. A

Monte Carlo study follows in Section 5, and concluding remarks are left for Section 6.

Throughout | · | is the l1-matrix norm; || · || is the l2-matrix norm; || · ||p is the Lp-norm. I(·) is the

indicator function: I(A) = 1 if A is true, else I(A) = 0. Ft ≡ σ(yτ , xτ : τ ≤ t). All random variables

1We show in an additional simulation study in the supplemental material that at large lags the bootstrapped Q-test is
dominated by the max-correlation test.
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lie in a complete probability measure space (Ω,P ,F), hence σ(∪t∈ZFt) ⊆ F .

2 Max-Correlation Test
We first lay out the main assumptions, and then derive the main results for a dependent wild bootstrap

test. We complete this section by studying local power.

2.1 Assumptions and Asymptotic Expansion
In order to bootstrap the asymptotic distribution of max1≤h≤Ln |

√
nρ̂n(h)|, we utilize a first order

asymptotic expansion of εt(θ̂n) around θ0. Recall Ln → ∞ and Ln = o(n). We find in general this

provides a better small sample approximation to the limit distribution of T̂n since it accounts for the first

order structure of θ̂n.

The first order expansion is accomplished under various regularity assumptions which we discuss

here. Let {υt} be a stationary α-mixing process with σ-fields Vt
s ≡ σ(υτ : s ≤ τ ≤ t) and Vt ≡ Vt

−∞

and coefficients α(υ)
m = supt∈Z supA⊂V∞t ,B⊂Vt−m−∞ |P (A ∩ B) − P (A)P (B) |. We say Lq-bounded {εt}

is stationary Lq-NED with size λ on a mixing base {υt} when ||εt − E[εt|Vt+m
t−m]||q = O

(
m−λ−ι

)
for

tiny ι > 0. If εt = υt then ||εt − E[εt|Vt+m
t−m]||q = 0, hence NED includes mixing sequences, but it also

includes non-mixing sequences since it covers infinite lag functions of mixing sequences that need not

be mixing. See Davidson (1994, Chapter 17) for historical references and deep results.

Assumption 1 (data generating process)

a. {xt, yt} are stationary, ergodic, and L2+δ-bounded for tiny δ > 0.

b. εt is stationary, ergodic, E[εt] = 0, Lp-bounded, p > 4, and L4-NED with size 1/2 on stationary

α-mixing {υt} with coefficients α(υ)
h = O(h−p/(p−2)−ι) for tiny ι > 0.

Remark 1 Lobato, Nankervis, and Savin (2002) impose a similar NED property for a Lagrange Multi-

plier type extension of a Q-statistic for observed data. Nankervis and Savin (2010), who generalize the

white noise test of Andrews and Ploberger (1996), allow for NED observed yt, but mistakenly assume

yt is only L2-NED.2

Remark 2 Ergodicity is not required in principle, but imposed to allow easily for laws of large numbers
2A Gaussian central limit theorem requires the product, in our case εtεt−h, to be L2-NED, which holds when εt is

Lp-bounded, p > 4, and L4-NED (Davidson, 1994, Theorem 17.9).
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on functions of the general response functions f(xt, φ) and σ2
t (θ) and their derivatives. Indeed, NED

does not necessarily carry over to arbitrary measurable transform of an NED process. α-mixing, how-

ever, implies ergodicity, it extends to measurable transforms, and is a sub-class of the processes under

(b).

If we simply have yt = εt then a plug-in estimator is not required, and Assumption 1 suffices for our

main results. In this case, if yt is iid under H0, then it only needs to be L2-bounded.

The next set of assumptions are required only if a filter is used on yt.

Assumption 2 (plug-in: response and identification)

a. Level response. f : Rkx ×Φ→ R, where Φ is a compact subset of Rkφ , kφ ≥ 0; f(·, φ) is three times

continuously differentiable; E[supφ∈Nφ0
|(∂/∂φ)jf(xt, φ)|4] <∞ for j = 1, 2, 3 and some compact set

Nφ0 ⊆ Φ containing φ0.

b. Volatility. σ2
t : Θ → [0,∞) where Θ = Φ × ∆ ∈ Rkθ , and ∆ is a compact subset of Rkδ , kδ ≥ 0;

σ2
t (θ) is Ft-measurable, continuous, and three times continuously differentiable with infθ∈Θ |σ2

t (θ)| ≥

ι > 0 a.s. and E[supθ∈N0
|(∂/∂θ)j lnσ2

t (θ)|4] < ∞ for j = 1, 2, 3 and some compact subset N0 ⊆ Θ

containing θ0.

c. Estimator. θ̂n ∈ Θ a.s. for each n, and for a unique interior point θ0 ∈ Θ we have
√
n(θ̂n − θ0) =

An−1/2
∑n

t=1 mt + op(1), where mt = [mi,t]
km
i=1 are stationary and ergodic, km ≥ kθ, E[mt] = 0, andA

∈ Rkθ×km . Moreover, mt is Lr-bounded, r > 2, and L2-NED with size −1/2 on a stationary α-mixing

process with coefficient decay O(h−r/(r−2)−ι) for tiny ι > 0.

Remark 3 Smoothness (a) and (b) ensure a stochastic equicontinuity property for well known uniform

laws of large numbers (e.g. Newey, 1991). These can be relaxed substantially for specific response

functions: see Section 4 for examples.

Remark 4 The fourth moment bounds are standard due to required expansions of residuals cross-

products. Note that E[supθ∈N0
|(∂/∂θ)j lnσ2

t (θ)|4] <∞ holds for many linear and nonlinear volatility

models, including GARCH, Quadratic GARCH, GJR-GARCH, etc. See Francq and Zakoı̈an (2004,

2010). The bound E[supφ∈Nφ0
|(∂/∂φ)jf(xt, φ)|4] <∞ can imply higher moment bounds than in As-

sumption 1 depending on the nonlinear response. A logistic Smooth Transition Autoregression, for
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example, has f(xt, φ) = φ′1xt + φ′2xt/(1 + exp {−φ′3xt}) where xt contains a constant term and lags of

yt (Terasvirta, 1994). The required bound holds under Assumption 1.

Remark 5 The estimator θ̂n asymptotically is a linear function of some zero mean process {mt}. This is

fairly mild since it includes M-estimators, Generalized Method of Moments, and (Generalized) Empir-

ical Likelihood, and non-smooth estimators with asymptotic expansions like LAD and quantile regres-

sion (see Knight, 1998). We ignore the possibility that θ0 lies on the boundary of Θ to conserve space

(boundary cases include GARCH models with zero parameter values, and random coefficient models

where some coefficients have a zero variance).

Remark 6 Typicallymt is a function of ut or εt and the gradients (∂/∂φ)f(xt, φ0) and/or (∂/∂θ)σ2
t (θ0),

in which case E[mt] = 0 represents an orthogonality condition that identifies θ0, even if εt is not white

noise. In the pure level response case yt = f(xt, φ0) + εt, for example, we may assume φ0 is identified

by least squares first order equations E[εt(∂/∂φ)f(xt, φ0)] = 0, hence assumed estimating equations mt

= εt(∂/∂φ)f(xt, φ0) from nonlinear least squares, QML, GMM or GEL have a zero mean.

In the following we drop θ0. Let 0l be an l-dimensional zero vector. Define

Gt(φ) ≡
[
∂

∂φ′
f(xt−1, φ),0′kδ

]′
∈ Rkθ and st(θ) ≡

1

2

∂

∂θ
lnσ2

t (θ) (2)

D(h) ≡ E

[(
εtst +

Gt

σt

)
εt−h

]
+ E

[
εt

(
εt−hst−h +

Gt−h

σt−h

)]
∈ Rkθ .

We do not require a filter for the above entities to make sense. If yt = εt, for example, then Gt(φ), st(θ)

and therefore D(h) are just vectors of zeros.

The required expansion follows. Proofs are presented in Appendix D of Hill and Motegi (2016).

Lemma 2.1 Under Assumptions 1 and 2 max1≤h≤Ln |
√
n{ρ̂n(h) − ρ(h)} − Zn(h)| p→ 0 where

Zn(h) ≡
1√
n

n∑
t=1+h

(εtεt−h − E [εtεt−h]−D′(h)Amt)

E
[
ε2t
] . (3)

Remark 7 In Hill and Motegi (2016, Appendix D: Lemma D.1) we provide a Gaussian weak limit

theory for the expansion process {Zn(h) : 1≤ h≤Ln}. This is the key limit theory behind the following

bootstrap results.
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2.2 Bootstrapped P-Value Test
We need to compute a p-value approximation p̂n ∈ [0, 1] for the max-correlation T̂n such that an

asymptotically correctly sized test is achieved. That is, under H0 for any level α ∈ (0, 1) we achieve

P (p̂n < α)→ α under H0, and P (p̂n < α)→ 1 under H1. The max-correlation test is therefore:

reject H0 at level α ∈ (0, 1) when p̂n < α.

We work with the dependent wild bootstrap for p-value computation since these methods have been

widely explored in the literature. mt(θ) are the estimating equations for θ̂n, Ân is consistent estimator

of A in Assumption 2.c, and define

D̂n(h) ≡
1

n

n∑
t=h+1

{(
εt(θ̂n)st(θ̂n) +

Gt(θ̂n)

σt(θ̂n)

)
εt−h(θ̂n) + εt(θ̂n)

(
εt−h(θ̂n)st−h(θ̂n) +

Gt−h(θ̂n)

σt−h(θ̂n)

)}
. (4)

Under Assumptions 1 and 2, arguments used to prove Lemma 2.1 yield D̂n(h)
p→ D(h) where D(h)

is defined in (2). We now operate on εt(θ̂n)εt−h(θ̂n) − D̂n(h)′×Ân×mt(θ̂n), an approximation of an

expansion of εt(θ̂n) around θ0 under H0, cf. Lemma 2.1.

The same method and theory promote valid p-value approximations for a Q-test and Andrews and

Ploberger’s (1996) sup-LM test, and indeed any test statistic that is a measurable function of {ρ̂n(h)}Lnh=1.

See Hill and Motegi (2016, Appendix C).

2.3 Dependent Wild Bootstrap
The classic wild bootstrap detailed in Wu (1986) and Liu (1988) was proposed for iid sequences,

and Hansen (1996) shows it applies to an adapted martingale difference sequence [mds]. Shao (2010a,

2011) generalizes the wild bootstrap to allow for dependent sequences. Shao (2010a) uses iid random

draws as weights, similar to the wild bootstrap, with a covariance function that equals a kernel function.

His requirements rule out a truncated kernel, but allow a Bartlett kernel amongst others (Shao, 2010a,

Assumption 2.1). We follow Shao (2011) whose random draws effectively have a truncated kernel

covariance function. Write compactly.

Ên,t,h(θ̂n) ≡ εt(θ̂n)εt−h(θ̂n)− D̂n(h)′×Ân×mt(θ̂n) and ĝn(h, θ̂n) ≡ 1

n

n∑
t=1+h

Ên,t,h(θ̂n). (5)
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The algorithm is as follows. Set a block size bn such that 1 ≤ bn < n. Denote the blocks by

Bs = {(s− 1)bn + 1, . . . , sbn} with s = 1, . . . , n/bn. Assume for simplicity that the number of blocks

n/bn is an integer. Generate iid random numbers {ξ1, . . . , ξn/bn} with E[ξi] = 0, E[ξ2
i ] = 1, and E[ξ4

i ]

<∞. Define an auxiliary variable ωt = ξs if t ∈ Bs. Compute for h = 1, . . . ,Ln:

ρ̂(dw)
n (h) ≡ 1

1/n
∑n

t=1 ε
2
t (θ̂n)

1

n

n∑
t=1+h

ωt

{
Ên,t,h(θ̂n)− ĝn(h, θ̂n)

}
, (6)

and the max-statistic T̂ (dw)
n ≡

√
nmax1≤h≤Ln |ρ̂

(dw)
n (h)|. Repeat M times, resulting in bootstrapped

max-correlation statistics {T̂ (dw)
n,i }Mi=1. The approximate p-value is p̂(dw)

n,M ≡ 1/M
∑M

i=1 I(T̂ (dw)
n,i ≥ T̂n).

