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Abstract

This paper proposes a test for a large set of zero restrictions in regression models based

on a seemingly overlooked, but simple, dimension reduction technique. The procedure in-

volves multiple parsimonious regression models where key regressors are split across simple

regressions: each parsimonious model has one key regressor, and other regressors that are

not associated with the null hypothesis. The test is based on the maximum key squared

parameter among all parsimonious regressions. Parsimony ensures sharper estimates and

therefore improves power in small samples. We present the general theory of the max test

and focus on mixed frequency Granger causality as a prominent application since parameter

proliferation is a major challenge in mixed frequency settings.
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1 Introduction

We propose a new test designed for a large set of zero restrictions in regression models. The test

is based on a seemingly overlooked, but simple, dimension reduction technique for regression

models. Suppose that the underlying data generating process for some observed scalar yt is

yt = z′ta+ x′tb+ ϵt,

zt is assumed to have a small dimension while xt may have a large but finite dimension h. We

want to test the null hypothesis H0 : b = 0 against H1 : b ̸= 0.

A classic approach exploits what we call a näıve regression model yt = z′tα + x′tβ + ut and

computes a Wald statistic in order to test H0. This approach may produce an imprecise result

when the dimension of b is large relative to sample size n. The asymptotic χ2-test may suffer from

size distortions due to parameter proliferation. A bootstrap method can be employed to improve

empirical size, but this generally results in the size corrected bootstrap test having low power

due to large size distortions (cfr. Davidson and MacKinnon (2006)). A shrinkage estimator can

be used, including Lasso, Adaptive Lasso, or Ridge Regression, but these are valid only under

a sparsity assumption, and therefore we cannot test H0 : b = 0 against a general alternative

hypothesis H1 : b ̸= 0.

We propose splitting each of the key regressors xt = [x1t, . . . , xht]
′ across separate regression

models. This results in what we call parsimonious regression models:

yt = z′tαi + βixit + uit for i = 1, . . . , h.

The ith parsimonious regression model has the ith element of xt only, so that parameter prolif-

eration is not an issue. We then consider a max test statistic:

T̂n = max{(
√
nβ̂n1)

2, . . . , (
√
nβ̂nh)

2}.

The asymptotic distribution of T̂n is non-standard under H0 : b = 0, but an approximate p-

value is readily available by drawing directly from an asymptotically valid approximation of

the asymptotic distribution. Under H1 : b ̸= 0, at least one of {β̂n1, . . . , β̂nh} has a nonzero

probability limit under fairly weak conditions. This key result ensures the consistency of the

max test. The testing procedure method obviously cannot identify an entire vector b when the

null is false, but we can identify that the null is false asymptotically with probability approaching

one for any direction b ̸= 0 under the alternative.

The maximum of a sequence of statistics with (or without) pointwise Gaussian limits has

a long history (e.g. Gnedenko (1943)), including the maximum correlation over an increasing

sequence of integer displacements. See, e.g., Berman (1964) and Hannan (1974). The use of

a max statistic across econometric models is used in White’s (2000) predictive model selection

criterion. Evidently ours is the first application of a maximum statistic to a regression model
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as a core test statistic for zero restrictions.

After presenting the general theory of the max test, we focus on mixed frequency Granger

causality as a prominent application which involves many zero restrictions. Time series are

often sampled at different frequencies, and it is well known that temporal aggregation adversely

affects Granger’s (1969) notion of causality.1 One of the most popular Granger causality tests

is a Wald test based on multi-step ahead vector autoregression (VAR) models. Its appeal is

that the approach can handle causal chains among more than two variables, see in particular

Lütkepohl (1993), Dufour and Renault (1998), Dufour, Pelletier, and Renault (2006), and Hill

(2007). Since standard VAR models are designed for single-frequency data, these tests often

suffer from the adverse effect of temporal aggregation. In order to alleviate this problem, Ghysels,

Hill, and Motegi (2016) develop a set of Granger causality tests that explicitly take advantage

of data sampled at mixed frequencies. They accomplish this by extending Dufour, Pelletier,

and Renault’s (2006) VAR-based causality test, using Ghysels’ (2016) mixed frequency vector

autoregressive (MF-VAR) models.2 Although Ghysels, Hill, and Motegi’s (2016) tests avoid

the undesirable effects of temporal aggregation, their applicability is limited because parameter

proliferation in MF-VAR models makes the tests imprecise. Indeed, if we let m be the ratio of

high and low frequencies (e.g. m = 3 in mixed monthly and quarterly data), then for bivariate

mixed frequency settings the MF-VAR is of dimension m + 1. Parameter proliferation occurs

when m is large, and becomes precipitously worse as the VAR lag order increases. In these cases,

Ghysels, Hill, and Motegi’s (2016) Wald test exhibits size distortions, while a bootstrapped

Wald test results in the correct size but low size-corrected power, a common occurrence when

bootstrapping a size distorted asymptotic test (cfr. Davidson and MacKinnon (2006)).3

In order to circumvent the adverse impact of parameter proliferation on empirical power, we

run parsimonious regressions and max tests for mixed frequency Granger causality. We consider

a bivariate case with a high frequency variable xH and a low frequency variable xL. Max tests

can be applied to both causality from xH to xL (high-to-low causality) and causality from xL

to xH (low-to-high causality). We compare the finite sample performance of the max test and

Wald test in Monte Carlo simulations. We use mixed frequency [MF] regression models and

aggregated low frequency [LF] models. We show that MF tests are better capable of detecting

complex causal patterns than LF tests. The MF max and Wald tests have roughly equal power

in most cases, but the former is more powerful under causality with a large time lag.

As an empirical application, we analyze Granger causality between a weekly interest rate

1Existing Granger causality tests typically ignore this issue. They aggregate data to the common lowest
frequency, leading possibly to spurious (non-)causality. See Zellner and Montmarquette (1971) and Amemiya and
Wu (1972) for early contributions. This subject has been subsequently extensively researched: see, for example,
Granger (1980), Granger (1988), Lütkepohl (1993), Granger and Lin (1995), Renault, Sekkat, and Szafarz (1998),
Marcellino (1999), Breitung and Swanson (2002), and McCrorie and Chambers (2006), among others.

2An early example of ideas related to mixed frequency VAR models appeared in Friedman (1962). Foroni,
Ghysels, and Marcellino (2013) provide a survey of mixed frequency VAR models.

3Götz, Hecq, and Smeekes (2016), using an approach similar to Ghysels, Hill, and Motegi (2016), propose
reduced rank regression and Bayesian estimation in order to run a large-dimensional MF-VAR. However, unlike
Ghysels, Hill, and Motegi (2016), they do not consider a true high frequency process that governs the data, hence
their focus is not on the causality mis-specification that arises from aggregation.
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spread and real GDP growth in the U.S., over rolling sample windows. The MF max test yields

an intuitive result that the interest rate spread causes GDP growth until 1990s, after which

causality vanishes, while Wald and LF tests yield mixed results.

The remainder of the paper is organized as follows. In Section 2, we present general theory

of parsimonious regressions and max tests. We focus on mixed frequency Granger causality

tests as a specific application in Section 3. In Section 4, we perform Monte Carlo simulations,

an empirical application follows in Section 5, and Section 6 concludes the paper. Technical

Appendices follow with omitted proofs and some technical details. See the supplemental material

Ghysels, Hill, and Motegi (2017) for extra simulation results.

2 Methodology

Consider a data generating process in which a univariate time series {yt} depends linearly on

two groups of regressors zt = [z1t, . . . , zpt]
′ and xt = [x1t, . . . , xht]

′. Define the σ-field Ft = σ(Yτ :

τ ≤ t) with all variables Yt = [yt, X
′
t]
′ and all regressors Xt = [z′t, x

′
t]
′.

Assumption 2.1. The true DGP is

yt =

p∑
k=1

akzkt +

h∑
i=1

bixit + ϵt. (2.1)

The error {ϵt} is a stationary martingale difference sequence (mds) with respect to the increasing

σ-field filtration Ft ⊂ Ft+1, and σ2 ≡ E[ϵ2t ] > 0.

Remark 2.1. The mds assumption allows for conditional heteroscedasticity of unknown form,

including GARCH-type processes. We can also easily allow for stochastic volatility or other

random volatility errors by expanding the definition of the σ-field Ft. The mds assumption

can be relaxed at the expense of more technical proofs, and a more complicated asymptotic

variance structure and subsequent estimator. Since this is all well known, we do not consider

such generalizations here.

Define an n× (p+h) matrix of regressors X = [X1, . . . , Xn]
′. The following rules out perfect

multicollinearity in the regressors, a standard in the literature.

Assumption 2.2. X is of full column rank p+ h almost surely.

We also impose a weak dependence property in order to ensure standard asymptotics. In

the following, we assume that Yt = [yt, X
′
t]
′ and ϵt are stationary α-mixing.4

Assumption 2.3. Yt and ϵt are strictly stationary α-mixing with mixing coefficients αj that

satisfy
∑∞

j=0 α2j < ∞.

4See Doukhan (1994) for compendium details on mixing sequences.
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Remark 2.2. The condition
∑∞

j=0 α2j < ∞ is quite general, allowing for geometric or hyperbolic

memory decay in ϵt, hence conditional volatility with a broad range of dynamics. We also assume

the regressors Xt and infinite order lag function yt of ϵt are mixing as a simplifying assumption,

since underlying sufficient conditions for yt are rather technical if {ϵt} is a non-finite dependent

process (see Chapter 2.3.2 in Doukhan (1994)).

Using standard vector notations, e.g., a = [a1, . . . , ap]
′, model (2.1) is rewritten as

yt = z′ta+ x′tb+ ϵt. (2.2)

where {zt} serves as auxiliary regressors whose coefficients are not our main target. The number

of those regressors, p, is assumed to be relatively small. We want to test for the zero restrictions

with respect to main regressors {xt}:
H0 : b = 0. (2.3)

The number of zero restrictions, h, is assumed to be large but finite, particularly in practice

large relative to the sample size.

A classical approach of testing for H0 : b = 0 is the Wald test based on what we call a näıve

regression model :

yt =

p∑
k=1

αkzkt +
h∑

i=1

βixit + ut. (2.4)

We assume that the model is correctly specified in order to focus ideas.

Based on (2.4), it is straightforward to compute a Wald statistic with respect to H0 : b = 0.

The statistic has an asymptotic χ2 distribution with h degrees of freedom under Assumptions

2.1-2.3. A potential problem with this classic approach is that the asymptotic approximation

may be poor when there are many zero restrictions relative to sample size n. A parametric

or wild bootstrap can be used to control for the size of the test, but this typically leads to

comparatively low size-corrected power. It is therefore of interest to propose a new test that

achieves a sharper size and higher power when the Wald approach faces parameter proliferation.