Remark 8 The key difference between wild and dependent wild bootstraps is the block-wise depen-

dence of the auxiliary variable, and re-centering with the sample mean of Ên,t,h(θ̂n).

Remark 9 The auxiliary variable satisfies ωt = ξ1 for t = 1, ..., bn, ωt = ξ2 for t = bn + 1, ..., 2bn, etc.

This implies bn-dependence, with perfect dependence within blocks, and E[ωsωt] = I(|s − t| ≤ bn),

which is just the truncated kernel (cf. Andrews, 1991).

Shao (2011) imposes Wu’s (2005) moment contraction property with an eighth moment, which we

denote MC8 (see Appendix B in Hill and Motegi, 2016, for details). He then applies a Hilbert space

approach for weak convergence of a spectral density process {Ŝn(λ) : λ ∈ [0, π]} to yield convergence

for
∫ π

0
Ŝ2
n(λ)dλ.3 Further, only observed data are considered. There are several reasons why a different

approach is required here. First, Ŝn(λ) is a sum of all {γ̂n(h) : 1 ≤ h ≤ n − 1}, and Shao (2011,

proof of Theorem 3.1) uses a variance of conditional variance bound for probability convergence based

on Chebyshev’s inequality. This requires E[ε8t ] < ∞ and a complicated eighth order joint cumulant

series bound which is only known to hold when εt is geometric MC8 (see, e.g., Wu and Shao, 2004,

Shao and Wu, 2007). Second, we need weak convergence of {γ̂n(h) : 1 ≤ h ≤ Ln} which is far easier

to handle than weak convergence of {Ŝn(λ) : λ ∈ [0, π]} because tightness on a discrete set is trivial:

weak convergence of {γ̂n(h) : 1≤ h≤Ln} only requires convergence in finite dimensional distribution.

Third, the supremum is not a continuous mapping from the space of square integrable (with respect to

3See also Politis and Romano (1994) and Escanciano and Velasco (2006) for applications of weak convergence in a
Hilbert space to the bootstrap.
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Lebesgue measure) functions on [0, π]. It is therefore not clear how, or even if, Shao’s (2011: Theorem

3.1) proof applies to our max-statistic.

Our proof exploits what are essentially Bernstein (1927) blocks to separate Shao’s (2011) blocks.

Coupled with an NED assumption, and using Gine and Zinn’s (1990: Section 3) notion of weak conver-

gence in probability, we exploit a clever argument in de Jong (1997) to prove the bootstrapped correla-

tion process {
√
nρ̂

(dw)
n (h) : 1≤ h≤Ln} converges weakly in probability to the weak limit of {

√
nρ̂n(h)

: 1 ≤ h ≤ Ln}. This implies T̂ (dw)
n has the same distribution function as T̂n asymptotically with prob-

ability approaching one, which yields consistency of the bootstrapped p-value. We exploit an NED

assumption, hence Shao’s (2011) complicated cumulant condition is not required, and εt only requires

slightly more than a fourth moment, which is sharp under our NED assumption.4

Theorem 2.2 Let Assumptions 1 and 2 hold. Let D̂n(h)
p→D(h), Ân

p→A, the maximum lag Ln→∞

and Ln = o(n), and the number of bootstrap samples M = Mn →∞. Under H0, P (p̂
(dw)
n,M < α)→ α,

and if H0 is false then P (p̂
(dw)
n,M < α)→ 1.

Remark 10 The max-correlation test by dependent wild bootstrap yields an asymptotically correctly

sized test, and is consistent against any deviation from the white noise null hypothesis.

Remark 11 A similar theory applies to an approximate p-value computed by wild bootstrap, provided

εt is a mds under the null. The algorithm is similar to the dependent wild bootstrap, except ωt is iid

N(0, 1) for each t = 1, ..., n.

2.4 Local Asymptotic Power
Hong (1996) shows that his standardized periodogram yields non-trivial asymptotic power against

a sequence of local alternatives applied to the spectrum, with a slower than
√
n drift. Ultimately the

reduced rate arises from an increasing bandwidth parametric. Using a similar spectrum local alternative,

but with
√
n drift, Shao (2011) proves the Cramér-von Mises test achieves non-trivial local power.

4If we restrict dependence to be just α-mixing (recall NED encompasses mixing), then Et,h ≡ εtεt−h − E[εtεt−h] −
D′Amt has a spectral density f(·). Further, if f(0) > 0 then a Gaussian limit theory applies when εtεt−h and mt only have
a second moment. See Ibragimov (1975, Theorem 2.2) and Bradley (1993, Theorem 1.a). Under dependence, then, εt only
needs a fourth moment. Demonstrating f(0) > 0, however, may be generally impossible due to the construction of Et,h (e.g.
if the filter is a nonlinear ARMA-GARCH, or the filter is mis-specified).
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Delgado and Velasco (2011) impose local
√
n drift to the correlations, and show that a weighted average

portmanteau statistic yields non-trivial local power.

We operate on the largest (in absolute value) of an increasing sequence of sample correlations. The

max-correlation statistic therefore achieves the parametric rate of local asymptotic power against the

sequence of alternatives:

HL
1 : ρ(h) = ρn(h) =

r(h)√
n

for each h, where |r(h)| ≤
√
n.

Note that r(h) is a fixed constant for each h, where |r(h)| ≤
√
n ensures |ρn(h)| ≤ 1.

Theorem 2.3 Let Assumptions 1 and 2 hold. Let D̂n(h)
p→ D(h), Ân

p→ A, Ln →∞ and Ln = o(n),

and M = Mn →∞. Under HL
1 , limn→∞ P (p̂

(dw)
n,M < α) > α if r(h) 6= 0 for some h ∈ N. Specifically

limn→∞ P (p̂
(dw)
n,M < α)↗ 1 monotonically in |r(h)| ↗ ∞.

3 Max-Transformed Correlation Test
We use expansion (3) for a better approximation of the residuals cross-product due to the impact of

θ̂n on small and large sample dynamics. We then apply a bootstrap due to a non-standard limit theory

under the maximum transform. Delgado and Velasco (2011), however, take a different approach by

exploiting an orthogonal projection of the sample correlations. This requires an inverted covariance

matrix for robustness to weak dependence, and therefore a finite maximum lag. Dependence robust

estimators are also known to be sensitive to user chosen nuisance parameters, including bandwidth

(Newey and West, 1987, Andrews, 1991) and related parameters (e.g. Shao, 2010b), possibly leading

both to size distortions and diminished power, even for comparatively small maximum lags (see Delgado

and Velasco, 2011, Section 4).

We are nevertheless interesting in seeing if the transformation can lead to a better first order approx-

imation to the sample correlation dependence structure, in particular when a filter is used, as compared

to the use of the first order expansion Lemma 2.1. Operating on the maximum transformed correlation

should also provide an advantage over Delgado and Velasco’s (2011) Q-statistic, since we operate on

only the most informative sample statistic for correlation detection. The statistic and related theory are

developed below. A Monte Carlo experiment in Section 5, however, shows bootstrapping based on the

Lemma 2.1 expansion is generally superior.
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We first characterize the transformed correlations. Define estimator functions of θ:

γ̂n,θ(h) ≡ 1

n

n∑
t=1+h

εt(θ)εt−h(θ) and ρ̂n,θ(h) ≡ γ̂n,θ(h)

γ̂n,θ(0)
and ρ̂(L)

n,θ ≡ [ρ̂n,θ(h)]Lh=1 .

Notice ρ̂n,θ̂n(h) = ρ̂n(h) by definition. Under Assumptions 1 and 2, and H0,
√
nρ̂

(L)
n,θ0

d→ N(0,V(L)) for

any fixedL, and V(L) = [V(L)
i,j ]Li,j=1, ||V(L)||<∞. In general V(L)

i,j = (E[ε2t ])
−2
∑∞

l=−∞E[εtεt−iεt−lεt−l−j].

If εt is iid then V(L) = IL, and if εt and ε2t − E[ε2t ] are martingale differences then V(L) is diagonal with

V(L)
i,i = (E[ε2t ])

−2E[ε2t ε
2
t−i]. The claim follows from the arguments used to prove Lemma D.1 in Hill and

Motegi (2016, Appendix D).

Now assume a positive definite V̂(L)
n,θ exists such that V̂(L)

n,θ̂n

p→ Ṽ(L) where Ṽ(L) = V(L) under H0, and

define the standardized sample correlation vector:

ρ̃
(L)
n,θ =

[
ρ̃

(L)
n,θ (1), ..., ρ̃

(L)
n,θ (L)

]′
≡ V̂(L)−1/2

n,θ ρ̂
(L)
n,θ .

An example is a kernel estimator, e.g. Lobato, Nankervis, and Savin (2002, Section 4) or Delgado and

Velasco (2011, Section 4). DefineD(L)
θ = [Dθ(1), ...,Dθ(L)]′ ∈ RL×kθ and:

ξ
(L)
θ = [ξ

(L)
θ (1)′, ..., ξ

(L)
θ (L)′]′ ≡ V(L)−1/2

θ D
(L)
θ ∈ RL×kθ where

∂

∂θ
ρ̂n,θ(h)

p→ Dθ(h) ∈ Rkθ .

By the line of proof of Lemma 2.1, D(h) in (2) is identically Dθ0(h). Under Assumptions 1 and 2,

arguments similar to those used to prove Lemma 2.1 yield (cf. Delgado and Velasco, 2011, Proposition

1): ρ̃(L)

n,θ̂n
= ρ̃

(L)
n,θ0

+ ξ
(L)
θ0

(θ̂n − θ0) + op(1/
√
n).

Define the operator P(L) for any sequence {η(h)}Lh=1 by the forward recursive residuals of its least

squares projection on {ξ(L)
θ (h)}Lh=1:

P(L)η(h) = η(h)− ξ(L)
θ0

(h)

(
L∑

j=h+1

ξ
(L)
θ0

(j)′ξ
(L)
θ0

(j)

)−1 L∑
j=h+1

ξ
(L)
θ0

(j)′η(j).

By construction, the correlation expansion projection P(L)(ρ̃n,θ0(h) + ξ
(L)
θ0

(h)(θ̂n − θ0)) = P(L)ρ̃n,θ0(h),

hence it is free of θ̂n. Further,
√
nρ̃

(L)
n,θ0

d→ N(0, IL) under H0, hence [P(L)ρ̃n,θ0(h)]Lh=1
d→ N(0,Σ(L))

where Σ(L) is diagonal, with entries σ2(h) = 1 + ξ
(L)
θ0

(h)(
∑L

j=h+1 ξ
(L)
θ0

(j)′ξ
(L)
θ0

(j))−1ξ
(L)
θ0

(h)′.
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Now define sample versions of the above key components:

D̂
(L)

n,θ̂n
≡ [D̂n(1), ..., D̂n(L)]′ and ξ̂

(L)

n,θ̂n
≡ V̂(L)−1/2

n,θ̂n
D̂

(L)

n,θ̂n

σ̂2
n(h) = 1 + ξ̂

(L)

n,θ̂n
(h)

(
L∑

j=h+1

ξ̂
(L)

n,θ̂n
(j)′ξ̂

(L)

n,θ̂n
(j)

)−1

ξ̂
(L)

n,θ̂n
(h)′

P̂(L)
n η(h) = η(h)− ξ̂(L)

n,θ̂n
(h)

(
L∑

j=h+1

ξ̂
(L)

n,θ̂n
(j)′ξ̂

(L)

n,θ̂n
(j)

)−1 L∑
j=h+1

ξ̂
(L)

n,θ̂n
(j)′η(j),

where D̂n(h) are defined in (4). Delgado and Velasco’s (2011) proposed transformation is:

ρ̄
(L)
n,θ (h) ≡

P̂(L)
n ρ̃

(L)
n,θ (h)

σ̂n(h)
for h ≤ L− kθ. (7)

The number of lags is restricted to L− kθ due to the restricted degrees of freedom arising for the plug-in

estimator. The scale σ̂n(h) ensures an asymptotically standard normal limit distribution under the null.

The max-transformed correlation statistic is:

T̄n ≡ max
1≤h≤L−kθ

∣∣∣√nρ̄(L)
n,θ (h)

∣∣∣ .
Let p̄(dw)

n,M be the dependent wild bootstrap approximate p-value for T̄n. The limit theory for p̄(dw)
n,M

follows from the theory for T̂n because P̂(L)
n ρ̃

(L)
n,θ (h) is just a stochastic weighted average of {ρ̂n,θ(i)}Li=1.

A similar theory extends to the wild bootstrap for mds data under the null, and the bootstrapped test has

non-trivial local power against
√
n-local alternatives by arguments used to prove Theorem 2.3.

Theorem 3.1 Let Assumptions 1 and 2 hold, and let M = Mn →∞. Let V̂(L)

n,θ̂n

p→ Ṽ(L), ||Ṽ(L)|| <∞,

and Ṽ(L) = V(L) under H0. Under H0, P (p̄
(dw)
n,M < α)→ α, and if H0 is false then P (p̄

(dw)
n,M < α)→ 1.

4 Examples
In order to verify the assumptions, we give several examples of models under (1). We also need the

form of expansion (3) in order to compute the bootstrapped p-value. Expansion (3) can be simplified

depending on whether εt is assumed independent under the null, the regressors {xt} are independent of

the sequence {εt}, the stochastic volatility component σt is estimated, and the level response f is linear.
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Example 1 (level response) The level response model is yt = f(xt−1, φ0) + ut. Assume f(·, φ) is three

times continuously differentiable in φ ∈ Rkφ , E[u2
t ] < ∞, and E[GtG

′
t] is finite and positive definite

where Gt = Gt(φ0) = [Gt,i(φ0)]ki=1 ≡ (∂/∂φ)f(xt−1, φ0). Define nonlinear least squares estimating

equations mt(φ) = (yt − f(xt−1, φ)) × (∂/∂φ)f(xt, φ). Assume E[mt(φ)] = 0 if and only if φ = φ0, a

unique interior point of compact Φ.

Assume {ut, xt} are stationary Lp-bounded, p > 4, α-mixing with coefficients αh =

O(h−p/(p−2)/ ln(h)). Assume E[supφ∈Nφ0
|Gt,i(φ)|r] < ∞ for each i, some r > 4, and some compact

Nφ0 ⊆ Φ containing φ0. Many nonlinear response functions satisfy this condition underLp-boundedness

of {ut, xt}, including linear, logistic, and trigonometric functions. Then mt is stationary, Lp-bounded,

and α-mixing. Sufficient conditions for stationary geometric ergodicity of nonlinear AR-GARCH with

iid innovations are in Meitz and Saikkonen (2008), amongst others, cf. Doukhan (1994, Chapt. 2.4.2).

Define the non-linear least squares estimator φ̂n = arg minφ∈Φ{1/n
∑n

t=1(yt − f(xt−1, φ))2}. By

construction st = .5(∂/∂θ) lnσ2
t = 0 since σ2

t = 1, and D(h) = E[ut−hGt] + E[utGt−h] = E[ut−hGt].

Then Assumptions 1 and 2 hold, with mt = utGt and A = (E[GtG
′
t])
−1, hence

√
nρ̂n(h) =

1√
n

n∑
t=1+h

ut
{
ut−h − E[ut−hGt]

′ (E [GtG
′
t])
−1Gt

}
E [u2

t ]
+ op(1). (8)

If additionally ut is independent of the sequence {xt}, then E[ut−hGt] = 0, hence
√
nρ̂n(h) =

1/
√
n
∑n

t=1+h utut−h/E[u2
t ] + op(1), the well known result that φ̂n does not impact the limit distri-

bution of
√
nρ̂n(h) (cf. Wooldridge, 1990).

Example 2 (linear response with least squares) The model is yt = φ′0xt−1 + ut, E[ut] = 0. Let E[(yt

− φ′0xt−1)ut] = 0 for a unique interior φ0 ∈ Φ, and assume E[xtx
′
t] is positive definite. Assume {xt, ut}

are stationary and ergodic, Lp-bounded, p > 4, and L4-NED on an α-mixing base with coefficient

decay O(h−p/(p−2)−ζ). An AR process with an iid error that has a continuous bounded distribution is

geometrically α-mixing and therefore geometrically NED. This extends to linear or nonlinear GARCH

errors (see, e.g., Doukhan, 1994, Meitz and Saikkonen, 2008).

By construction Gt = xt−1 and st = 0 hence D(h) ≡ E[ut−hxt−1]. If φ̂n is least squares then
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Assumptions 1 and 2 are satisfied, with A = (E[xtx
′
t])
−1 and mt = utxt−1. Therefore:

√
nρ̂n(h) =

1

E [u2
t ]

1√
n

n∑
t=1+h

ut
{
ut−h − E[ut−hxt−1]′(E[xtx

′
t])
−1xt−1

}
+ op(1).

If u2
t − E[u2

t ] is an adapted mds then E[m2
i,t] = E[u2

t ]E[x2
i,t] <∞ and E[(utut−h)

2] = (E[u2
t ])

2 <∞,

hence we only need {xt, ut} to be Lp-bounded, p > 2, and α-mixing.

Example 3 (mean model with sample mean) The mean model is yt = E[yt] + ut, hence f(xt−1, φ0)

= E[yt], σt = 1 and E[ut] = 0. Assume {yt} is stationary and ergodic, and Lp-bounded, p > 4, and

L4-NED on and α-mixing base with decay O(h−p/(p−2)−ι). Then Gt = 1 and st = 0, hence D(h) ≡

E[utut−h] + E[ut] = E[(yt − E[yt])(yt−h − E[yt−h])]. The plug-in estimator is the sample mean θ̂n =

1/n
∑n

t=1 yt, so that mt = ut and A = 1. Assumptions 1 and 2 are satisfied, hence from (8) we obtain

√
nρ̂n(h) =

1√
n

n∑
t=1+h

(yt − E[yt]) (yt−h − E[yt−h])

E
[
(yt − E[yt])

2] + op(1).

Example 4 (GARCH(1,1) with QML) The model is GARCH(1,1) yt = σtεt with σ2
t = ω0 + α0y

2
t−1

+ β0σ
2
t−1, ω0, α0, β0 > 0, E[εt] = 0 and E[ε2t ] = 1 (Bollerslev, 1986). We ignore boundary cases by

assuming α0, β0 > 0. The model includes weak, semi-strong or strong GARCH (see Drost and Nijman,

1993), in which case the model is correct in some sense since the errors are assumed to be serially

uncorrelated. Conditions for strict stationarity in the case of iid or mds εt are given in Nelson (1990) and

Lee and Hansen (1994), and Boussama (2006) proves geometric ergodicity.

Let θ ≡ [ω, α, β]′, and Θ = [ιω, uω] × [0, 1 − ι] × [0, 1 − ι], where uω > ιω > 0 and ι ∈ (0, 1).

Define the unobserved volatility process σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ) on Θ, and define the iterated

process used for estimation: σ̃2
0(θ) = ω and σ̃2

t (θ) = ω + αy2
t−1 + βσ̃2

t−1(θ) for t ≥ 1. Let θ0 be the

unique interior point of Θ such that σ2
t (θ0) = σ2

t and E[(y2
t /σ

2
t (θ0) − 1)(∂/∂θ) ln(σ2

t (θ0))] = 0, the

QML first order moment condition. The feasible QML estimator is θ̂n ≡ arg infθ∈Θ{
∑n

t=1{ln σ̃2
t (θ) +∑n

t=1 y
2
t /σ̃

2
t (θ)}}.5 See Francq and Zakoı̈an (2004) for refined QML asymptotics when εt is iid, and see

Lee and Hansen (1994) for the semi-strong case.

5Since we assume the start condition σ̃2
0(θ) = ω we avoid the case where α0 = 0, β0 is not identified and is therefore a

nuisance parameter, and there are no GARCH effects (see Andrews, 2001). We do not allow nuisance parameters for brevity,
but their inclusion is straightforward, although beyond this paper’s scope.

17



Since our assumptions must hold whether εt is white noise or not, under potentially much weaker

conditions than weak-GARCH (Drost and Nijman, 1993), we assume {yt, εt} are stationary and ergodic,

(E|yt|ι,E|σ2
t |ι) < ∞ for some ι > 0, infθ∈Θ |σ2

t (θ)| ≥ ι > 0 a.s., and {εt, (∂/∂θ)i ln(σ2
t (θ0)) : i =

0, 1, 2, 3} are stationary geometrically α-mixing. Further, for each θ ∈ Θ unique stationary and ergodic

solutions exist for the iterated process and its derivatives {(∂/∂θ)jσ̃2
i (θ) : j = 0, 1, 2, 3}ti=0 as t→∞ at

a geometric rate.6 We also require for some compact subset N0 ⊆ Θ containing θ0:

E [st(θ0)s′t(θ0)]− E
[(

y2
t

σ2
t (θ0)

− 1

)
∂2

∂θ∂θ′
ln(σ2

t (θ0))

]
is non-singular (9)

E

 sup
θ∈N0

∣∣∣∣∣
(
∂

∂θ

)j
lnσ2

t (θ)

∣∣∣∣∣
4
 <∞ for each j = 1, 2, 3. (10)

If εt is iid, or {εt, ε2t − 1} are martingale differences adapted to some sequence of sigma fields {Gt},

then stationary solutions exist respectively when E[ln(ω0 + α0ε
2
t )] < 0 and E[ln(ω0 + α0ε

2
t )|Gt] < 0

a.s. (Nelson, 1990, Lee and Hansen, 1994). Write st(θ)≡ 0.5×(∂/∂θ) ln(σ2
t (θ)). If εt is iid or {εt, ε2t −

1} are martingale differences then (9) holds, and (10) holds by arguments in Francq and Zakoı̈an (2004,

Section 4.2). The latter assume an iid error, but their proofs of (10) do not make use of independence.

See, e.g., their equation (4.28).

Under the above conditions, Assumptions 1 and 2 hold. Assuming θ0 does not lie on the boundary

of Θ, plug-in estimator Assumption 2.c holds with mt = (ε2t − 1)st and A = {2E[sts
′
t] − E[(ε2t −

1)(∂/∂θ)st(θ0)]}−1. Finally, Gt = 0 hence D(h) ≡ E[εtεt−h(st + st−h)], and expansion (3) holds.

5 Monte Carlo Experiments
We now perform a Monte Carlo experiment to gauge the merits of the max-correlation test. We

simulate 1000 samples of size n ∈ {100, 250, 500, 1000} from the following processes:

Simple : yt = et Bilinear : yt = .5et−1yt−2 + et

AR(2) : yt = .3yt−1 − .15yt−2 + et GARCH(1,1) : yt = σtet with σ2
t = 1 + .2y2

t−1 + .5σ2
t−1

6It is plausible that stationarity can be dropped at the expense of deeper technical details and high order assumptions, but
to date it appears an asymptotic theory only exists for iid or mds innovations (e.g. Jensen and Rahbek, 2004).