In order to resolve the problem of high dimensional parameter restrictions, we propose par-

simonious regression models:

yt =

p∑
k=1

αkizkt + βixit + uit, i = 1, . . . , h. (2.5)

There are therefore h models and the key regressor xit along with the z′kts appear in the ith

model. In general the parameters αki may differ across model i, and unless the null is true, they

are generally not equal to aki in the true DGP 2.1. We fit least squares for each model to get

β̂n1, . . . , β̂nh. Then we formulate a max-text statistic

T̂n = max
{
(
√
nβ̂n1)

2, . . . , (
√
nβ̂nh)

2
}
. (2.6)
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Equations (2.5) and (2.6) form a core part of our approach. The number of regressors in each

parsimonious regression model is p+1, which is much smaller than p+h in the näıve regression

model (2.4). As a result, the precision of β̂ni improves toward its probability limit for each i.

Under H0 : b = 0, each parsimonious regression model is correctly specified and therefore

β̂ni
p→ β∗

i = 0 straightforwardly. The asymptotic distribution of T̂n under H0 is non-standard,

but we can compute a simulation-based p-value by drawing from an asymptotically valid ap-

proximation to the asymptotic distribution directly (see Theorems 2.1-2.3). Under H1 : b ̸= 0,

each parsimonious regression model is in general misspecified due to an omitted regressor, and

therefore β̂ni
p→ β∗

i ̸= bi. A key result which is proven in Theorems 2.4-2.5 is that at least one

of {β∗
1 , . . . , β

∗
h} must be nonzero under H1 : b ̸= 0. Hence the max test achieves consistency

T̂n
p→ ∞, although β̂ni itself may not Fisher consistent for bi.

We can potentially generalize (2.6) by adding a weight to each term:

T̂n = max
{
(
√
nwn1β̂n1)

2, . . . , (
√
nwnhβ̂nh)

2
}
, (2.7)

where {wn1, . . . , wnh} is a sequence of possibly stochastic L2-bounded positive scalar weights

with non-random positive probability limits. We restrict ourselves to the equal weights wni = 1

in order to focus on the key implications from (2.5) and (2.6). Choosing non-equal weights is a

possible future task.5

2.1 Asymptotics under the Null Hypothesis

We derive the asymptotic distribution of T̂n in (2.6) under H0 : b = 0. Rewrite each parsimonious

regression model (2.5) as

yt = X ′
itθi + uit, i = 1, . . . , h, (2.8)

where

Xit = [z1t, . . . , zpt, xit]
′ and θi = [α′

i, βi]
′ = [α1i, . . . , αpi, βi]

′.

Stack all parameters across the h models as θ = [θ′1, . . . , θ
′
h]

′. Define a selection matrix R that

selects β = [β1, . . . , βh]
′ from θ. R is an h × (p + 1)h full row rank matrix such that β = Rθ,

hence

R =


01×p 1 01×p 0 . . . 01×p 0

01×p 0 01×p 1 . . . 01×p 0
...

...
...

...
...

...
...

01×p 0 01×p 0 . . . 01×p 1

 . (2.9)

Theorem 2.1. Under the null hypothesis H0 : b = 0, we have that T̂n
d→ max{N 2

1 , . . . ,N 2
h} as

5Logical weights include wni = 1, in which case we operate on the maximum (in absolute value) key parsimo-

nious regression parameter estimator. Another obvious choice is the inverted standard error V̂−1/2
ni where V̂n,i is

a consistent estimator the the asymptotic variance of
√
nβ̂ni under the null. This allows for control of different

sampling and asymptotic dispersions of the estimators across parsimonious models, which may improve empirical
and local power. For the sake of compactness, we do not consider such generality here.
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n → ∞, where N = [N1, . . . ,Nh]
′ is distributed N(0, V ) with covariance matrix:

V = RSR′ ∈ Rh×h, (2.10)

where

S =


Σ11 . . . Σ1h

...
. . .

...

Σh1 . . . Σhh

 ∈ R(p+1)h×(p+1)h,

Γij = E[XitX
′
jt], Λij = E[ϵ2tXitX

′
jt], Σij = Γ−1

ii ΛijΓ
−1
jj ; i, j ∈ {1, . . . , h}.

(2.11)

All proofs appear in the Appendix section A.

Remark 2.3. Under Assumption 2.3, the error ϵt is an adapted martingale difference. Sup-

pose also that ϵ2t − σ2 is an adapted martingale difference with σ2 = E[ϵ2t ] (i.e. conditional

homoskedasticity). Then, we have the simplification Λij = σ2Γij .

Remark 2.4. Each Xit contains the same subset of regressors zt. It is therefore easy to prove

that S is positive semi-definite and singular.6

Remark 2.5. We do not have a general proof that the key asymptotic covariance matrix V

is nonsingular, except for a simple case with (p, h) = (1, 2). This is irrelevant for performing

the max test since we do not invert V . Further, as we show below, we can easily bootstrap

an asymptotically valid p-value by drawing from an asymptotically valid approximation to the

distribution N(0, V ).

2.2 Simulated P-Value

While the max test statistic T̂n has a non-standard limit distribution under H0, an approximate

p-value is readily available by drawing from an asymptotically valid approximation to the limit

distribution directly. Let V̂n be a consistent estimator for V (see Theorem 2.3, below), and

draw M samples of vectors {N (1), . . . ,N (M)} independently from N(0, V̂n). Now compute arti-

ficial test statistics T̂ (j)
n = max{(N (j)

1 )2, . . . , (N (j)
h )2} for j = 1, . . . ,M. An asymptotic p-value

approximation for T̂n is

p̂n,M =
1

M

M∑
j=1

I
(
T̂ (j)
n > T̂n

)
. (2.12)

Since N (j) are i.i.d. over j, and M can be made arbitrarily large, by the Glivenko-Cantelli

Theorem p̂n,M can be made arbitrarily close to P (T̂ (1)
n > T̂n). The proposed max test is to

6Observe that Σij = E[ϵ2t X̃itX̃
′
jt], where X̃it = E [XitX

′
it]

−1
Xit. Now define the set of all (non-unique)

regressors across all parsimonious regression models: X̃t = [X̃ ′
1t, ..., X̃

′
ht]

′ ∈ R(p+1)h. Let λ = [λ′
1, ..., λ

′
h]

′ where λi

= [λij ]
p+1
j=1 is (p + 1) × 1 and λ′λ = 1. Then λ′Sλ =

∑h
i=1

∑h
j=1 E[ϵ2tλ

′
iX̃itX̃

′
jtλj ] = E[ϵ2t (λ

′X̃t)
2] ≥ 0. Because

each X̃it contains zt it is possible to find a non-zero λ such that λ′X̃t = 0, e.g. λ1p+1 = 0, λ2 = −λ1, and all
other λi = 0. Therefore S is singular and positive semi-definite.

6



reject H0 at level α when p̂n,Mn < α, where {Mn}n≥1 is a sequence of positive integers that

satisfies Mn → ∞.

Define the max test limit distribution under H0 as F 0(c) = P (max1≤i≤h(N
(1)
i )2 ≤ c). The

asymptotic p-value is therefore F̄ 0(T̂n) ≡ 1 − F 0(T̂n) = P (max1≤i≤h(N
(1)
i )2 ≥ T̂n). By an

argument identical to Theorem 2 in Hansen (1996), we have the following link between the

p-value approximation P (T̂ (1)
n > T̂n) and the asymptotic p-value for T̂n.

Theorem 2.2. Let {Mn}n≥1 be a sequence of positive integers, Mn → ∞. Under Assumptions

2.1-2.3 P (T̂ (1)
n > T̂n) = F̄ 0(T̂n) + op(1), hence p̂n,n = F̄ 0(T̂n) + op(1). Therefore under H0,

P (p̂n,Mn < α) → α for any α ∈ (0, 1).

A consistent estimator V̂n for V in (2.10) is computed as follows. Run least squares for each

parsimonious regression model to get θ̂ni = [α̂′
ni, β̂ni]

′ and residuals ûit = yt − X ′
itθ̂ni. Define

Γ̂ij = (1/n)
∑n

t=1XitX
′
jt, Λ̂ij = (1/n)

∑n
t=1 û

2
itXitX

′
jt, Σ̂ij = Γ̂−1

ii Λ̂ijΓ̂
−1
jj , Ŝ = [Σ̂ij ]i,j , and

V̂n = RŜR′. (2.13)

Theorem 2.3. Under Assumptions 2.1-2.3, V̂n
p→ V̄ where V̄ is some matrix that satisfies ||V̄ ||

< ∞. Moreover, V̄ = V under H0.

2.3 Identification of the Null and Alternative Hypotheses

Under the alternative H1 : b ̸= 0, β̂ni is in general not Fisher consistent for the true bi due to

omitted regressors. Let β∗
i = plimn→∞β̂ni be the so-called pseudo-true value of βi. The same

notation applies to α∗
i and θ∗i = [α∗′

i , β
∗
i ]

′. We can characterize θ∗i as follows.

Theorem 2.4. Let Assumptions 2.1-2.3 hold. Let Γii = E[XitX
′
it] ∈ R(p+1)×(p+1) and Ci =

E[Xitx
′
t] ∈ R(p+1)×h. Then, θ̂n

p→ θ∗ = [θ∗
′

1 , . . . , θ
∗′
h ]

′ where:

θ∗i =


α∗
1i
...

α∗
pi

β∗
i

 =


a1
...

ap

0

+ Γ−1
ii Cib, i = 1, . . . , h. (2.14)

Therefore, β̂n
p→ β∗ = Rθ∗ by construction.

Theorem 2.4 provides useful insights on the relationship between the underlying coefficient b

and the pseudo-true value β∗. First, it is clear from (2.14) that β∗ = 0 whenever b = 0. This is an

intuitive result since each parsimonious regression model is correctly specified under H0 : b = 0.

Second, as the next result proves, b = 0 whenever β∗ = 0. This is a useful result that allows us

to identify the null and alternative hypotheses exactly. Of course, our approach cannot identify

all of {b1, . . . , bh} under H1. We can, however, identify that at least one of {b1, . . . , bh} must be

non-zero, which is sufficient for rejecting H0 : b = 0.
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Theorem 2.5. Let Assumptions 2.1-2.3 hold. Then β∗ = 0 implies b = 0, hence β∗ = 0 if and

only if b = 0. Therefore β̂n
p→ 0 if and only if b = 0.

A proof of Theorem 2.5 exploits the non-singularity of E[ztz
′
t] and E[xtx

′
t], which is ensured

by Assumption 2.2. We next present a simple example which illustrates Theorem 2.5.

Example 2.1 (Identification). Suppose that the true DGP is

yt = a1 + b1x1t + b2x2t + ϵt

and we run two parsimonious regression models

yt = α11 + β1x1t + u1t and yt = α12 + β2x2t + u2t.

Notice that we have only one common regressor z1t = 1 and two main regressors {x1t, x2t}.
Assume for simplicity that E[xit] = 0 and E[x2it] = 1 for i = 1, 2. Finally, since Assumption 2.2

rules out perfect multicollinearity, we have that ρ12 = E[x1tx2t] ∈ (−1, 1).