18



Let νt be iid N(0, 1). We consider four processes for et: iid et = νt; GARCH(1,1) et = νtwt with w2
t

= 1 + .2e2
t−1 + .5w2

t−1; MA(2) et = νt + .5νt−1 + .25νt−2; and AR(1) et = .7et−1 + νt.7 The error

et is standardized when yt is GARCH(1,1) so that E[e2
t ] = 1. For each DGP and error, we draw 2n

observations and retain the last n for analysis.

The first three processes with each error are stationary. The GARCH process is strong when et is iid,

and semi-strong when et itself is GARCH since it is an adapted mds (Drost and Nijman, 1993), hence in

those cases GARCH yt is stationary (Nelson, 1990, Lee and Hansen, 1994). If et is MA or AR, then both

{et, yt} are serially correlated. In the MA case since the feedback structure is finite it can be verified that

GARCH yt is stationary. It is unknown whether GARCH yt with an AR error has a stationary solution.

All of our chosen tests require a finite fourth moment on the tested variable, and in all cases E[e4
t ] <

∞. In all models except GARCH, E[y4
t ] <∞ holds for any error et. In the GARCH case E[y4

t ] <∞

holds when et is iid or MA(2). Hence, in general test results for the unfiltered GARCH yt with an AR

or GARCH error should be interpreted with some caution.

We estimate a mean filter εt = yt − E[yt] for the mean and bilinear yt with φ̂n = 1/n
∑n

t=1 yt. We

estimate AR(2) and AR(1) filters εt = yt − φ′0xt for the AR(2) yt. Finally, for the GARCH(1,1) yt we

either do not use a filter yt = εt, or we estimate a GARCH(1,1) filter εt = yt/σt. AR and GARCH filters

are computed by least squares and QML, respectively.8 Finally, we also investigate power under lagged

weak dependence with MA errors. The process is yt = et with MA(q) error et = .25νt−q + νt, with

order q ∈ {12, 24, 48}. We estimate a mean filter εt = yt − E[yt]. Notice that any test with a maximum

lag under q cannot detect dependence in this process. Summary details are presented in Table 1.

5.1 Test Statistics and P-Values
Max-Correlation Tests We perform the max-correlation test with the standard correlation, and Del-

gado and Velasco’s (2011) orthogonally transformed correlations. We also perform Hong’s (1996) stan-

dardized spectral test, Delgado and Velasco’s (2011) Q-test, Shao’s (2011) spectral Cramér-von Mises

[CvM] test, and Zhu and Li’s (2015) spectral CvM test. In the supplemental material, we also compare

our test with the Ljung-Box Q-test and Andrews and Ploberger’s (1996) sup-LM test.

7In separate simulations we tried weaker degrees of persistence: MA(2) with et = νt + .3νt−1 + .1νt−2 and AR(1) with
et = .2et−1 + νt. Power is logically lower across tests in these cases, and therefore not reported for the sake of brevity.

8The GARCH model is estimated using the iterated process σ̃2
1(θ) = ω and σ̃2

t (θ) = ω + αy2t−1 + βσ̃2
t−1(θ) for t =

2, ..., n. We impose (ω, α, β) > 0 and α + β ≤ 1 during estimation.

19



Table 1: Data Generating Processes and Filter: Memory in Test Variable (corr = correlated)

Data Generating Process & Filter Memory in Test Variable
yt Filter Test Variable et iid et GARCH(1,1) et MA(2) et AR(1)

1 et Mean ε̂t = yt − φ̂n iid mds corr corr
2 Bilinear Mean ε̂t = yt − φ̂n non-mds wn non-mds wn corr corr
3 AR(2) AR(2) ε̂t = yt − φ̂′nxt iid mds corr corr
4 AR(2) AR(1) ε̂t = yt − φ̂′nxt corr corr corr corr
5 GARCH No Filter yt mds mds corr corr
6 GARCH GARCH ε̂t = yt/σt(θ̂n) mds mds corr corr

7 et Mean ε̂t = yt − φ̂n et iid et MA(12) et MA(24) et MA(48)

wn = white noise; corr = correlated.

The max-correlation require a lag length Ln. We use a fixed length at 5 or sample-size depen-

dent length Ln = [δn/ ln(n)] with δ ∈ {.5, 1}, where [·] truncates to an integer value. We have Ln ∈

{5, 10, 21} for n = 100; Ln ∈ {5, 22, 45} for n = 250; Ln ∈ {5, 40, 80} for n = 500; and

Ln ∈ {5, 72, 144} for n = 1000. We compute the max-correlation statistics
√
nmax1≤h≤Ln |ρ̂n(h)|

and
√
nmax1≤h≤Ln |ρ̄

(Ln)

n,θ̂n
(h)| where ρ̄(Ln)

n,θ̂n
(h) is Delgado and Velasco’s (2011) transformed correlation.

The latter requires a robust covariance matrix, hence choice of kernel function and bandwidth: we use

either an identity or kernel matrix estimator. See the details below for Delgado and Velasco’s (2011)

Q-test.

P-values for the max-correlation test are computed by wild bootstrap [WB] and Shao’s (2011) de-

pendent wild bootstrap [DWB]. We bootstrap
√
nmax1≤h≤Ln |ρ̂n(h)| using the Lemma 2.1 correlation

expansion, or simply ρ̂n(h) itself. Conversely, we bootstrap
√
nmax1≤h≤Ln |ρ̄

(Ln)

n,θ̂n
(h)| using ρ̄(Ln)

n,θ̂n
(h)

itself, since the orthogonalized correlation accounts for the impact of residuals estimation. In each case

we generate M = 500 bootstrap samples. The DWB requires a block size bn, while Shao (2011) uses bn

= b
√
n with b ∈ {.5, 1, 2}, leading to qualitatively similar results. We therefore use bn =

√
n.9

Hong’s Standardized Periodogram Test Hong’s (1996) test is based on a standardized periodogram.

If the periodogram is computed with a truncated kernel, then the statistic is just a standardized Box-

Pierce statistic. In order to make a comparison with the Ljung-Box test, we use a standardized Ljung-

9In simulations not reported here, we compared bn = b
√
n across b ∈ {.5, 1, 2} and found there is little difference in test

performance.
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BoxNn ≡ (2Ln)−1/2
∑Ln

h=1wn(h){nρ̂2
n(h) − 1} with wn(h) = (n+ 2)/(n− h). This is asymptotically

equivalent to a standardized Ljung-Box statistic under the null and Hong’s (1996) Assumptions 1.a, 2-3.

If the null is true and asymptotically {
√
nρ̂2

n(h)}Lnh=1 are independent then under Hong’s Assumptions

1.a, 2 and 3 Nn
d→ N(0, 1) else Nn

p→∞. Asymptotic independence generally requires independence

of εt under the null hypothesis, which fails for our bilinear and GARCH models, and models with mds

errors. Thus, the test is expected to result in empirical size distortions when Ln is small (e.g. Ln = 5),

and when εt is dependent under H0. We perform an asymptotic test based on the N(0, 1) distribution,

and bootstrapped tests with and without the correlation first order expansion. Observe that for a given

Ln, Hong’s (1996) Nn is just an affine transformation of the Ljung-Box statistic. Thus, a bootstrapped

test based on Nn is identical to a bootstrap Q-test when each is computed with Ln lags.

Shao’s Cramér von-Mises Test Shao’s (2011) test is based on the sample spectral distribution func-

tion Fn(λ) =
∫ λ

0
In(ω)dω with periodogram In(ω) = (2π)−1

∑n−1
h=1−n γ̂n(h)e−hω. The core statistic is

Sn(λ) ≡
√
n(Fn(λ) − γ̂n(0)ψ0(λ)) =

∑n−1
h=1

√
nγ̂n(h)ψh(λ) where ψh(λ) = (hπ)−1 sin(hλ) if h 6= 0

else ψh(λ) = λ(2π)−1. The CvM test statistic is Cn =
∫ π

0
S2
n(λ)dλ. The statistic has a non-standard limit

distribution, hence we use the WB and DWB, applied both to the correlation first order expansion and

to ρ̂n(h) itself.

Shao (2011) does not verify if his bootstrapped CvM test is valid for regression residuals, although it

likely is (we have not verified it). We therefore also perform Shao’s (2011) CvM test using Zhu and Li’s

(2015) block-wise random weighting bootstrap [BRWB]. This affords a first time comparison between

DWB and BRWB for the CvM test, which is of separate interest.10

The BRWB algorithm (without the first-order expansion here for simplicity) is as follows. Sup-

pose that the objective function to be minimized is written as 1/n
∑n

t=1 lt(θ). Set a block size bn,

1 ≤ bn < n, and denote the blocks by Bs = {(s − 1)bn + 1, . . . , sbn} with s = 1, . . . , n/bn.

Assume n/bn is an integer for simplicity. Generate positive i.i.d. random numbers {δ1, . . . , δn/bn}

from a common distribution with mean 1 and variance 1.11 Define an auxiliary variable ω∗t = δs if

t ∈ Bs. Calculate θ̂∗n = argminθ∈Θ1/n
∑n

t=1 ω
∗
t lt(θ). Compute γ̂∗n(h) = 1/n

∑n
t=1+h ω

∗
t εt(θ̂

∗
n)εt−h(θ̂

∗
n)

and S∗n(λ) =
∑n−1

h=1

√
nγ̂∗n(h)ψh(λ), where ψh(λ) = (hπ)−1 sin(hλ). Define the bootstrapped process

10We apply the BRWB for both AR residuals by least squares and GARCH residuals by QML, although Zhu and Li (2015)
only verify the validity of their test for least squares residuals from an ARMA model.

11Following Zhu and Li (2015), we use the Bernoulli distribution with P [δt = 0.5 × (3 −
√
5)] = (2

√
5)−1 × (1 +

√
5)

and P [δt = 0.5× (3 +
√
5)] = 1− (2

√
5)−1 × (1 +

√
5).
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∆n(λ) = S∗n(λ)−Sn(λ)−Zn(λ), where Zn(λ) = n−1/2
∑n−1

h=1{
∑n

t=1+h ω
∗
t −n+h}γ̂n(h)ψh(λ). Then

compute the bootstrapped test statistic C∗n =
∫ π

0
{∆n(λ)}2dλ. Repeat M times, resulting in the sequence

{C∗n,j}Mj=1 and approximate p-value 1/M
∑M

j=1 I(C∗n,j ≥ Cn).

When we implement the first-order expansion, the bootstrapped autocovariance is computed as γ̂∗n(h)

= 1/n
∑n

t=1+h ω
∗
t [εt(θ̂

∗
n)εt−h(θ̂

∗
n)− D̂∗′n (h)× Ân ×mt(θ̂

∗
n)].

Delgado and Velasco’s Q-Test Delgado and Velasco’s (2011) Q-statistic is n
∑L−kθ

h=1 (ρ̄
(Ln)

n,θ̂n
(h))2

with the transformed correlations. Computation of ρ̄ (Ln)

n,θ̂n
(h) requires a consistent estimator of V(L) =

(E[ε2t ])
−2S(L) underH0, where S(L)≡ [

∑∞
l=−∞E[εtεt−iεt−lεt−l−j]]

L
i,j=1. Define γ̂2

n(0)≡ 1/n
∑n

t=1 ε
2
t (θ̂n),

and let V̂(L)
n be an estimator of V(L). We use V̂(L)

n = IL, which is appropriate when εt is iid; or V̂(L)
n =

γ̂−2
n (0)Ŝ(L)

n with the kernel estimator Ŝ(L)
n in Lobato, Nankervis, and Savin (2002, eq. 5) with Bartlett

kernel and bandwidth 2(n/100)1/3 ≈ .431n1/3, and no prewhitening, exactly as in Delgado and Velasco

(2011, p. 951). The Q-statistic has an asymptotic χ2(L − kθ) distribution under Assumptions 1 and 2.

The orthogonal transform is used to correct for the impact of weak dependence and a plug-in estimator,

but their simulation experiments show size distortions for even small L (and small kθ), and lower power

especially at higher lags when a fully robust covariance matrix is used. We therefore also bootstrap the

test with WB and DWB. The test is a fixed lag length Q-test by construction. In order to make a fair

comparison across tests, we use L = Ln.

Under the null hypothesis, the wild bootstrap is appropriate when the test series is iid or mds. In the

case of a bilinear yt with a mean filter, and iid or GARCH errors, εt is white noise but not mds. This

suggests size distortions may arise in that case. Under the alternative hypothesis, the wild bootstrap

cannot in theory accurately approximate the dependence structure in any model when εt is MA or AR,

hence power should be smaller in small samples in such cases. As stated above, however, we find the

WB works roughly on par with the DWB, at least for our chosen design. Finally, we have from Theorem

3.1 asymptotic validity of the (dependent) wild bootstrap under the appropriate assumptions.

5.2 Simulation Results
See Tables 2-9 for rejection frequencies. In order to save space, we only report dependent wild

bootstrap results; for bootstrap tests that can be applied to expanded or non-expanded correlations,

we only report results based on the expansion; and we only look at sample sizes 100 and 500. The
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supplemental material Hill and Motegi (2016, Appendix G) contains all simulation results. The WB

typically results in size and power on par with the DWB, with higher power than the DWB in some

cases.

5.2.1 Empirical Size

We use short hand notation for brevity. The simple process is yt = et; max-trans denotes the max-

correlation test with the transformed correlations; max-corr denotes the test with the non-transformed

correlations; DV is the Q-test in Delgado and Velasco (2011); CvM is the Cramér-von Mises test. Re-

jection frequencies are stated for {1%, 5%, 10%} nominal levels. There are several major points to note.

1. The max-trans test generally works as well as the max-corr test at the lowest maximum lag Ln = 5.

As Ln increases the max-trans test performs precipitously worse in terms of extreme under-sizedness.

The distortions tend to be worse when the errors are GARCH. Both properties are not implausible.

A large Ln implies we need to invert a large dimensional covariance matrix for standardization, and

kernel variance estimators need not adequately match finite sample dependence properties. The latter is

compounded under GARCH errors.12 As we discuss below, the DV test exhibits similar size distortions.

Overall, the standardization is precarious for large dimensional problems, making the transformation

far less attractive than the first order expansion as a means for handling the impact of plug-in estimators.

2. The orthogonalization completely breaks down when the process is GARCH and a GARCH filter

is estimated: the transformed correlations are minute, irrespective of serial dependence, for any sample

size n and any lag L. The problem exists irrespective of whether the identity matrix or kernel variance

are used, and irrespective of the chosen bandwidth. The problem therefore is the orthogonalization it-

self, rather than the standardization. See Appendix F in Hill and Motegi (2016) for a numerical example

that shows the under-workings of the transformed correlation failure. Note that Delgado and Velasco

(2011, Section 4) only consider ARCH(1) errors in their simulation study and use a different estimator

(Whittle maximum likelihood). Our study therefore reveals that a more realistic error dependence struc-

ture is challenging for the orthogonalized correlations to deal with. In general, therefore, the first order

asymptotic expansion is superior for size control when filtered residuals are used.

12In addition to the bandwidth 2(n/100)1/3 ≈ .431n1/3, we tried a variety of other bandwidths λn1/3 for λ ∈ (0, 1).
Size distortions for the max-trans test are not alleviated. Similarly, the DV test performs equally as well for other chosen
bandwidths.
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3. Hong’s (1996) test generally exhibits size distortions, for both asymptotic and bootstrapped tests.

Often the asymptotic test is over-sized and the bootstrapped test is under-sized. For example, in the

simple process case with iid error and (n,Ln) = (100, 5), asymptotic and bootstrap test sizes are

{.024, .040, .058} and {.012, .048, .111}, and atLn = 21 they are {.024, .097, .202} and {.002, .021, .062}.

The asymptotic test requires the lag length to increase to infinity. However, for the simple process

with iid error and (n,Ln) = (500, 80) size is not improved: asymptotic and bootstrap test sizes yield

{.037, .136, .231} and {.000, .005, .022}. In the bilinear case with GARCH errors and (n,Ln) = (100, 21)

we obtain {.135, .220, .312} and {.000, .006, .029}, and for GARCH process with iid error and (n,Ln)

= (500, 80) the respective frequencies are {.043, .139, .219} and {.000, .001, .017}. Similar rates appear

for the AR(2) process with AR(2) filter, and GARCH processes with GARCH filter.

4. Asymptotic and bootstrapped DV tests in many cases exhibit asymmetric size distortions. The

simple process with iid error and (n,Ln) = (100, 5) yields respective rates {.002, .027, .082} and {.009,

.055, .145}. Compare this to the max-corr and max-trans test: {.013, .051, .123} and {.004, .045, .103}.

If the errors are GARCH the DV tests result in {.001, .024, .058} and {.005, .054, .111}, compared to

max-corr and max-trans {.008, .059, .133} and {.010, .053, .134}.

At higher lags there are greater distortions in many cases. If the process is simple with an iid

error, when (n,Ln) = (100, 21) the asymptotic and bootstrap DV tests yield {.008, .025, .046} and

{.000, .001, .020}, compared to the max-corr and max-trans {.003, .030, .085} and {.002, .018, .071}.

In the bilinear case with GARCH error and (n,Ln) = (100, 21) the DV rates are {.206, .238, .255}

and {.000, .000, .008}, suggesting that neither the asymptotic distribution, nor the bootstrap, can well

approximate this test statistic’s null distribution. By comparison, the max-corr test and max-trans test

yield {.000, .005, .044} and {.000, .005, .024}. Both are undersized, with a larger distortion by max-

trans, but both beat the DV test. At a higher sample size n = 500 the pattern repeats.

At very high lags, e.g. (n,Ln) = (500, 80), the DV test performs very poorly, with size near zero

in several cases (simple-iid, AR(2)-iid or GARCH with AR(2) filter). Finally, as detailed above the DV

test breaks down when a GARCH filter is used, evidently due to the orthogonalization itself. The trans-

formed correlations are tiny irrespective of sample size, lag length, dependence, or variance estimator.

Hence, rejection frequencies are simply zero in all cases. See Hill and Motegi (2016, Appendix F) for

numerical examples.
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5. The CvM test generally exhibits larger size distortions than the max-corr test, using either the de-

pendent wild or block-wise random weighting bootstrap. This includes the simple process with iid error

(n = 100) or GARCH error; bilinear process with iid or GARCH error; AR(2) process with AR(2) filter

and iid or GARCH error; and GARCH process with or without a GARCH filter, and iid or GARCH

errors. The size distortions typically result in a modestly over-sized test. See Table 9.

6. The max-corr test generally results in the sharpest empirical size when all cases are considered.

It is evidently the most easily bootstrapped, even across the most difficult cases in this study. The

arguable reason is the simplicity of the test statistic. The more challenging processes are bilinear with

GARCH error and the AR(2) with GARCH error and AR(2) filter. Further, a white noise test requires

an increasing lag, and at all lags the test results in competitive empirical size. In cases where the test

exhibits a size distortion, it is usually under-sized, and in most of those cases it yields a smaller distortion

than other tests.

As examples, consider the bilinear process with GARCH error and (n,Ln) = (100, 5) (Table 3).

The rejection rates are {.004, .027, .089}, while Hong’s bootstrapped test yields {.002, .018, .060}, the

DV test without and with bootstrap yield {.019, .035, .068} and {.000, .017, .069}, and the CvM test

results in {.002, .030, .070} (recall the CvM test does not have the maximum lag Ln). At a higher lag

Ln = 21, the max-corr test is under-sized with rates {.000, .005, .044}. By comparison, the bootstrapped

Hong test is similarly under-sized {.000, .006, .029}; the asymptotic DV test is heavily over-sized with

{.206, .238, .255}; the bootstrapped DV test is heavily under-sided with {.000, .000, .008}.

In the AR(2) case with AR(2) filter, the max-corr test is slightly over-sized at low lags and small n

(Table 4). When the error is iid or GARCH and (n,Ln) = (100, 5) the rates are {.031, .095, .159} and

{.017, .079, .169}. At lag Ln = 21 the rates are {.002, .037, .105} and {.005, .038, .107}. The rejection

rates are sharper at larger sample sizes.

5.2.2 Empirical Power

Since max-trans, Hong’s (1996) asymptotic, and Delgado and Velasco’s (2011) bootstrapped tests yield

the largest size distortions, we do not discuss (or give cursory discussion of) their power.

1. Hong’s (1996) bootstrapped test yields high power at low lags, but has comparatively lower power

at higher lags in most cases. The largest discrepancies arise in the simple, bilinear, GARCH (with and
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without a filter) processes with MA or AR errors. The differentials are smaller or do not exist in the AR

process with either filter. However, the test is incapable of detecting remote dependence at small sample

sizes (Table 8). When n = 500 and the lag is large enough then power is non-trivial, but substantially

smaller than the max-corr test power.

2. The DV test has competitive power in many cases at low maximum lags, but struggles at higher

lags in every case. The orthogonal transform spread over a larger window of lags seems to add suffi-

cient sampling noise such that the true non-zero correlations cannot be detected well. Indeed, power is

typically a small fraction of the max-corr test at larger lags.

Further, the test is incapable of detecting remote dependence in the MA(q) model, for any q ∈

{12, 24, 48} and at any sample size. Indeed, the test fails altogether when (n,Ln) are large, e.g. MA(48),

n = 1000 and Ln ∈ {72, 144}. See Hill and Motegi (2016, Table 22).

3. The CvM test is very competitive in terms of raw or size corrected power (the latter is not shown

in the tables). Its main shortcoming is its complete inability to detect remote dependence in the MA(q)

model, for any q ∈ {12, 24, 48} and at any sample size. This holds for each bootstrap method under

consideration. See the bottom panel of Table 9, and see Hill and Motegi (2016, Table 29).

4. The max-corr test has the highest power in many cases, and competitive power in the remaining

cases, and does not exhibit a sharp decline in power at higher lags. In general, the max-trans test

yields lower (much lower in some cases) power. As examples, in the bilinear model with MA error

and (n,Ln) = (100, 21), max-corr rejection rates are {.240, .569, .765}, but Hong’s (1996) bootstrapped

test yields {.016, .144, .333}, the asymptotic and bootstrapped DV tests bring {.185, .242, .293} and

{.000, .032, .147} and the CvM test yields {.450, .743, .866}.

Across cases the CvM test is the best competitor with the max-corr test. However, as stated above

the CvM test cannot detect remote serial correlation by any of the three bootstrap methods consid-

ered. The max-corr test, however, is easily capable of detecting remote dependence once the maximum

lag is large enough, in particular for n ≥ 250 (Hill and Motegi, 2016, Tables 22.B-D). As an exam-

ple, for the MA(24) model with (n,Ln) = (250, 45) the max-corr test with dependent wild bootstrap

yields {.220, .526, .664}, Hong’s bootstrapped test yields {.019, .133, .311}, and asymptotic and boot-

strapped DV tests result in {.012, .036, .061} and {.000, .000, .005} (Hill and Motegi, 2016, Table 22.B).