In this setting, it follows that Xit = [1, xit]
′, xt = [x1t, x2t]

′, and

Γii = E[XitX
′
it] =

[
1 0

0 1

]
, C1 = E[X1tx

′
t] =

[
0 0

1 ρ12

]
, C2 = E[X2tx

′
t] =

[
0 0

ρ12 1

]
.

Substitute these quantities into (2.14) to get

β∗
1 = b1 + ρ12b2 and β∗

2 = b2 + ρ12b1 where ρ12 = E[x1tx2t]. (2.15)

Now we verify Theorem 2.5 by showing that β∗ = 0 =⇒ b = 0. Assume β∗
1 = β∗

2 = 0. If ρ12 = 0,

then it is trivial from (2.15) that b1 = b2 = 0. However, ρ12 ̸= 0, (2.15) implies that

(1 + ρ12)(1− ρ12)

ρ12
× b1 = 0.

Since ρ12 ∈ (−1, 1), it must be the case that b1 = 0 and therefore b2 = 0.

Theorems 2.1 and 2.5 together imply the max test statistic has its intended limit properties

under either hypothesis. First, observe that the max test statistic construction (2.6) indicates

that T̂n
p→ ∞ if and only if β∗ ̸= 0, and by Theorems 2.4 and 2.5 β̂n

p→ β∗ ̸= 0 under a

general alternative hypothesisH1 : b ̸= 0. In conjunction with p-value approximation consistency

Theorem 2.2, this proves consistency of the max test.

Theorem 2.6. Let Assumptions 2.1-2.3 hold, then T̂n
p→ ∞ and therefore P (p̂n,Mn < α) → 1

for any α ∈ (0, 1) if and only if H1 : b ̸= 0 is true.

An immediate consequence of the limit distribution Theorem 2.1, p-value approximation

consistency Theorem 2.2, identification Theorem 2.5 and consistency Theorem 2.6, is the limiting

null distribution arises if and only if H0 is true.
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Corollary 2.7. Let {Mn}n≥1 be a sequence of positive constants, Mn → ∞. Let Assumptions

2.1-2.3 hold. Then T̂n
d→ max{N 2

1 , . . . ,N 2
h} as n → ∞ and therefore P (p̂n,Mn < α) → α for any

α ∈ (0, 1) if and only if H0 : b = 0 is true.

To conclude this section, we briefly discuss a misspecification problem. Consider the case

where a true DGP has h regressors x1t, . . . , xht while we run only h̃ parsimonious regression

models with h̃ < h. In such a case, the max test is generally inconsistent, just as is the Wald

test. Observe that (2.14) still holds for i = 1, . . . , h̃ when there is underspecification. (See the

proof of Theorem 2.4 for derivation.) When h̃ < h, having β∗
1 = · · · = β∗

h̃
= 0 does not imply

that b = 0. Below is a simple counter-example.

Example 2.2 (Non-identification due to Underspecification). Continue Example 2.1 except for

that h̃ = 1 now – we run only one regression model yt = α11+β1x1t+u1t. In this simple set-up,

the parsimonious regression approach is identical to the näıve regression approach. By (2.15),

β∗
1 = b1 + ρ12b2. For any given ρ12 ∈ (−1, 1), having β∗

1 = 0 does not imply b1 = b2 = 0 because

(b1, b2) can take any value as long as b1 = −ρ12b2.

3 Mixed Frequency Granger Causality

In this section, we focus on mixed frequency Granger causality tests in the setting of Ghysels,

Hill, and Motegi (2016). Testing for Granger causality with mixed frequency data is a prominent

example of testing for many zero restrictions. We restrict ourselves to a bivariate case where we

have a high frequency variable xH and a low frequency variable xL.
7

Following the notation of Ghysels, Hill, and Motegi (2016), we first formulate a DGP for xH

and xL. Let m denote the ratio of sampling frequencies, i.e. the number of high frequency time

periods in each low frequency time period τL ∈ Z. We assume throughout that m is fixed (e.g.

m = 3 months per quarter) in order to focus ideas and reduce notation. All of our main results

would carry over to time-varying sequences m(τL) in a straightforward way, e.g. when xH is

daily and xL is monthly.

Example 3.1 (Mixed Frequency Data - Quarterly and Monthly). A simple example of mixed

frequency data is when we analyze a monthly variable xH and a quarterly variable xL, hence

m = 3. Suppose that xH(τL, 1) is the first monthly observation in quarter τL, xH(τL, 2) is the

second, and xH(τL, 3) is the third. A leading example in macroeconomics is quarterly real GDP

growth xL(τL), where existing analyses of causal patterns use unemployment, oil prices, inflation,

interest rates, etc., aggregated into quarters (see Hill (2007) for references). Consider monthly

CPI inflation in quarter τL, denoted [xH(τL, 1), xH(τL, 2), xH(τL, 3)]
′. The resulting stacked

system is {xH(τL, 1), xH(τL, 2), xH(τL, 3), xL(τL)}. The assumption that xL(τL) is observed after

xH(τL,m) is merely a convention.

7The trivariate case involves causality chains in mixed frequency which are far more complicated, and detract
us from the main theme of dimension reduction. See Dufour and Renault (1998), Dufour, Pelletier, and Renault
(2006) and Hill (2007) for further discussion.
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In the bivariate case, we have a K × 1 mixed frequency vector

X(τL) = [xH(τL, 1), . . . , xH(τL,m), xL(τL)]
′,

where K = m+ 1. Define the σ-field FτL ≡ σ(X(τ) : τ ≤ τL). We assume as in Ghysels (2016)

and Ghysels, Hill, and Motegi (2016) that E[X(τL)|FτL−1] has a version that is almost surely

linear in {X(τL − 1), . . . ,X(τL − p)} for some finite p ≥ 1.8

Assumption 3.1. The mixed frequency vector X(τL) is governed by a MF-VAR(p) for finite

p ≥ 1:
xH(τL, 1)

...

xH(τL,m)

xL(τL)


︸ ︷︷ ︸

≡X(τL)

=

p∑
k=1


d11,k . . . d1m,k c(k−1)m+1

...
. . .

...
...

dm1,k . . . dmm,k ckm

bkm . . . b(k−1)m+1 ak


︸ ︷︷ ︸

≡Ak


xH(τL − k, 1)

...

xH(τL − k,m)

xL(τL − k)


︸ ︷︷ ︸

≡X(τL−k)

+


ϵH(τL, 1)

...

ϵH(τL,m)

ϵL(τL)


︸ ︷︷ ︸

≡ϵ(τL)

(3.1)

or compactly

X(τL) =

p∑
k=1

AkX(τL − k) + ϵ(τL).

The error {ϵ(τL)} is a strictly stationary martingale difference sequence (mds) with respect to

increasing FτL ⊂ FτL+1, with a positive definite covariance matrix Ω ≡ E[ϵ(τL)ϵ(τL)
′].

Remark 3.1. A constant term is omitted from (3.1) for simplicity, but can be easily added if

desired. Therefore, X(τL) is mean centered. The coefficients d and a govern the autoregressive

property of xH and xL, respectively.

The coefficients b and c in (3.1) are relevant for Granger causality, so we explain how they

are labeled. b1 is the impact of the most recent past observation of xH (i.e. xH(τL − 1,m)) on

xL(τL), b2 is the impact of the second most recent past observation of xH (i.e. xH(τL−1,m−1))

on xL(τL), and so on through bpm. In general, bj represents the impact of xH on xL with j high

frequency lags.

Similarly, c1 is the impact of xL(τL − 1) on the nearest observation of xH (i.e. xH(τL, 1)),

c2 is the impact of xL(τL − 1) on the second nearest observation of xH (i.e. xH(τL, 2)), cm+1 is

the impact of xL(τL− 2) on the (m+1)-st nearest observation of xH (i.e. xH(τL, 1)), and so on.

Finally, cpm is the impact of xL(τL − p) on xH(τL,m). In general, cj represents the impact of

xL on xH with j high frequency lags.

Since {ϵ(τL)} is not i.i.d., we must impose a weak dependence property in order to ensure

standard asymptotics. In the following we assume ϵ(τL) and X(τL) are stationary α-mixing.

Assumption 3.2. All roots of the polynomial det(IK −
∑p

k=1Akz
k) = 0 lie outside the unit

circle, where det(·) is the determinant.

8Complete details on the mixed frequency notations are presented in Appendix B.
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Assumption 3.3. X(τL) and ϵ(τL) are α-mixing with mixing coefficients αh that satisfy∑∞
h=0 α2h < ∞.

Remark 3.2. Note that Ω ≡ E[ϵ(τL)ϵ(τL)
′] allows for the high frequency innovations ϵH(τL, i)

to have a different variance for each i. Therefore, while Assumptions 3.1 and 3.2 imply {xH(τL, i)}τL
is covariance stationary for each fixed i ∈ {1, . . . , m}, they do not imply covariance stationarity

for the entire high frequency array {{xH(τL, i)}mi=1}τL .

Granger causality from xH to xL is what we call high-to-low causality. Granger causality

from xL to xH is what we call low-to-high causality. Since there are fundamentally different

challenges when testing for high-to-low causality and low-to-high causality, we treat the former

in Section 3.1, and treat the latter in Section 3.2.

3.1 High-to-Low Frequency Data Granger Causality

Pick the last row of the entire system (3.1):

xL(τL) =

p∑
k=1

akxL(τL − k) +

pm∑
i=1

bixH(τL − 1,m+ 1− i) + ϵL(τL),

ϵL(τL)
mds∼ (0, σ2

L), σ2
L > 0.

(3.2)

The index i ∈ {1, . . . , pm} is in high frequency terms, and the second argument m + 1 − i of

xH can be less than 1 since i > m occurs when p > 1. Allowing any integer value in the second

argument of xH , including those smaller than 1 or larger than m, does not cause any confusion,

and simplifies analytical arguments below. It is understood, for example, that xH(τL, 0) =

xH(τL − 1,m), xH(τL,−1) = xH(τL − 1,m − 1), and xH(τL,m + 1) = xH(τL + 1, 1). More

generally, we interchangeably write xH(τL − τ, i) = xH(τL, i−mτ) for any τL, τ, i ∈ Z.
Based on the classic theory of Dufour and Renault (1998) and the mixed frequency extension

made by Ghysels, Hill, and Motegi (2016), we know that xH does not Granger cause xL given

the mixed frequency information set FτL = σ(X(τ) : τ ≤ τL) if and only if

H0 : b1 = · · · = bpm = 0.

A well-known issue here is that the number of zero restrictions, pm, may be quite large in

some applications, depending on the ratio of sampling frequencies m. Consider a weekly versus

quarterly data case for instance.9 The MF-VAR lag length p is in terms of quarters and m = 12

approximately. Then pm = 36 when p = 3, and pm = 48 when p = 4, etc. In order to deal with

the many zero restrictions arising from a large m, it is of use to frame the problem in terms of

parsimonious regression models and perform a max test.