The CvM test with wild, dependent wild, and random weighting bootstrap brings {.010, .065, .121},
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{.022, .088, .143} and {.017, .083, .137} (Hill and Motegi, 2016, Table 29).

5. The max-correlation test dominates Ljung-Box and Andrews and Ploberger’s (1996) sup-LM tests

when all cases are considered (note that in any finite sample bootstrapped Ljung-Box and Hong 1996

tests are equivalent). The strongest competitor there is the sup-LM test, but it is incapable of detecting

remote serial dependence of the types considered. See Hill and Motegi (2016).

6 Conclusion
We present a bootstrap max-correlation test of the white noise hypothesis. The maximum correlation

over an increasing lag length has a long history in the statistics literature, but only in terms of character-

izing its limit distribution using extreme value theory. We apply a bootstrap to a first order correlation

expansion in order to account for the impact of a plug-in estimator, or we use Delgado and Velasco’s

(2011) orthogonalized correlation with a fixed maximum lag. We prove Shao’s (2011) dependent wild

bootstrap yields a valid test using either sample correlation, in a more general environment than Shao

(2011) or Xiao and Wu (2014) used. The limit distribution of a suitably normalized max-correlation is

not required to show that the original and bootstrapped test statistics have the same limit distribution un-

der the null, allowing us to bypass the extreme value theory approach altogether. We allow for a general

class of models and broad range of estimators in order to derive filtered residuals.

A simulation study shows that the max-correlation test, where the bootstrap operates on the first order

correlation expansion, generally dominates each test considered: the spectrogram-based test in Hong

(1996), the Q-test in Delgado and Velasco (2011) with orthogonalized correlations, and the Cramér-von

Mises test in Shao (2011) with either Shao’s (2011) dependent wild bootstrap or Zhu and Li’s (2015)

block-wise random weighting bootstrap. The strongest competitor with the max-correlation test in this

paper is the Cramér-von Mises test, although that test leads to larger size distortions than the max-

correlation test. Further, in terms of power against possibly very remote serial dependence, the max-

correlation test dominates all tests, and the Cramér-von Mises exhibits roughly trivial power based on

all three bootstrap methods considered (wild, dependent wild, random weighting). In the supplemental

material we compare our test with the Ljung-Box Q-test and Andrews and Ploberger’s (1996) sup-LM

test. The max-correlation test dominates when all cases are considered.

We only study the maximum correlation for a white noise test. Another obvious application is a test
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of many zero restrictions in a regression model, when possibly infinitely many regressors exist. Many

possible applications exist, including a white noise test couched in an AR(pn) where pn→∞ as n→∞,

but also tests where many redundant parameters can lead to a poor sized asymptotic test, or lower power

bootstrapped test. Penalized estimators like lasso can impart shrinkage based on a sparsity assumption,

but inference on a parameter subset may also be desired, including a target subset set to zero by the

penalty function. We leave this idea for future consideration.
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Table 2: Rejection Frequencies – Simple yt = et, Mean Plug-in

n = 100

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .013, .051, .123 .008, .042, .096 .003, .030, .085 T̂ dw

ex .008, .059, .133 .007, .033, .099 .002, .024, .073

T̄ dw
o:K .004, .045, .103 .007, .042, .111 .002, .018, .071 T̄ dw

o:K .010, .053, .134 .003, .028, .092 .001, .011, .050

N .024, .040, .058 .023, .047, .089 .024, .097, .202 N .060, .093, .120 .039, .076, .121 .044, .109, .186

Ndw
ex .012, .048, .111 .005, .029, .100 .002, .021, .062 Ndw

ex .001, .033, .095 .001, .029, .071 .001, .008, .061

DVo:K .002, .027, .082 .001, .012, .036 .008, .025, .046 DVo:K .001, .024, .058 .005, .021, .051 .043, .077, .100

DV dw
o:K .009, .055, .145 .001, .022, .071 .000, .001, .020 DV dw

o:K .005, .054, .111 .002, .011, .059 .000, .002, .013

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .824, .971, .987 .714, .946, .979 .628, .924, .970 T̂ dw

ex .946, .997, 1.00 .929, .998, 1.00 .922, 1.00, 1.00

T̄ dw
o:K .728, .935, .977 .617, .914, .977 .346, .743, .873 T̄ dw

o:K .906, .997, .999 .909, .993, .999 .742, .945, .988

N .955, .978, .986 .883, .932, .955 .730, .815, .860 N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .994, .999, .999

Ndw
ex .458, .823, .949 .141, .584, .831 .052, .278, .522 Ndw

ex .731, .961, .997 .460, .881, .974 .164, .580, .858

DVo:K .462, .849, .935 .108, .412, .640 .102, .206, .301 DVo:K .806, .986, .995 .272, .718, .884 .172, .278, .383

DV dw
o:K .538, .886, .964 .109, .576, .829 .004, .098, .340 DV dw

o:K .779, .983, .997 .364, .874, .964 .017, .275, .630

n = 500

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .008, .047, .114 .004, .029, .078 .000, .027, .068 T̂ dw

ex .008, .056, .123 .000, .026, .074 .002, .025, .059

T̄ dw
o:K .013, .052, .111 .007, .032, .062 .001, .013, .055 T̄ dw

o:K .005, .053, .105 .000, .022, .052 .000, .006, .031

N .023, .050, .074 .011, .054, .110 .037, .136, .231 N .074, .126, .152 .025, .079, .141 .034, .114, .199

Ndw
ex .007, .061, .117 .000, .013, .050 .000, .005, .022 Ndw

ex .002, .032, .094 .000, .005, .035 .000, .001, .015

DVo:K .007, .042, .092 .000, .000, .005 .001, .004, .009 DVo:K .008, .036, .084 .003, .007, .013 .014, .025, .043

DV dw
o:K .013, .055, .136 .000, .000, .004 .000, .000, .001 DV dw

o:K .006, .043, .102 .000, .000, .006 .000, .000, .001

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 T̂ dw

ex 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̄ dw
o:K .998, .998, .999 1.00, 1.00, 1.00 1.00, 1.00, 1.00 T̄ dw

o:K 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Ndw
ex 1.00, 1.00, 1.00 .912, .999, .999 .283, .889, .984 Ndw

ex 1.00, 1.00, 1.00 .963, 1.00, 1.00 .784, .996, 1.00

DVo:K .999, .999, 1.00 .500, .905, .974 .051, .137, .223 DVo:K 1.00, 1.00, 1.00 .636, .955, .994 .077, .163, .247

DV dw
o:K .999, 1.00, 1.00 .417, .976, .998 .000, .070, .369 DV dw

o:K 1.00, 1.00, 1.00 .824, .998, 1.00 .009, .324, .749

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].
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Table 3: Rejection Frequencies – Bilinear yt = 0.50et−1yt−2 + et, Mean Plug-in

n = 100

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .009, .067, .127 .003, .033, .104 .002, .027, .087 T̂ dw

ex .004, .027, .089 .000, .026, .063 .000, .005, .044

T̄ dw
o:K .007, .063, .131 .005, .044, .110 .001, .016, .057 T̄ dw

o:K .005, .030, .081 .001, .011, .047 .000, .005, .024

N .074, .120, .148 .054, .094, .145 .039, .121, .212 N .325, .397, .449 .267, .346, .406 .135, .220, .312

Ndw
ex .005, .039, .109 .002, .022, .075 .001, .020, .061 Ndw

ex .002, .018, .060 .000, .007, .034 .000, .006, .029

DVo:K .002, .029, .071 .006, .019, .056 .047, .071, .098 DVo:K .019, .035, .068 .068, .092, .108 .206, .238, .255

DV dw
o:K .009, .058, .139 .001, .021, .086 .000, .002, .018 DV dw

o:K .000, .017, .069 .000, .006, .042 .000, .000, .008

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .341, .655, .827 .296, .603, .772 .240, .569, .765 T̂ dw

ex .233, .511, .679 .251, .491, .673 .241, .495, .672

T̄ dw
o:K .298, .597, .772 .233, .539, .704 .109, .345, .512 T̄ dw

o:K .211, .464, .642 .169, .405, .585 .111, .316, .472

N .852, .904, .924 .737, .839, .875 .594, .675, .725 N .984, .993, .993 .950, .966, .973 .902, .924, .939

Ndw
ex .175, .479, .699 .053, .308, .563 .016, .144, .333 Ndw

ex .169, .452, .640 .083, .348, .566 .035, .214, .448

DVo:K .264, .591, .760 .104, .263, .440 .185, .242, .293 DVo:K .300, .596, .746 .131, .272, .390 .232, .277, .318

DV dw
o:K .263, .631, .796 .046, .309, .553 .000, .032, .147 DV dw

o:K .155, .472, .660 .040, .231, .434 .002, .044, .148

n = 500

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .007, .063, .111 .003, .019, .066 .003, .023, .063 T̂ dw

ex .008, .022, .053 .007, .026, .048 .002, .013, .032

T̄ dw
o:K .011, .061, .114 .000, .029, .069 .003, .006, .030 T̄ dw

o:K .002, .016, .055 .000, .003, .020 .001, .003, .008

N .101, .158, .201 .030, .078, .142 .033, .110, .183 N .771, .805, .827 .537, .610, .653 .383, .487, .553

Ndw
ex .006, .056, .112 .000, .006, .044 .000, .004, .021 Ndw

ex .008, .011, .027 .002, .005, .017 .001, .003, .005

DVo:K .006, .054, .103 .000, .002, .006 .009, .021, .035 DVo:K .008, .012, .019 .099, .112, .121 .225, .245, .253

DV dw
o:K .008, .056, .135 .000, .000, .008 .000, .000, .002 DV dw

o:K .000, .006, .032 .000, .001, .005 .000, .000, .000

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .901, .979, .991 .896, .972, .992 .891, .968, .985 T̂ dw

ex .376, .624, .760 .370, .614, .729 .396, .635, .769

T̄ dw
o:K .906, .982, .992 .808, .937, .970 .666, .854, .911 T̄ dw

o:K .405, .651, .765 .249, .458, .591 .170, .325, .438

N 1.00, 1.00, 1.00 .999, .999, .999 .991, .998, .998 N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Ndw
ex .750, .917, .963 .327, .786, .920 .067, .482, .779 Ndw

ex .328, .593, .752 .177, .503, .699 .091, .384, .613

DVo:K .969, .992, .997 .148, .339, .481 .174, .232, .277 DVo:K .556, .754, .826 .105, .137, .167 .223, .246, .255

DV dw
o:K .954, .990, .996 .034, .434, .750 .000, .010, .081 DV dw

o:K .454, .700, .820 .004, .106, .251 .000, .002, .020

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].
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Table 4: Rejection Frequencies – AR(2) yt = 0.30yt−1 −0.15yt−2 + et, AR(2) Plug-in

n = 100

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .031, .095, .159 .014, .072, .156 .002, .037, .105 T̂ dw

ex .017, .079, .169 .009, .058, .147 .005, .038, .107

T̄ dw
o:K .021, .096, .171 .008, .054, .121 .001, .023, .066 T̄ dw

o:K .020, .076, .146 .005, .044, .125 .000, .022, .076

N .004, .009, .014 .006, .030, .104 .015, .109, .229 N .006, .015, .023 .005, .023, .095 .019, .110, .230

Ndw
ex .028, .087, .174 .006, .055, .136 .002, .031, .091 Ndw

ex .015, .086, .174 .004, .053, .127 .001, .015, .064

DVo:K .001, .033, .080 .001, .014, .036 .012, .035, .053 DVo:K .003, .028, .072 .002, .015, .039 .031, .057, .084