There is a clear correspondence between the general linear DGP (2.1) and the mixed fre-

quency DGP (3.2). The regressand yt is xL(τL); common regressors {z1t, . . . , zpt} are identi-
9In Section 5, we analyze Granger causality between quarterly GDP and weekly interest rate spread in the

U.S.
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cally the low frequency {xL(τL − 1), . . . , xL(τL − p)}; and the main regressors that are split

into parsimonious regression models {x1t, . . . , xht} are the high frequency {xH(τL − 1,m+ 1−
1), . . . , xH(τL − 1,m+ 1− pm)}. The parsimonious regression models are therefore:

xL(τL) =

p∑
k=1

αk,ixL(τL − k) + βixH(τL − 1,m+ 1− i) + uL,i(τL), i = 1, . . . , pm. (3.3)

Here we are using h = pm models, which matches the true high frequency lag length. If h < pm,

then there is underspecification and the max test loses consistency (cfr. Example 2.2). If h > pm,

then consistency is ensured although finite sample performance may be poorer due to redundant

regressors.

Assumptions 3.1-3.3 imply Assumptions 2.1-2.3. Thus, under Assumptions 3.1-3.3, Theorems

2.1-2.6 and Corollary 2.7 carry over to a high-to-low causality max test.

3.2 Low-to-High Frequency Data Granger Causality

We now consider testing for Granger causality from the low frequency variable xL to the high

frequency variable xH . Recall from (3.1) that the DGP is MF-VAR(p). As defined in Ghysels,

Hill, and Motegi (2016), the null hypothesis of low-to-high non-causality is written as H0 : c1 =

· · · = cpm = 0 or compactly c = [c1, . . . , cpm]′ = 0pm×1.

In order to account for the difficulty of explaining the stacked high frequency dependent

variables [xH(τL, 1), . . . , xH(τL,m)]′ with the lagged low frequency regressors xL(τL − k) in

(3.1), and to utilize parsimonious regression models, we exploit Sims’ (1972) two-sided regression

model. This can be extended to a mixed frequency case in a straightforward way:

xL(τL) =

p∑
k=1

αkxL(τL − k) +

pm∑
j=1

βjxH(τL − 1,m+ 1− j) +

r∑
i=1

γixH(τL + 1, i) + uL(τL). (3.4)

Model (3.4) regresses xL onto p low frequency lags of xL, pm high frequency lags of xH , and r

≥ 1 high frequency leads of xH . Low-to-high non-causality H0 : c = 0pm×1 from (3.1) implies

γ = [γ1, . . . , γr]
′ = 0r×1 from (3.4).

Model (3.4) can be thought of as a näıve regression model in the sense that all leads of xH
are included in one model. We therefore propose parsimonious regression models

xL(τL) =

p∑
k=1

αk,ixL(τL−k)+

pm∑
j=1

βjixH(τL−1,m+1−j)+γixH(τL+1, i)+uL,i(τL), i = 1, . . . , r. (3.5)

Note that the ith parsimonious regression model has only the ith high frequency lead of xH .

We take the lagged low and high frequency {xL(τL − 1), . . . , xL(τL − p), xH(τL − 1,m + 1 −
1), . . . , xH(τL − 1,m + 1 − pm)} as the common regressors, and take the lead high frequency

{xH(τL + 1, 1), . . . , xH(τL + 1, r)} as the main regressors that are split into each parsimonious

regression model.

Under non-causality, Assumptions 2.1-2.3 hold and hence Theorems 2.1-2.3 carry over. Under

H1 : c ̸= 0r×1, there does not exist a clear characterization of a pseudo-true value γ∗i . Proving
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consistency is therefore an open question.

3.2.1 MIDAS Polynomials in the Max Test

In a low-to-high frequency causality test, the max statistic only operates on the lead parameters

γi, while our simulation study reveals a large lag length pm can prompt size distortions. In

general a comparatively large low frequency sample size is needed for the max test empirical

size to be very close to the nominal level.10

One option is to use a bootstrap procedure for p-value computation, but we find that a wild

bootstrap similar to Gonçalves and Kilian’s (2004) does not alleviate size distortions. Another

approach is to exploit a MIDAS polynomial for the high-to-low causality part in order to reduce

the impact of large pm, and keep the low-to-high causality part unrestricted (cfr. Ghysels, Santa-

Clara, and Valkanov (2006), Ghysels, Sinko, and Valkanov (2007), among others). Modified

parsimonious models are

xL(τL) =

p∑
k=1

αk,ixL(τL − k)+

pm∑
j=1

ωj(πi)xH(τL − 1,m+1− j)+ γixH(τL +1, i)+uL,i(τL), i = 1, . . . , r, (3.6)

where ωj(πi) represents a MIDAS polynomial with a parameter vector πi ∈ Rs of small dimen-

sion s ≪ pm.

Various software packages including the MIDAS Matlab Toolbox (Ghysels (2013)), the R

Package midasr (Ghysels, Kvedaras, and Zemlys (2016)), EViews and Gretl cover a variety

of polynomial specifications. In our simulation study we use the Almon polynomial ωj(π) =∑s
l=1 πlj

l, hence model (3.6) is linear in π, allowing for least squares estimation. Another

important characteristic of the Almon polynomial is that it allows negative and positive values

in general (e.g. wj(π) ≥ 0 for j < 3 and wj(π) < 0 for j ≥ 4, etc.). Many other MIDAS

polynomials, like the beta probability density or exponential Almon, assume a single sign for all

lags.

MIDAS regressions, of course, may be misspecified. Therefore, the least squares estimator

of γ may not be consistent for 0 under the null, but rather may be consistent for some non-zero

pseudo-true value identified by the resulting first order moment conditions. Nevertheless, we

show that a model with mis-specified MIDAS polynomials leads to a dramatic improvement in

empirical size, even though the max test statistic for that model does not have its intended null

limit distribution. We also show that size distortions vanish with a large enough sample size

(cfr. Footnote 10).

10In our simulation study where m = 12, we find n ∈ {40, 80} is not large enough but n ≥ 120 is large enough
for sharp max test empirical size. If the low frequency is years, such that there are m = 12 high frequency months,
then n = 120 years is obviously too large for practical applications in macroeconomics and finance, outside of
deep historical studies. If the low frequency is quarters such that the high frequency is approximately m = 12
weeks, then n = 120 quarters, or 30 years, is reasonable.
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4 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations in order to compare max tests and Wald

tests in finite sample. We consider a mixed frequency environment because it naturally lends

to parameter proliferation. We begin with a MF-VAR data generating process and then fit

Granger causality tests based on the max approach and the Wald approach. We then aggregate

the simulated mixed frequency data into low frequency and again fit causality tests based on both

approaches, allowing for a direct comparison between mixed frequency (MF) and the traditional

low frequency (LF) methods. We discuss high-to-low causality in Section 4.1 and low-to-high

causality in Section 4.2.

4.1 High-to-Low Granger Causality

We first take a MF-VAR(1) as a benchmark DGP, and then work with a MF-VAR(2) for a

robustness check.

4.1.1 MF-VAR(1)

Data Generating Process We work with the following structural MF-VAR(1) process with

m = 12:



1 0 . . . . . . . . . 0

−d 1
. . .

. . .
. . . 0

0 −d
. . .

. . .
. . .

.

..

.

..
.
..

. . .
. . .

. . .
.
..

0 0 . . . −d 1 0

0 0 . . . 0 0 1


︸ ︷︷ ︸

=N


xH(τL, 1)

.

..

xH(τL, 12)

xL(τL)


︸ ︷︷ ︸

=X(τL)

=



0 0 . . . d c1

0 0 . . . 0 c2
.
..

.

..
. . .

.

..
.
..

0 0 . . . 0 c12

b12 b11 . . . b1 a


︸ ︷︷ ︸

=M


xH(τL − 1, 1)

.

..

xH(τL − 1, 12)

xL(τL − 1)


︸ ︷︷ ︸

=X(τL−1)

+


ηH(τL, 1)

.

..

ηH(τL, 12)

ηL(τL)


︸ ︷︷ ︸

=η(τL)

, (4.1)

or compactly NX(τL) = MX(τL−1)+η(τL). Setting m = 12 occurs in practice for, e.g., yearly

low frequency increment with monthly high frequency increment, or quarterly low frequency

increment with weekly high frequency increment approximately.

Coefficient a governs the autoregressive property of xL, d governs the autoregressive property

of xH , c = [c1, . . . , c12]
′ represents Granger causality from xL to xH , and our interest lies in

b = [b1, . . . , b12]
′ since it expresses Granger causality from xH to xL. Since
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N−1 =



1 0 . . . . . . . . . 0

d 1
. . .

. . .
. . . 0

d2 d
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...

d11 d10 . . . d 1 0

0 0 . . . 0 0 1


therefore A ≡ N−1M =



0 0 . . . d
∑1

i=1 d
1−ici

0 0 . . . d2
∑2

i=1 d
2−ici

...
...

. . .
...

...

0 0 . . . d12
∑12

i=1 d
12−ici

b12 b11 . . . b1 a


,

(4.2)

the reduced form of (4.1) is X(τL) = AX(τL − 1) + ϵ(τL), where ϵ(τL) = N−1η(τL) and

Ω ≡ E[ϵ(τL)ϵ(τL)
′] = N−1N−1′ .

We consider non-causality b = 012×1 and four causal patterns. The first causal pattern is

decaying causality with alternating signs: bj = (−1)j−1 × 0.3/j for j = 1, . . . , 12. The second is

lagged causality : bj = 0.3 × I(j = 12) for all j. The third is sporadic causality : (b3, b7, b10) =

(0.2, 0.05,−0.3) and all other bj = 0. Such a relationship may exist in macroeconomic processes

due to lagged information transmission, seasonality, feedback effects, and ambiguous theoretical

relations in terms of signs. The fourth is uniform causality : bj = 0.02 for all j.

We assume a weak autoregressive property for xL (i.e. a = 0.2). The choice of a does not

appear to significantly influence rejection frequencies.11 There are two values for the persistence

of xH : d ∈ {0.2, 0.8}, and decaying low-to-high causality with alternating signs: cj = (−1)j−1 ×
0.4/j for j = 1, . . . , 12.

The structural error η(τL) is either i.i.d. or a GARCH process. Let ξ(τL)
i.i.d.∼ N(013×1, I13).

In the i.i.d. case η(τL) = ξ(τL). In the GARCH case η(τL) = H(τL)
1/2ξ(τL) where the condi-

tional covariance matrix H(τL) follows a BEKK process (cfr. Engle and Kroner (1995)):

H(τL) ≡ H(τL)
1/2H(τL)

1/2′ = CsC
′
s +Asη(τL − 1)η(τL − 1)′A′

s +BsH(τL − 1)B′
s.

The reduced-form error ϵ(τL) = N−1η(τL) is conditionally N(013×1,Ω(τL)) distributed, where

Ω(τL) = CC ′ +Aϵ(τL − 1)ϵ(τL − 1)′A′ +BΩ(τL − 1)B′

with C = N−1Cs, A = N−1AsN , and B = N−1BsN . For simplicity we impose a diagonal

structure Cs =
√
0.1 × N , As =

√
0.2 × I13, and Bs =

√
0.4 × I13, hence the reduced-form

parameters boil down to C =
√
0.1× I13, A =

√
0.2× I13, and B =

√
0.4× I13 so that

Ω(τL) = 0.1× I13 + 0.2× ϵ(τL − 1)ϵ(τL − 1)′ + 0.4×Ω(τL − 1).

Sample size in terms of low frequency is n ∈ {80, 160}. Sincem = 12, our experimental design

can approximately be thought as week versus quarter, matching our empirical applications in

Section 5. Hence n = 80 or 160 implies that the low frequency sample size is 20 or 40 years.

11Simulation results with a = 0.8 are not reported to conserve space, but available upon request.

15



Model Estimation The mixed frequency näıve regression model is

xL(τL) =

q∑
k=1

αkxL(τL − k) +

hMF∑
i=1

βixH(τL − 1,m+ 1− i) + uL(τL). (4.3)

Given DGP (4.1), the true lag length is q = p = 1 and hMF = pm = 12. In this experiment,

we consider q = 2 and hMF ∈ {4, 8, 12, 24} for comparison. The mixed frequency parsimonious

regression models are

xL(τL) =

q∑
k=1

αkixL(τL − k) + βixH(τL − 1,m+ 1− i) + uL,i(τL), i = 1, . . . , hMF .

In order to perform tests at a common low frequency, we also perform flow aggregation

xH(τL) = (1/m)
∑m

j=1 xH(τL, j) and stock aggregation xH(τL) = xH(τL,m). A low frequency

näıve regression model is

xL(τL) =

q∑
k=1

αkxL(τL − k) +

hLF∑
i=1

βixH(τL − i) + uL(τL).

When a MF-VAR is aggregated into a LF-VAR, the resulting lag length is infinite in general

(cfr. Ghysels, Hill, and Motegi (2016)). We consider q = 2 and hLF ∈ {1, 2, 3, 4} for comparison.

The relevant low frequency parsimonious regression models are

xL(τL) =

q∑
k=1

αkixL(τL − k) + βixH(τL − i) + uL,i(τL), i = 1, . . . , hLF .

Given the large ratio m = 12, the MF (and possibly even LF) Wald test may suffer from size

distortions if we use the asymptotic chi-square distribution. We therefore use Gonçalves and

Kilian’s (2004) recursive design parametric wild bootstrap which allows for conditionally het-

eroskedastic errors of unknown form. Their bootstrap p-value is computed with 1,000 bootstrap

samples.12

In order to compute a max test approximate p-value, we draw 5,000 samples from an ap-

proximation to the limit distribution under H0. That requires estimation of the key covariance

matrix V in (2.10). We compute a heteroscedasticity-robust estimator V̂n using (2.13). In Tables

T.5-T.8 of the supplemental material Ghysels, Hill, and Motegi (2017), we also use a simplified

or non-robust estimator based on Remark 2.3. Bootstrapped Wald tests exhibit size distortions

when (2.13) is used, hence we only use the non-robust covariance. Evidently the distortions arise

12Consider bootstrapping in the MF näıve regression model (4.3), the LF case being similar. Rewrite the model
in matrix form as xL(τL) = x(τL − 1)′θ + uL(τL), using standard vector notations. Let θ̂n be an unrestricted
least squares estimator for θ. Let ûL(τL) = xL(τL)−x(τL − 1)′θ̂n. Let Ŵn be a Wald test statistic with respect
to H0 : β = 0hMF×1. Simulate M = 1, 000 bootstrap samples from xL(τL) = x(τL − 1)′θ̃n0 + ûL(τL)v(τL), where

θ̃n0 is θ̂n with the null hypothesis of non-causality imposed, and v(τL)
i.i.d.∼ N(0, 1). Compute bootstrapped Wald

statistics W̃n1, . . . , W̃nM for each sample. The bootstrapped p-value is pM = (1/M)×
∑M

j=1 I(W̃nj ≥ Ŵn).
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from the added sampling error in this more complex robust estimator. We keep the number of

bootstrap samples at just 1,000 to control for the rather large computation time.13

The number of Monte Carlo samples is 5,000 for max tests, and 1,000 for bootstrapped Wald

tests due to the substantial computation time.

Results Table 1 compiles simulation results for the case of GARCH errors. Results for the

i.i.d. error are collected in Table T.1 of Ghysels, Hill, and Motegi (2017) in order to save space.

The two errors yield similar results in general. Nominal size is fixed at 0.05. Empirical size in

both tests is fairly sharp, ranging from .031 to .063. The max tests have sharp size evidently

due to its relatively more parsimonious specification, while the Wald test has sharp size due to

bootstrapping the p-value (with the simpler non-robust covariance matrix).

Regarding power, MF tests are better than LF tests in terms of detecting complicated causal

patterns like sporadic causality. See Panel D.1.2 for example, where there is sporadic causality

with d = 0.2, n = 160, and hMF = 24. Empirical power is .721 for the MF max test and .644

for the MF Wald test. Empirical power of LF tests is less than .100 regardless of test types,

aggregation schemes, and hLF .

Consider the relative power performance of the MF max and Wald tests. In most cases

across causal patterns b, lag length hMF , persistence d, and sample size n, max and Wald tests

have similar power. An advantage of the max test is highlighted under lagged causality with

d = 0.2. When n = 160, the max test power is .763 for hMF = 12 and .685 for hMF = 24 (see

Panel C.1.2). The Wald test power is, by comparison, .610 for hMF = 12 and .434 for hMF = 24.

By switching from 12 lags to 24 lags, the max test loses power by only .763− .685 = .078 while

the Wald test loses power by .610− .434 = .176. This result suggests that the max test is more

robust against large parameter dimensions than the Wald test. The max test therefore better

captures a lagged impact from xH to xL.

The max test focuses on the largest squared parameter estimate, and therefore discards the

other identical parameter values in the case of uniform causality. It seems prima facie that

such a feature should disadvantage the max test relative to the Wald test, because the latter

reduces to a squared linear combination of all positive parameter estimates. When the error

is conditionally heteroskedastic, however, both MF and LF tests yield essentially trivial power,

while under i.i.d. errors the two tests are comparable with strong power. In the latter i.i.d.

environment when there is also high persistence in xH , the max-test generally performs better

in MF and LF (flow) cases. In some cases the difference is quite stark: see Table T.1 in Ghysels,

Hill, and Motegi (2017). Thus, when causality is more easily detected, the max test offers an

advantage garnered directly from its parsimonious use of model parameters. The Wald test

does not dominate in any case precisely because the statistic uses all parameter estimates from

model (4.3), hence greater dispersion exists in the parameter estimates and therefore the Wald

statistic.

13Results for the bootstrapped Wald test with robust covariance matrix (2.13) are available upon request.
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4.1.2 MF-VAR(2)

As a further analysis, we use Monte Carlo samples drawn from a structural MF-VAR(2)NX(τL) =∑2
i=1MiX(τL−i)+η(τL) withm = 12. Relative to the MF-VAR(1) in (4.1), the extra coefficient

M2 is parameterized as

M2 =

[
012×1 . . . 012×1 012×1

b24 . . . b13 0

]
.

Non-causality is now expressed as b = 024×1; decaying causality is bj = (−1)j−1 × 0.3/j for j =

1, . . . , 24; lagged causality is bj = 0.3×I(j = 24) for all j; sporadic causality is (b5, b12, b17, b19) =

(−0.2, 0.1, 0.2,−0.35) and all other bj = 0; and uniform causality is bj = 0.02 for all j.

Other quantities are similar to those used in Section 4.1.1: a = 0.2; d ∈ {0.2, 0.8}; cj =

(−1)j−1 × 0.4/j for j = 1, . . . , 12; q = 2; n ∈ {80, 160}; and nominal size is 0.05. The number of

high frequency lags of xH used in the MF tests is hMF ∈ {16, 20, 24}, while the number of low

frequency lags of aggregated xH used in LF tests is hLF ∈ {1, 2, 3}.
Rejection frequencies with GARCH errors are compiled in Table 2. The i.i.d. error case is

reported in Table T.3 of Ghysels, Hill, and Motegi (2017). There are virtually no size distortions

for both MF max and bootstrapped MF Wald tests. In most cases the MF max test and the

MF Wald test exhibit similar empirical power. The former surpasses the latter under lagged

causality with d = 0.2 and hMF = 24. When n = 160, the max test power is .682 whereas the

Wald test power is .530. These results are consistent with the MF-VAR(1) scenario.

4.2 Low-to-High Granger Causality

We now focus on low-to-high causality c = [c1, . . . , c12]
′ in the structural MF-VAR(1) in (4.1)

with m = 12.14

4.2.1 Design

We consider non-causality and the four causal patterns as above. In each case we need to be

careful about how c is transferred to the upper-right block [
∑1

i=1 d
1−ici, . . . ,

∑12
i=1 d

12−ici]
′ of

A1, the low-to-high causality pattern in the reduced form (4.2). For non-causality c = 012×1,

the upper-right block of A1 is a null vector regardless of d, the AR(1) coefficient of xH . A similar

pattern arises for decaying causality cj = (−1)j−1 × 0.3/j for j = 1, . . . , 12, assuming d = 0.2.

For lagged causality cj = 0.25× I(j = 12) for all j, the upper-right block of A1 is identically c

regardless of d. In the case of sporadic causality (c3, c7, c10) = (0.3, 0.15,−0.3) a similar pattern

arises, assuming d = 0.2. Uniform causality cj = 0.07 for all j is also preserved (though not

perfectly). Consult Figure 1 for a graphical representation.

14MF-VAR(2) cases are covered in Tables T.11, T.12, T.15, and T.16 of the supplemental material Ghysels,
Hill, and Motegi (2017). See Tables T.11 and T.12 for bootstrapped Wald tests and max test with the robust
covariance matrix. See Tables T.15 and T.16 for max test based on a simplified or non-robust covariance matrix
estimator.
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We impose weak autoregressive properties a = d = 0.2 for xL and xH , and decaying high-

to-low causality with alternating signs: bj = (−1)j−1 × 0.2/j for j = 1, . . . , 12. The sample size

is again n ∈ {80, 160}. We implement the MF max test based on MF parsimonious regression

model (3.5), and the bootstrapped Wald test based on the MF näıve regression model (3.4). For

both tests, lags and leads of xH are taken from hMF , rMF ∈ {4, 8, 12, 24} for comparison.

The max test exhibits size distortions when hMF = 24, especially in the smaller sample

n = 80. This is a natural consequence of parameter proliferation. As a second max test we

therefore use the MF parsimonious regression models with a MIDAS polynomial on the high

frequency lags, as in (3.6), as an ad hoc attempt to tackle parameter proliferation. We use the

Almon polynomial of dimension s = 3 (cfr. Section 3.2.1). In order to make a direct comparison

with the Wald test, we also perform a Wald test based on the MF näıve regression model (3.4)

with lags of xH replaced with the Almon polynomial.