DV dw
o:K .019, .087, .170 .000, .025, .089 .000, .001, .016 DV dw

o:K .017, .074, .169 .000, .017, .081 .000, .000, .022

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .037, .139, .239 .014, .086, .159 .007, .044, .126 T̂ dw

ex .043, .124, .235 .022, .081, .184 .008, .049, .116

T̄ dw
o:K .027, .102, .179 .005, .050, .146 .001, .024, .074 T̄ dw

o:K .026, .116, .209 .010, .065, .148 .003, .025, .075

N .012, .022, .032 .019, .041, .114 .021, .114, .219 N .014, .029, .041 .018, .051, .110 .029, .097, .202

Ndw
ex .033, .119, .221 .011, .075, .162 .001, .033, .092 Ndw

ex .039, .148, .245 .011, .071, .180 .003, .041, .109

DVo:K .003, .040, .107 .002, .016, .050 .011, .032, .059 DVo:K .012, .066, .153 .002, .022, .070 .004, .020, .048

DV dw
o:K .025, .100, .183 .003, .053, .135 .000, .003, .017 DV dw

o:K .027, .114, .228 .003, .049, .134 .000, .003, .024

n = 500

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .018, .064, .126 .004, .028, .075 .003, .030, .074 T̂ dw

ex .010, .060, .116 .004, .032, .069 .002, .021, .067

T̄ dw
o:K .015, .066, .124 .005, .035, .077 .001, .014, .044 T̄ dw

o:K .010, .055, .113 .002, .022, .055 .003, .017, .040

N .007, .012, .019 .007, .074, .146 .045, .154, .247 N .012, .024, .030 .014, .063, .133 .045, .154, .256

Ndw
ex .016, .068, .135 .001, .012, .039 .000, .005, .022 Ndw

ex .013, .067, .128 .000, .008, .031 .000, .003, .020

DVo:K .007, .048, .091 .000, .001, .008 .000, .001, .004 DVo:K .007, .034, .067 .000, .000, .004 .011, .021, .035

DV dw
o:K .014, .067, .134 .000, .002, .019 .000, .000, .000 DV dw

o:K .006, .056, .113 .000, .000, .005 .000, .000, .000

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .090, .270, .406 .010, .053, .119 .006, .040, .090 T̂ dw

ex .134, .365, .504 .010, .070, .158 .007, .046, .099

T̄ dw
o:K .085, .248, .395 .004, .042, .095 .001, .030, .059 T̄ dw

o:K .182, .378, .521 .022, .092, .199 .009, .053, .116

N .079, .134, .171 .016, .072, .143 .036, .120, .221 N .146, .225, .289 .042, .100, .155 .036, .112, .194

Ndw
ex .100, .264, .396 .003, .030, .093 .000, .008, .036 Ndw

ex .189, .433, .574 .003, .050, .140 .000, .010, .057

DVo:K .082, .238, .353 .000, .004, .016 .000, .006, .013 DVo:K .158, .394, .537 .000, .004, .019 .001, .001, .006

DV dw
o:K .084, .247, .400 .000, .006, .025 .000, .000, .002 DV dw

o:K .178, .425, .573 .000, .004, .046 .000, .000, .002

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].

34



Table 5: Rejection Frequencies – AR(2) yt = 0.30yt−1 −0.15yt−2 + et, AR(1) Plug-in

n = 100

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .069, .222, .370 .032, .158, .299 .017, .077, .184 T̂ dw

ex .058, .198, .341 .034, .129, .242 .007, .073, .172

T̄ dw
o:K .055, .222, .344 .018, .111, .239 .004, .051, .125 T̄ dw

o:K .033, .156, .277 .015, .087, .184 .005, .041, .109

N .093, .134, .179 .059, .102, .148 .054, .132, .208 N .102, .155, .193 .076, .136, .176 .044, .106, .183

Ndw
ex .054, .205, .347 .019, .113, .235 .006, .047, .151 Ndw

ex .041, .164, .312 .017, .102, .205 .003, .047, .136

DVo:K .027, .123, .248 .005, .043, .099 .030, .057, .090 DVo:K .018, .106, .215 .007, .036, .078 .054, .092, .128

DV dw
o:K .043, .205, .351 .003, .059, .197 .000, .006, .041 DV dw

o:K .030, .148, .290 .002, .034, .140 .000, .001, .018

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .217, .542, .722 .089, .321, .518 .035, .184, .399 T̂ dw

ex .148, .407, .587 .039, .231, .425 .013, .110, .272

T̄ dw
o:K .331, .635, .781 .177, .480, .639 .029, .174, .315 T̄ dw

o:K .236, .564, .713 .120, .372, .564 .024, .153, .295

N .543, .661, .714 .391, .490, .553 .288, .386, .468 N .330, .457, .526 .200, .320, .394 .144, .215, .277

Ndw
ex .282, .627, .773 .083, .351, .548 .019, .160, .331 Ndw

ex .201, .490, .668 .045, .236, .445 .006, .083, .194

DVo:K .184, .511, .702 .036, .229, .405 .062, .132, .192 DVo:K .139, .463, .645 .023, .162, .334 .043, .109, .154

DV dw
o:K .231, .597, .770 .021, .246, .495 .000, .014, .101 DV dw

o:K .198, .548, .727 .017, .204, .443 .000, .020, .101

n = 500

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .524, .768, .865 .199, .438, .587 .170, .383, .520 T̂ dw

ex .356, .650, .776 .175, .403, .565 .127, .329, .469

T̄ dw
o:K .428, .721, .829 .129, .327, .474 .088, .271, .404 T̄ dw

o:K .277, .589, .722 .076, .229, .348 .033, .139, .255

N .567, .690, .748 .160, .272, .353 .108, .195, .256 N .589, .694, .745 .183, .287, .358 .119, .200, .259

Ndw
ex .501, .756, .847 .013, .106, .242 .001, .025, .103 Ndw

ex .321, .632, .758 .002, .096, .235 .000, .013, .073

DVo:K .468, .737, .840 .001, .022, .055 .002, .006, .016 DVo:K .293, .585, .715 .005, .012, .046 .024, .039, .055

DV dw
o:K .432, .738, .845 .000, .018, .103 .000, .000, .000 DV dw

o:K .272, .592, .741 .000, .005, .048 .000, .000, .001

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .979, 1.00, 1.00 .825, .984, .997 .775, .960, .984 T̂ dw

ex .973, .998, .999 .699, .953, .987 .615, .927, .973

T̄ dw
o:K .999, 1.00, 1.00 .969, .999, 1.00 .818, .970, .988 T̄ dw

o:K .995, 1.00, 1.00 .948, .991, .999 .844, .972, .989

N 1.00, 1.00, 1.00 .963, .985, .988 .846, .922, .948 N .999, 1.00, 1.00 .819, .906, .930 .571, .716, .783

Ndw
ex .999, 1.00, 1.00 .294, .827, .958 .045, .374, .682 Ndw

ex .984, 1.00, 1.00 .108, .559, .802 .008, .164, .397

DVo:K 1.00, 1.00, 1.00 .062, .339, .579 .017, .055, .103 DVo:K .995, .999, .999 .080, .318, .524 .012, .048, .087

DV dw
o:K .998, 1.00, 1.00 .019, .408, .748 .000, .002, .038 DV dw

o:K .996, .999, 1.00 .016, .339, .671 .000, .000, .034

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].
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Table 6: Rejection Frequencies – GARCH(1,1) yt = σtet, σ2
t = 1.0 + 0.2y2

t−1 + 0.5σ2
t−1, No Plug-in

n = 100

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .006, .052, .112 .000, .033, .090 .002, .021, .091 T̂ dw

ex .003, .034, .097 .004, .026, .073 .001, .016, .057

T̄ dw
o:K .004, .047, .118 .003, .031, .092 .001, .011, .047 T̄ dw

o:K .005, .039, .091 .001, .018, .068 .000, .009, .040

N .059, .094, .124 .036, .060, .101 .033, .105, .188 N .183, .251, .288 .149, .196, .245 .074, .165, .248

Ndw
ex .006, .032, .095 .004, .021, .075 .000, .007, .038 Ndw

ex .001, .028, .076 .000, .009, .044 .000, .006, .024

DVo:K .003, .024, .065 .007, .021, .048 .043, .068, .104 DVo:K .013, .025, .038 .046, .066, .081 .123, .155, .174

DV dw
o:K .005, .039, .106 .000, .017, .073 .000, .000, .014 DV dw

o:K .002, .031, .073 .000, .006, .026 .000, .000, .010

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .619, .890, .969 .565, .855, .952 .523, .855, .942 T̂ dw

ex .573, .838, .919 .593, .841, .929 .556, .827, .933

T̄ dw
o:K .460, .800, .926 .339, .709, .855 .154, .457, .662 T̄ dw

o:K .517, .781, .901 .440, .729, .860 .264, .571, .738

N .989, .995, .996 .938, .964, .971 .826, .887, .914 N 1.00, 1.00, 1.00 .997, .999, .999 .998, .998, .998

Ndw
ex .306, .715, .871 .104, .500, .760 .026, .193, .461 Ndw

ex .436, .786, .911 .248, .657, .869 .096, .442, .737

DVo:K .216, .623, .807 .089, .237, .429 .178, .234, .290 DVo:K .333, .667, .797 .124, .304, .476 .228, .299, .345

DV dw
o:K .229, .669, .866 .031, .297, .557 .000, .035, .201 DV dw

o:K .269, .629, .816 .072, .378, .624 .001, .068, .255

n = 500

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .008, .041, .099 .002, .025, .059 .000, .021, .067 T̂ dw

ex .008, .031, .084 .003, .020, .052 .006, .014, .031

T̄ dw
o:K .008, .053, .107 .001, .028, .062 .002, .013, .038 T̄ dw

o:K .005, .024, .059 .002, .009, .032 .002, .007, .015

N .075, .118, .166 .035, .082, .135 .043, .139, .219 N .530, .603, .641 .303, .363, .403 .166, .281, .354

Ndw
ex .005, .030, .090 .000, .009, .035 .000, .001, .017 Ndw

ex .005, .021, .058 .000, .006, .012 .002, .004, .009

DVo:K .005, .032, .075 .001, .003, .007 .016, .032, .042 DVo:K .004, .012, .030 .044, .056, .064 .139, .160, .170

DV dw
o:K .005, .040, .091 .000, .000, .007 .000, .000, .001 DV dw

o:K .000, .016, .053 .000, .000, .005 .000, .000, .000

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .973, .992, .997 .964, .990, .997 .972, .991, .998 T̂ dw

ex .730, .865, .915 .723, .871, .934 .733, .867, .922

T̄ dw
o:K .959, .985, .997 .915, .973, .988 .844, .941, .971 T̄ dw

o:K .673, .827, .899 .609, .776, .828 .515, .683, .754

N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Ndw
ex .910, .980, .992 .618, .908, .972 .216, .769, .949 Ndw

ex .681, .839, .893 .508, .772, .865 .306, .704, .858

DVo:K .981, .996, .997 .137, .365, .581 .145, .204, .244 DVo:K .704, .820, .869 .115, .189, .258 .196, .235, .257

DV dw
o:K .959, .991, .997 .045, .527, .829 .000, .009, .134 DV dw

o:K .620, .793, .866 .045, .297, .520 .000, .019, .109

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].
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Table 7: Rejection Frequencies – GARCH(1,1) yt = σtet, σ2
t = 1.0 + 0.2y2

t−1 + 0.5σ2
t−1, QML Plug-in

n = 100

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .009, .050, .109 .002, .031, .095 .001, .030, .075 T̂ dw

ex .006, .045, .089 .007, .039, .085 .002, .029, .077

T̄ dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 T̄ dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