We also perform the max test based on LF parsimonious regression models

xL(τL) = α1ixL(τL − 1) +

hLF∑
j=1

βjixH(τL − j) + γixH(τL + i) + uL,i(τL), i = 1, . . . , rLF . (4.4)

rLF and hLF are both taken from {1, 2, 3, 4}. We do not exploit a MIDAS polynomial here since

the lag length hLF is sufficiently small to avoid size distortions. We consider both stock and

flow sampling for aggregating xH . Finally, the bootstrapped Wald test is based on a LF näıve

regression model:

xL(τL) = α1xL(τL − 1) +

hLF∑
j=1

βjxH(τL − j) +

rLF∑
i=1

γixH(τL + i) + uL(τL) (4.5)

with hLF , rLF ∈ {1, 2, 3, 4}. As before, a MIDAS polynomial is not required.

We use 5,000 draws from an asymptotically valid approximation of the asymptotic distri-

bution to compute max test p-values. The robust covariance matrix estimator is used for max

tests. (See Tables T.13 and T.14 of Ghysels, Hill, and Motegi (2017) for results with the sim-

plified or non-robust covariance matrix estimator.) For Wald tests, we generate 1,000 bootstrap

samples. The number of Monte Carlo samples is 5,000 for max tests and 1,000 for Wald tests,

and nominal size is 5%.

4.2.2 Results

Table 3 presents rejection frequencies for the GARCH error case. The i.i.d. case is covered in

Table T.9 of Ghysels, Hill, and Motegi (2017): the two errors yield similar results in general.

First, the MF max test without MIDAS polynomials exhibits size distortions when n = 80.

Empirical size is .167 for hMF = rMF = 24, while it is .055 for hMF = rMF = 4 (Panel A.1.1).

This is a plausible result since, although mis-specified, the MIDAS approach promotes parsimony

which aids in achieving sharper empirical size. When n = 160 empirical size is much sharper,
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although it is still .082 when hMF = rMF = 24 (Panel A.2.1). Second, the max test with

MIDAS polynomials exhibits nearly perfect empirical size, despite the inherent mis-specification

of the estimated model. This follows because, within our design, the quasi-true parameters βji

associated with the lagged xH in (3.5) are well approximated by the Almon coefficients ωj(πi)

in (3.6). The bootstrapped Wald test is correctly sized with or without MIDAS polynomials

(Panels A.1.2 and A.2.2).

MF versus LF Tests We now compare the empirical power of MF tests versus LF tests.

Under decaying causality (Panel B), we see a clear advantage of MF tests compared to LF tests.

When n = 160, the MF tests with the MIDAS polynomial have empirical power of at least

.590 (and much higher in many cases), whereas the LF test power is at most .159. In order to

understand why the LF tests suffer from such low power, consider stock sampling first. As seen

in (4.4) and (4.5), lead terms used in those tests are xH(τL +1, 12), xH(τL +2, 12), . . . , xH(τL +

rLF , 12), all of which have small coefficients under decaying causality. The stock sampling test,

in other words, is missing the most important lead term xH(τL + 1, 1) and therefore suffer

from a poor signal relative to noise. Under flow sampling, averaging xH(τL + 1, 1) through

xH(τL + 1, 12) results in an offset of positive and negative impacts, hence again there is a poor

causation signal. This has been well documented in the literature: temporal aggregation can

obfuscate true underlying causality.

Next, consider lagged causality (Panel C). The MF tests have little power when rMF < 12

because the only relevant term is xH(τL + 1, 12) by construction. When rMF = 12 then power

improves sharply to about .2 for n = 80 and .5 for n = 160. LF tests with stock sampling, by

contrast, obtain much higher power than the MF tests for any hLF , rLF ∈ {1, 2, 3, 4} (Panels

C.1.4 and C.2.4). This occurs because the LF models with stock sampling contain the relevant

lead term xH(τL + 1, 12), and require fewer estimated parameters.

Under sporadic causality (Panel D), MF tests exhibit very high power, especially when the

number of lead terms is rMF = 12 since this takes into account c10 = −0.3. When n = 160

and rMF = 12, MF tests have power above .9 (Panel D.2.2). LF tests, by contrast, have

negligible power in all cases. The low frequency leads and lags of xH are too coarse to capture

the complicated causal pattern with unevenly-spaced lags, alternating signs, and non-decaying

structure.

Under uniform causality (Panel E), power is greatest when flow sampling is used. This result

is reasonable since the uniform causal pattern is preserved under flow sampling.

MF Max versus MF Wald Tests The max test has higher power than the Wald test under

lagged causality. When rMF = 24 and n = 160, the max test power is .438 on average while the

Wald test power is .332 on average (Panel C.2.2). We can therefore conclude that the max test

is better capable of detecting a lagged impact from xL to xH due to its robustness against large

parameter dimensions. The two tests are similar for the remaining causal patterns.
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5 Empirical Application

As an empirical illustration, we analyze Granger causality between a weekly term spread (long

and short term interest rate spread) and quarterly real GDP growth in the U.S. We test for both

high-to-low causality (spread to GDP) and low-to-high causality (GDP to spread), although we

are particularly interested in the former. A decline in the interest rate spread has historically

been regarded as a strong predictor of a recession, but recent events place doubt on its use

for such prediction.15 Recall that in 2005 the interest rate spread fell substantially due to a

relatively constant long-term rate and an increasing short-term rate (also known as ”Greenspan’s

Conundrum”), yet a recession did not follow immediately. The subprime mortgage crisis started

nearly 2 years later, in December 2007, and therefore may not be directly related to the 2005

plummet in the interest rate spread.

We use seasonally-adjusted quarterly real GDP growth as a business cycle measure. In order

to remove potential seasonal effects remaining after seasonal adjustment, we use annual growth

(i.e. four-quarter log-difference ln(yt) − ln(yt−4)). The short and long term interest rates used

for the term spread are respectively the federal funds (FF) rate and 10-year Treasury constant

maturity rate. We aggregate each daily series into weekly series by picking the last observation

in each week (recall that interest rates are stock variables). The sample period is January 5,

1962 to December 31, 2013, covering 2,736 weeks or 208 quarters.16

Figure 2 shows the weekly 10-year rate, weekly FF rate, their spread (10Y−FF), and quar-

terly GDP growth from January 5, 1962 through December 31, 2013. The shaded areas represent

recession periods defined by the National Bureau of Economic Research (NBER). In the first

half of the sample period, a sharp decline of the spread seems to be immediately followed by a

recession. In the second half of the sample period there appears to be a weaker association, and

a larger time lag between a spread drop and a recession.

Table 4 contains sample statistics. The 10-year rate is about 1% point higher than the FF

rate on average, while average GDP growth is 3.15%. The spread has a relatively large kurtosis

of 5.61, whereas GDP growth has a smaller kurtosis of 3.54.

The number of weeks contained in each quarter τL is not constant, which we denote as

m(τL): 13 quarters have 12 weeks each, 150 quarters have 13 weeks each, and 45 quarters have

14 weeks each. While the max test can be applied with varying m(τL), we simplify the analysis

by taking a sample average at the end of each τL, resulting in the following modified spread

{x∗H(τL, j)}12j=1:

x∗H(τL, j) =

xH(τL, j) for j = 1, . . . , 11,

1
m(τL)−11

∑m(τL)
k=12 xH(τL, k) for j = 12.

This modification gives us a dataset with n = 208, m = 12, and therefore T = mn = 2, 496 high

15See Stock and Watson (2003) for a survey of the historical relationship between term spread and business
cycle.

16All data are downloaded from the Saint Louis Federal Reserve Bank data archive.
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frequency observations.

In view of our 52-year sample period, we implement a rolling window analysis with a window

width of 80 quarters (i.e. 20 years). The first subsample covers the first quarter of 1962 through

the fourth quarter of 1981 (written as 1962:I-1981:IV), the second one is 1962:II-1982:I, and

the last one is 1994:I-2013:IV, equaling 129 subsamples. The trade-off between small and large

window widths is that the latter is more likely to contain a structural break but allows us to

include more leads and lags in our models. Furthermore, our simulation experiments in Section

4 reveal our tests work well for n = 80.

5.1 Granger Causality from Interest Rate Spread to GDP Growth

We first consider causality from the high frequency interest rate spread (x∗H) to low frequency

GDP growth (xL). We use a MF-VAR(2) specification since the resulting residuals from the

näıve model (5.2), below, appear to be serially uncorrelated (all models also include a constant

term). The MF max test operates on parsimonious regression models

xL(τL) = α0i +
2∑

k=1

αkixL(τL − k) + βix
∗
H(τL − 1, 12 + 1− i) + uL,i(τL), i = 1, . . . , 24, (5.1)

which includes q = 2 quarters of lagged GDP growth (xL), and hMF = 24 weeks of lagged

interest rate spread (x∗H). The MF Wald test operates on:

xL(τL) = α0 +

2∑
k=1

αkxL(τL − k) +

24∑
i=1

βix
∗
H(τL − 1, 12 + 1− i) + uL(τL). (5.2)

The LF max test is based on parsimonious models:

xL(τL) = α0i +

2∑
k=1

αkixL(τL − i) + βix
∗
H(τL − i) + uL,i(τL), i = 1, 2, 3.

This has q = 2 quarters of lagged xL) and hLF = 3 quarters of lagged x∗H . Since the interest rate

spread is a stock variable, we let the aggregated high frequency variable be x∗H(τL) = x∗H(τL, 12).

Finally, the LF Wald test is performed on:

xL(τL) = α0 +

2∑
k=1

αkxL(τL − k) +

3∑
i=1

βix
∗
H(τL − i) + uL(τL). (5.3)

Wald statistic p-values are computed based on the non-robust covariance matrix and Gonçalves

and Kilian’s (2004) bootstrap, with M = 1, 000 replications. Max statistic p-values are com-

puted based on the robust covariance matrix with 100,000 draws from an approximation to the

limit distribution under non-causality.

We perform the Ljung-Box Q test of serial uncorrelatedness of the least squares residuals

from the MF model (5.2) and LF model (5.3) in order to check whether these models are well
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specified. Since the true innovations are not likely to be independent, we use Horowitz, Lobato,

Nankervis and Savin’s (2006) double blocks-of-blocks bootstrap with block size b ∈ {4, 10, 20}.
The number of bootstrap samples is {M1,M2} = {999, 249} for the first and second stage. We

perform Q tests with 4, 8, or 12 lags for each window and model.

When theQ test bootstrap block size is b = 4, the null hypothesis of residual uncorrelatedness

in the MF case is rejected at the 5% level in only {13, 5, 1} windows out of 129 for tests with

{4, 8, 12} lags, suggesting the MF model is well specified. In the LF case, the null hypothesis

is rejected at the 5% level in {51, 23, 33} windows with {4, 8, 12} lags, hence the LF model

may not be well specified. The MF model again produces fewer rejections than the LF model

under larger block sizes b ∈ {10, 20}. (See Table T.17 of Ghysels, Hill, and Motegi (2017) for

complete results.) Overall, the MF model seems to yield a better fit than the LF model in terms

of residual uncorrelatedness.

Figure 3 plots p-values for tests of non-causality over the 129 subsamples. Unless otherwise

stated, the significance level is 5%. All tests except for the MF Wald test find significant causal-

ity in early periods. The MF max test detects significant causality prior to 1979:I-1998:IV, the

LF max test detects significant causality prior to 1975:III-1995:II, and the LF Wald test detects

significant causality prior to 1974:III-1994:II. The MF max test has the longest period of signif-

icant causality, arguably due to its high power, as shown in Section 4.1. These three tests all

agree that there is non-causality in recent periods, possibly reflecting some structural change in

the middle of the entire sample.

The MF Wald test, in contrast, suggests that there is significant causality only after subsam-

ple 1990:IV-2010:III, which is somewhat counter-intuitive. This result may stem from parameter

proliferation. As seen from (5.1)-(5.3), the MF näıve regression model has many more parame-

ters than any other model. In view of the intuitive test results, the MF max test seems to be

preferred to the MF Wald test when the ratio of sampling frequencies m is large.

We also implement the four tests for the full sample covering 52 years from January 1962

through December 2013. We try models with more lags than in the rolling window analysis,

taking advantage of the greater sample size: (q, hMF , hLF ) = (4, 48, 6). This specification means

that (i) each model has 4 quarters of low frequency lags of xL, (ii) each mixed frequency model

has 48 weeks of high frequency lags of x∗H , and (iii) each low frequency model has 6 quarters of

low frequency lags of x∗H . The number of bootstrap replications for the Wald tests is 10,000.

We first implement the bootstrapped Ljung-Box Q test with 4, 8, or 12 lags on the least

squares residuals from MF and LF models. When the block size is b = 4, p-values from the MF

model are {.107, .180, .084} for lags {4, 8, 12}. The null hypothesis of residual uncorrelatedness
is not rejected at the 5% level for any lag (although it is rejected at the 10% level for lag 12).

The MF model is therefore well specified in general. P-values from the LF model are {.021,
.066, .024} for lags {4, 8, 12}, suggesting that the LF model is not well specified. Similar results

appear when we change the block size to 10 or 20. As in the rolling window analysis, the MF

model yields a better fit than the LF model in terms of residual uncorrelatedness.
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The p-value for the MF max test is .037, hence we reject non-causality. Conversely, we fail to

reject non-causality at any conventional level by the MF Wald test (p-value .465), possibly due

to lower power relative to the max test in view of parameter proliferation. The LF p-values are

.048 for the max test and .085 for the Wald test. Overall, there is strong evidence for causality

from interest rate spread to GDP based on the max test, and only weak or partial evidence

based on Wald tests.

5.2 Granger Causality from GDP Growth to Interest Rate Spread

We now consider causality from GDP growth to the interest rate spread, hence low-to-high

causality. The MF max test is either based on the unrestricted parsimonious regression models

xL(τL) = α0i +
2∑

k=1

αkixL(τL − k) +
24∑
j=1

βjx
∗
H(τL − 1, 12 + 1− j) + γix

∗
H(τL + 1, i) + uL,i(τL),

or the restricted models with Almon polynomial ωj(πi) of order s = 3:

xL(τL) = α0i +
2∑

k=1

αkixL(τL − k) +
24∑
j=1

ωj(πi)x
∗
H(τL − 1, 12 + 1− j) + γix

∗
H(τL + 1, i) + uL,i(τL),

in each case i = 1, . . . , 24. We include q = 2 quarters of lagged xL, hMF = 24 weeks of lagged

x∗H , and rMF = 24 weeks of led x∗H .

The Wald test is based on either an unrestricted näıve regression model:

xL(τL) = α0 +

2∑
k=1

αkxL(τL − k) +

24∑
j=1

βjx
∗
H(τL − 1, 12 + 1− j) +

24∑
i=1

γix
∗
H(τL + 1, i) + uL(τL),

or a restricted model with Almon polynomial ωj(π):

xL(τL) = α0 +
2∑

k=1

αkxL(τL − k) +
24∑
j=1

ωj(π)x
∗
H(τL − 1, 12 + 1− j) +

24∑
i=1

γix
∗
H(τL + 1, i) + uL(τL).

The LF max test is based on the unrestricted parsimonious regression models xL(τL) = α0i

+
∑2

k=1 αkixL(τL − k) +
∑3

j=1 βjix
∗
H(τL − j) + γix

∗
H(τL + i) + uL,i(τL), i = 1, 2, 3. Since the

interest rate spread is a stock variable, we let x∗H(τL) = x∗H(τL, 12). We include two quarters of

lagged xL (i.e. q = 2), three quarters of lagged x∗H (i.e. hLF = 3), and three quarters of lead

x∗H (i.e. rLF = 3). Finally, the LF Wald test uses the näıve regression model: xL(τL) = α0 +∑2
k=1 αkxL(τL − k) +

∑3
j=1 βjx

∗
H(τL − j) +

∑3
i=1 γix

∗
H(τL + i) + uL(τL).

Wald test p-values are bootstrapped with M = 1, 000 bootstrap samples, and the max test

p-values are computed using 100,000 draws from limit distribution under non-causality. The non-

robust covariance matrix is used for the bootstrapped Wald test, while the robust covariance

matrix is used for the max test. Bootstrapped Ljung-Box Q tests with lags 4, 8, or 12 suggest

that the MF models produce uncorrelated residuals in more windows than the LF model.17

17When the block size is b = 4, the MF model without a MIDAS polynomial rejects the null hypothesis of
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Figure 4 plots p-values for the causality tests over the 129 subsamples. While MF tests

without a MIDAS polynomial find significant causality in some subsamples (cfr. Panels (a) and

(b)), MF tests with a MIDAS polynomial find non-causality in all subsamples (cfr. Panels (c)

and (d)). The LF max test shows significant causality in only a few subsamples around middle

1983:IV-2005:II (cfr. Panel (e)). The LF Wald test shows significant causality in approximately

the last 20% of the subsamples (cfr. Panel (f)).

Finally, we conduct the four tests on the full sample based on one specification

(q, hMF , rMF , hLF , rLF ) = (2, 24, 24, 3, 3), hence: (i) each model has 2 quarters of low frequency

lags of xL, (ii) each MF model has 24 weeks of high frequency leads and lags of x∗H each, and

(iii) each LF model has 3 quarters of low frequency leads and lags of x∗H each. Considering that

we already have 52 total leads and lags, we do not treat another specification with more lags.

The number of bootstrap replications for the Wald test is 9,999. Bootstrapped Ljung-Box Q

tests again suggest that residuals from the MF models have a weaker degree of autocorrelation

than residuals from the LF model.18

The MF max and Wald tests without a MIDAS polynomial have p-values .041 and .265,

respectively, and with a MIDAS polynomial the p-values are .160 and .686. The LF max and

Wald test have p-values .135 and .215. Thus, only the MF max test with MIDAS points to

causality. Overall, we do not observe strong evidence for low-to-high causality in general. This

result is consistent with the rolling window analysis above.

6 Conclusions

We propose a new test designed for many zero restrictions in regression models. A classical Wald

test approach may have a poor finite sample performance when the number of zero restrictions

is relatively large. We tackle the dimensionality problem head on by splitting key regressors

across many parsimonious regression models. The ith parsimonious regression model contains

the ith individual regressor only, so that parameter proliferation is less an issue. We then take

the maximum of the squared estimators across all parsimonious regression models.

The asymptotic distribution of our max test statistic is non-standard under the null hypoth-

esis, but an approximate p-value is readily available by drawing from an asymptotically valid

approximation to the asymptotic distribution directly. Under the alternative hypothesis, at least

one of the key estimators has a nonzero probability limit under fairly weak conditions. The max

test is therefore consistent.

After presenting the general theory of the max test, the paper focuses on mixed frequency

uncorrelated residuals at the 5% level in {4, 8, 5} windows out of 129 for lags {4, 8, 12}. When a MIDAS
polynomial is used, the null hypothesis is rejected in {25, 14, 16} windows. In the LF model the null hypothesis
is rejected in {31, 17, 26} windows. If we raise the block size to 10 or 20, rejections occur in only a few windows
across all models. See Table T.17 of Ghysels, Hill, and Motegi (2017) for complete results.

18When the block size is b = 4, the p-values for the MF model without a MIDAS polynomial are {.076, .280,
.054} for lags {4, 8, 12}. When a MIDAS polynomial is used the p-values are {.035, .179, .019}. In the LF model
the p-values are {.043, .041, .001}. If we raise the block size to 10 or 20, we observe larger p-values and therefore
weaker evidence of residual correlatedness in general.
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Granger causality as a prominent application. Through Monte Carlo simulations, we compare

the max and Wald tests based on mixed or low frequency data. We show that MF tests are

better able to detect complex causal patterns than LF tests in finite sample. The MF max and

Wald tests have roughly equal power in many cases, but the former is more powerful under

causality with a large time lag.

As an empirical application, we investigate Granger causality between a weekly interest rate

spread and real GDP growth in the U.S., over rolling sample windows. The MF max test yields

an intuitive result that the interest rate spread causes GDP growth until the 1990s, after which

causality vanishes, while Wald and LF tests yield mixed results.

Finally, the max test has wide applicability. One can easily generalize the test for an increas-

ing number of parameters, and would therefore apply to, for example, nonparametric regression

models using Fourier flexible forms (Gallant and Souza (1991)), Chebyshev, Laguerre or Her-

mite polynomials (see e.g. Draper, Smith, and Pownell (1966)), and splines (Rice and Rosenblatt

(1983), Friedman (1991)) - where our test has use for determining whether terms are redundant.

Similarly, a max test of white noise is another application since bootstrapped Q tests have com-

paratively lower power (see e.g. Xiao and Wu (2014) and Hill and Motegi (2017)). These are

only a few examples involving a large - possibly infinite - set of parametric zero restrictions. We

leave this as an area of future research.
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Technical Appendices

A Proofs of Main Results

We present proofs of Theorems 2.1-2.5. Proofs of Theorem 2.6 and Corollary 2.7 are omitted
since they are self-explanatory.

Proof of Theorem 2.1 Recall from (2.8) that the ith parsimonious regression model is written
as yt = X ′

itθi + uit, where Xit = [z1t, . . . , zpt, xit]
′ and θi = [α′

i, βi]
′ = [α1i, . . . , αpi, βi]

′. Let

θ̂ni = [α̂′
ni, β̂ni]

′ = [α̂n1i, . . . , α̂npi, β̂ni]
′ be the least squares estimator for θi.

In order to characterize the distribution limit of T̂n = max1≤i≤h(
√
nβ̂ni)

2, we must show

convergence of the finite dimensional distributions of {
√
nβ̂ni}hi=1 and stochastic equicontinuity

(e.g. Dudley (1978), Andersen and Dobric (1987)). By discreteness of i, note ∀(ϵ, η) > 0 ∃δ ∈
(0, 1) such that sup1≤i≤h: |i−ĩ|≤δ |

√
nβ̂ni −

√
nβ̂nĩ| = 0 a.s. Therefore limn→∞ P (sup1≤i≤h: |i−ĩ|≤δ

|
√
nβ̂ni −

√
nβ̂nĩ| > η) ≤ ε for some δ > 0, hence {

√
nβ̂ni}hi=1 is stochastically equicontinuous.