N .024, .055, .078 .019, .043, .083 .023, .096, .175 N .028, .043, .064 .019, .047, .084 .032, .113, .184

Ndw
ex .005, .041, .114 .001, .029, .088 .003, .017, .069 Ndw

ex .006, .039, .099 .000, .021, .060 .001, .014, .044

DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000

DV dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DV dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .670, .880, .924 .547, .854, .909 .415, .770, .866 T̂ dw

ex .806, .875, .895 .750, .834, .873 .727, .847, .870

T̄ dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 T̄ dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

N .920, .958, .967 .809, .895, .928 .574, .691, .749 N .999, .999, 1.00 .994, .996, 1.00 .972, .987, .992

Ndw
ex .400, .753, .878 .132, .474, .702 .030, .201, .397 Ndw

ex .673, .849, .889 .341, .681, .816 .107, .390, .598

DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000

DV dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DV dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

n = 500

et is iid et is GARCH: w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .016, .056, .124 .002, .032, .087 .004, .025, .065 T̂ dw

ex .005, .041, .098 .004, .030, .085 .002, .014, .056

T̄ dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 T̄ dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

N .023, .056, .072 .023, .064, .120 .031, .132, .203 N .016, .040, .057 .013, .058, .105 .037, .125, .222

Ndw
ex .008, .039, .093 .000, .005, .028 .000, .007, .026 Ndw

ex .009, .056, .111 .000, .008, .036 .000, .001, .022

DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000

DV dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DV dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .975, .981, .984 .970, .980, .982 .972, .979, .982 T̂ dw

ex .879, .918, .930 .890, .915, .922 .861, .888, .904

T̄ dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 T̄ dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 N 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Ndw
ex .972, .982, .986 .713, .964, .981 .151, .739, .924 Ndw

ex .854, .886, .899 .775, .871, .888 .493, .767, .810

DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DVo:K .000, .000, .000 .000, .000, .000 .000, .000, .000

DV dw
o:K .000, .000, .000 .000, .000, .000 .000, .000, .000 DV dw

o:K .000, .000, .000 .000, .000, .000 .000, .000, .000

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].
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Table 8: Rejection Frequencies – Simple yt = et, Mean Plug-in (Remote MA Errors)

n = 100

et is iid et is MA(12): et = νt + 0.25νt−12

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .014, .069, .144 .003, .041, .108 .001, .038, .100 T̂ dw

ex .018, .081, .163 .018, .066, .138 .039, .155, .285

T̄ dw
o:K .013, .061, .131 .003, .029, .113 .001, .019, .065 T̄ dw

o:K .012, .071, .171 .010, .059, .133 .000, .028, .090

N .020, .035, .048 .025, .045, .097 .023, .101, .174 N .037, .064, .086 .042, .081, .126 .111, .167, .242

Ndw
ex .007, .053, .129 .002, .024, .089 .002, .023, .072 Ndw

ex .011, .082, .165 .009, .058, .149 .014, .109, .233

DVo:K .000, .021, .056 .001, .012, .043 .007, .026, .048 DVo:K .005, .039, .097 .003, .020, .064 .025, .067, .104

DV dw
o:K .017, .071, .137 .001, .024, .081 .000, .002, .014 DV dw

o:K .026, .078, .155 .001, .043, .106 .000, .006, .033

et is MA(24): et = νt + 0.25νt−24 et is MA(48): et = νt + 0.25νt−48

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .006, .067, .131 .011, .055, .117 .007, .060, .138 T̂ dw

ex .013, .073, .157 .008, .053, .125 .003, .036, .110

T̄ dw
o:K .015, .088, .180 .006, .053, .124 .001, .026, .069 T̄ dw

o:K .011, .068, .151 .003, .053, .115 .000, .016, .060

N .031, .064, .086 .037, .070, .116 .041, .119, .201 N .043, .076, .098 .028, .059, .105 .031, .092, .179

Ndw
ex .014, .089, .167 .005, .059, .147 .007, .047, .117 Ndw

ex .011, .078, .164 .006, .039, .101 .003, .028, .079

DVo:K .004, .042, .093 .000, .017, .049 .020, .042, .071 DVo:K .002, .030, .084 .002, .010, .036 .011, .029, .052

DV dw
o:K .011, .072, .169 .000, .030, .096 .000, .000, .025 DV dw

o:K .008, .063, .154 .000, .031, .085 .000, .006, .021

n = 500

et is iid et is MA(12): et = νt + 0.25νt−12

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .010, .054, .119 .007, .035, .070 .006, .022, .044 T̂ dw

ex .011, .079, .144 .903, .986, .994 .839, .947, .975

T̄ dw
o:K .010, .066, .141 .000, .017, .058 .001, .015, .054 T̄ dw

o:K .012, .067, .134 .651, .874, .923 .539, .799, .886

N .016, .037, .056 .022, .076, .141 .029, .113, .224 N .031, .072, .096 .616, .772, .834 .354, .507, .580

Ndw
ex .007, .048, .097 .000, .010, .033 .000, .006, .020 Ndw

ex .009, .049, .106 .075, .425, .691 .014, .161, .364

DVo:K .006, .050, .099 .000, .001, .007 .001, .005, .012 DVo:K .014, .049, .105 .016, .121, .275 .007, .024, .048

DV dw
o:K .011, .057, .111 .000, .001, .010 .000, .000, .000 DV dw

o:K .009, .067, .134 .001, .079, .333 .000, .000, .005

et is MA(24): et = νt + 0.25νt−24 et is MA(48): et = νt + 0.25νt−48

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ dw
ex .014, .071, .139 .873, .970, .988 .811, .942, .971 T̂ dw

ex .013, .082, .154 .007, .055, .141 .764, .925, .957

T̄ dw
o:K .014, .083, .149 .395, .682, .796 .297, .574, .713 T̄ dw

o:K .013, .091, .164 .003, .039, .095 .057, .200, .323

N .032, .082, .108 .607, .734, .795 .356, .493, .564 N .041, .077, .097 .061, .137, .201 .302, .457, .542

Ndw
ex .010, .074, .146 .131, .532, .757 .023, .224, .470 Ndw

ex .017, .064, .136 .002, .030, .117 .013, .210, .448

DVo:K .013, .068, .126 .001, .064, .189 .003, .014, .041 DVo:K .014, .057, .115 .000, .002, .009 .006, .022, .031

DV dw
o:K .017, .081, .160 .000, .078, .288 .000, .000, .002 DV dw

o:K .017, .078, .139 .000, .002, .027 .000, .000, .003

Rejection frequencies (1%, 5%, 10%). T̂ is the max-correlation test; T̄ is the max-transformed test; N is Hong’s (1996) test; DV is the Q-test by Delgado

and Velasco (2011); ”dw” implies the dependent wild bootstrap is used; ”ex” signifies the correlation first order expansion is used for the bootstrap; ”o:K”

signifies an orthogonalized correlation with a kernel-based covariance matrix; lag length is 5, [.5n/ ln(n)], or [n/ ln(n)].
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Table 9: Rejection Frequencies – Cramér-von Mises Tests with First Order Expansion

Model 1: Simple yt = et, Mean Plug-in
n = 100 n = 500

et IID GARCH MA(2) AR(1) et IID GARCH MA(2) AR(1)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .023, .028 .017, .028 .898, .929 .925, .981 1% .010, .023 .015, .013 1.00, 1.00 1.00, 1.00
5% .081, .082 .081, .079 .984, .991 .996, 1.00 5% .051, .064 .066, .052 1.00, 1.00 1.00, 1.00
10% .138, .142 .149, .140 .995, .995 1.00, 1.00 10% .102, .115 .115, .105 1.00, 1.00 1.00, 1.00

Model 2: Bilinear yt = 0.50et−1yt−2 + et, Mean Plug-in
n = 100 n = 500

et IID GARCH MA(2) AR(1) et IID GARCH MA(2) AR(1)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .018, .045 .002, .013 .450, .712 .282, .564 1% .014, .027 .026, .003 .884, .955 .393, .584
5% .076, .115 .030, .056 .743, .841 .567, .744 5% .072, .070 .038, .021 .966, .980 .630, .730
10% .149, .186 .070, .113 .866, .899 .741, .830 10% .124, .134 .075, .056 .990, .989 .781, .803

Model 3: AR(2) yt = 0.30yt−1 −0.15yt−2 + et, AR(2) Plug-in
n = 100 n = 500

et IID GARCH MA(2) AR(1) et IID GARCH MA(2) AR(1)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .020, .009 .026, .009 .029, .018 .064, .044 1% .012, .014 .011, .011 .032, .031 .325, .365
5% .086, .041 .086, .032 .113, .058 .193, .118 5% .059, .057 .051, .063 .144, .131 .592, .603
10% .167, .076 .168, .061 .182, .110 .299, .192 10% .132, .099 .104, .116 .250, .232 .700, .713

Model 4: AR(2) yt = 0.30yt−1 −0.15yt−2 + et, AR(1) Plug-in
n = 100 n = 500

et IID GARCH MA(2) AR(1) et IID GARCH MA(2) AR(1)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .133, .123 .118, .098 .570, .587 .472, .520 1% .710, .712 .550, .583 1.00, 1.00 .999, 1.00
5% .338, .276 .287, .209 .805, .802 .741, .748 5% .882, .879 .802, .802 1.00, 1.00 1.00, 1.00
10% .483, .390 .430, .300 .898, .884 .849, .845 10% .939, .934 .881, .882 1.00, 1.00 1.00, 1.00

Model 5: GARCH(1,1) yt = σtet, σ2
t = 1.0 + 0.2y2t−1 + 0.5σ2

t−1, No Plug-in
n = 100 n = 500

et IID GARCH MA(2) AR(1) et IID GARCH MA(2) AR(1)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .021, .034 .006, .015 .681, .791 .564, .687 1% .009, .009 .013, .008 .959, .971 .700, .794
5% .077, .076 .049, .060 .908, .932 .818, .862 5% .053, .052 .052, .029 .994, .988 .852, .876
10% .141, .139 .103, .113 .969, .967 .923, .921 10% .103, .103 .111, .065 .995, .992 .918, .911

Model 6: GARCH(1,1) yt = σtet, σ2
t = 1.0 + 0.2y2t−1 + 0.5σ2

t−1, QML Plug-in
n = 100 n = 500

et IID GARCH MA(2) AR(1) et IID GARCH MA(2) AR(1)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .026, .038 .024, .021 .801, .537 .785, .298 1% .017, .017 .012, .013 .973, .830 .852, .580
5% .078, .092 .066, .068 .897, .857 .853, .750 5% .081, .061 .059, .066 .979, .987 .893, .989
10% .143, .167 .119, .124 .927, .950 .874, .891 10% .156, .113 .118, .106 .983, .997 .907, .998

Model 7: Simple yt = et, Mean Plug-in (Remote MA Errors)
n = 100 n = 500

et IID MA(12) MA(24) MA(48) et IID MA(12) MA(24) MA(48)
DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW DW, BRW

1% .022, .036 .034, .056 .029, .038 .022, .034 1% .013, .018 .026, .020 .024, .019 .022, .028
5% .087, .088 .110, .125 .098, .091 .082, .093 5% .066, .064 .092, .068 .071, .078 .093, .089
10% .148, .146 .179, .189 .186, .143 .158, .159 10% .136, .119 .161, .128 .133, .142 .155, .143

Rejection frequencies of Cramér-von Mises tests (1%, 5%, 10%). ”DW” implies Shao’s (2011) dependent wild bootstrap is used; ”BRW” implies Zhu and

Li’s (2015) block-wise random weighting bootstrap is used. The correlation first order expansion is used for both bootstraps.
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