Let β = [β1, . . . , βh]
′ and β̂n = [β̂n1, . . . , β̂nh]

′. Stack all parameters across the h models as
θ = [θ′1, . . . , θ

′
h]

′ and θ̂n = [θ̂′n1, . . . , θ̂
′
nh]

′. Define an h× (p+1)h full row rank selection matrix R

such that β̂n = Rθ̂n. See (2.9) for the exact construction of R.

In order to prove Theorem 2.1, it suffices to show that
√
nβ̂n

d→ N(0, V ) under H0 : b = 0,

where V is defined in (2.10). The main statement that T̂n = max1≤i≤h(
√
nβ̂ni)

2 d→max1≤i≤hN 2
i ,

where N = [N1, . . . ,Nh]
′ ∼ N(0, V ), then follows instantly from the continuous mapping theo-

rem since max{·} is a continuous function.
Stack the underlying coefficients as θ0i = [a1, . . . , ap, bi]

′ and θ0 = [θ′01, . . . , θ
′
0h]

′. It is sufficient

to show that
√
n(θ̂n − θ0)

d→ N(0, S) under H0 : b = 0, where S is defined in (2.11). This result
suffices since

√
nβ̂n = R×

√
n(θ̂n − θ0) under H0 and V = RSR′ by construction.

Under H0, we have that θ0i = [a1, . . . , ap, 0]
′ for i = 1, . . . , h. Hence the ith parsimonious

regression model includes the true DGP as yt = X ′
itθ0i + ϵt. Define Γij = E[XitX

′
jt], Λij =

E[ϵ2tXitX
′
jt], Σij = Γ−1

ii ΛijΓ
−1
jj , and S = [Σij ] for i, j ∈ {1, . . . , h}, as in (2.11).

The α-mixing property of Assumption 2.3 implies ergodicity. Stationarity, square integra-
bility, and the ergodic theorem yield

Γ̂ii =
1

n

n∑
t=1

XitX
′
it

p→ Γii, (A.1)

which is a positive definite matrix under Assumption 2.2. By (A.1),

√
n(θ̂ni − θ0i) =

√
n

(
n∑

t=1

XitX
′
it

)−1 n∑
t=1

Xitϵt = Γ−1
ii × 1√

n

n∑
t=1

Xitϵt + op(1). (A.2)

Pick any λ = [λ′
1, . . . , λ

′
h]

′ with λi ∈ Rq+1 and λ′
iλi = 1. Define Xt(λ) =

∑h
i=1 λ

′
iΓ

−1
ii Xit. We
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have that

λ′ ×
√
n(θ̂n − θ0) =

h∑
i=1

λ′
i

√
n(θ̂ni − θ0i) =

h∑
i=1

λ′
i

(
Γ−1
ii × 1√

n

n∑
t=1

Xitϵt

)
+ op(1)

=
1√
n

n∑
t=1

(
h∑

i=1

λ′
iΓ

−1
ii Xit

)
ϵt + op(1) =

1√
n

n∑
t=1

Xt(λ)ϵt + op(1).

(A.3)

Observe that

E[Xt(λ)
2ϵ2t ] =

h∑
i=1

h∑
j=1

λ′
iΓ

−1
ii ΛijΓ

−1
jj λj = λ′Sλ < ∞.

Under Assumptions 2.1-2.3, {
∑h

i=1 λ
′
iXitϵt} is a stationary, ergodic, square integrable martingale

difference. Therefore Billingsley’s (1961) central limit theorem applies to yield (1/
√
n)
∑n

t=1Xt(λ)ϵt
d→ N(0, λ′Sλ). By the Cramér-Wold theorem,

√
n(θ̂n − θ0)

d→ N(0, S). Hence,

√
nβ̂n = R×

√
n(θ̂n − θ0)

d→ N(0, V ) (A.4)

and therefore

T̂n = max
{
(
√
nβ̂n1)

2, . . . , (
√
nβ̂nh)

2
}

d→ max
{
N 2

1 , . . . ,N 2
h

}
. QED

Proof of Theorem 2.2 T̂n = max1≤i≤h(
√
nβ̂ni)

2 operates on a discrete-valued stochastic

function gn(i) ≡ β̂ni. As shown in the proof of Theorem 2.1, this implies that weak conver-
gence for {gn(1), . . . , gn(h)} is identical to convergence in the finite dimensional distributions of
{gn(1), . . . , gn(h)}. Hansen’s (1996) proof of his Theorem 2 therefore carries over to prove the
present claim. QED

Proof of Theorem 2.3 Under Assumptions 2.1-2.3, {yt, Xit, ϵt} are square integrable, station-

ary α-mixing, and therefore ergodic. Therefore Γ̂ij
p→ Γij and θ̂ni

p→ (E[XitX
′
it])

−1E[Xityt] ≡ θ∗i .
Under H0, the parsimonious model is identically yt = X ′

itθ0i + ϵt with θ0i = [a1, . . . , ap, 0]
′ for

i = 1, . . . , h. Hence θ̂ni
p→ θ0i and θ∗i = θ0i.

Combined with stationarity, ergodicity and square integrability, Λ̂ij
p→ Λ∗

ij ≡ E[(yt −
X ′

itθ
∗
i )

2XitX
′
jt] with ∥Λ∗

ij∥ < ∞. Also, Λ∗
ij = Λij under H0. Therefore V̂n

p→ V under H0.

Under H1 : b ̸= 0, V̂n
p→ RS∗R′ with S∗ = [Γ−1

ii Λ∗
ijΓ

−1
jj ]i,j and ∥RS∗R′∥ < ∞. QED

Proof of Theorem 2.4 Recall the ith parsimonious regression model is yt = X ′
itθi+uit. In view

of stationarity, square integrability, and ergodicity, the least squares estimator satisfies θ̂ni
p→ θ∗i ,

where θ∗i = [E[XitX
′
it]]

−1E[Xityt]. Recall from (2.2) that the DGP is yt = z′ta+x′tb+ϵt. Therefore

θ∗i =
[
E
[
XitX

′
it

]]−1
E
[
Xit(z

′
ta+ x′

tb+ ϵt)
]
=

[
E
[
XitX

′
it

]]−1
(E[Xitz

′
t]a+ E[Xitx

′
t]b+ E[Xitϵt])

=
[
E
[
XitX

′
it

]]−1
(E[Xitz

′
t]a+ E[Xitx

′
t]b) = Γ−1

ii (E[Xitz
′
t]a+ Cib),

(A.5)

where the third equality holds from the mds assumption of ϵt. Note that zt = [Ip, 0p×1]Xit for
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i ∈ {1, . . . , h} by construction. Hence

E
[
Xitz

′
t

]
= E

[
XitX

′
it

]
×
[

Ip
01×p

]
= Γii ×

[
Ip

01×p

]
. (A.6)

Substitute (A.6) into (A.5) to get the desired result (2.14). QED

Proof of Theorem 2.5 Pick the last row of (2.14). The lower left block of Γ−1
ii is

−n−1
i E

[
xitz

′
t

] [
E
[
ztz

′
t

]]−1

while the lower right block is simply n−1
i , where

ni = E
[
x2it
]
− E

[
xitz

′
t

] {
E
[
ztz

′
t

]}−1
E [ztxit] .

Hence, the last row of Γ−1
ii Ci appearing in (2.14) is n−1

i d′i, where

di = E [xtxit]− E
[
xtz

′
t

] {
E
[
ztz

′
t

]}−1
E [ztxit] . (A.7)

If β∗ = 0, then n−1
i d′ib = 0 for any i ∈ {1, . . . , h} in view of (2.14). ni is a nonzero finite scalar

for any i ∈ {1, . . . , h} by the nonsingularity of E [XitX
′
it] . Hence we have that d′ib = 0 for all

i ∈ {1, . . . , h}. Stack these equations to get that Db = 0, where D = [d1, . . . , dh]
′ ∈ Rh×h.

To prove the main statement that b = 0, it is sufficient to show that D is non-singular.
Equation (A.7) implies that

D = E[xtx
′
t]− E[xtz

′
t]
[
E[ztz

′
t]
]−1

E[ztxt].

Now define

∆ = E

[[
zt
xt

] [
z′t x′t

]]
.

∆ is trivially non-singular by Assumption 2.2. Note that D is the Schur complement of ∆
with respect to E[ztz

′
t]. Therefore, by the classic argument of partitioned matrix inversion, D is

non-singular as desired. QED

B Double Time Indices

In this section, we introduce useful notations for mixed frequency data. Consider a high fre-
quency variable xH and a low frequency variable xL. Let τL ∈ Z be a low frequency time period.
Suppose that each low frequency time period has m high frequency time periods. In period τL,
we observe {xH(τL, 1), xH(τL, 2), . . . , xH(τL,m), xL(τL)} sequentially.

It is often useful to use a notational convention that allows the second argument of xH
to be an arbitrary integer. It is understood, for example, that xH(τL, 0) = xH(τL − 1,m),
xH(τL,−1) = xH(τL − 1,m− 1), and xH(τL,m+ 1) = xH(τL + 1, 1). In general, what we call a
high frequency simplification operates as follows.

xH(τL, i) =

{
xH
(
τL −

⌈
1−i
m

⌉
,m
⌈
1−i
m

⌉
+ i
)

if i ≤ 0,

xH
(
τL +

⌊
i−1
m

⌋
, i−m

⌊
i−1
m

⌋)
if i ≥ m+ 1.

(B.1)
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⌈x⌉ is the smallest integer not smaller than x, while ⌊x⌋ is the largest integer not larger than
x. By applying the high frequency simplification, any integer put in the second argument of
xH can be transformed to a natural number between 1 and m with the first argument being
modified appropriately. One can indeed verify that m

⌈
1−i
m

⌉
+ i ∈ {1, . . . ,m} when i ≤ 0, and

i−m
⌊
i−1
m

⌋
∈ {1, . . . ,m} when i ≥ m+ 1.

Since the high frequency simplification allows both arguments of xH to be any integer, the
following low frequency simplification is well defined.

xH(τL − τ, i) = xH(τL, i−mτ), ∀τL, τ, i ∈ Z. (B.2)

Equation (B.2) states that any lag or lead τ appearing in the first argument can be deleted by
modifying the second argument appropriately. The second argument may go below 1 or above
m, but such a case is covered by the high frequency simplification (B.1). Equations (B.1) and
(B.2) are of practical use when one writes DGPs or regression models for mixed frequency data.
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Table 1: Rejection Frequencies of High-to-Low Causality Tests Based on MF-VAR(1) - GARCH
Error and Robust Covariance Matrix for Max Tests

A. Non-Causality: b = 012×1

A.1. d = 0.2 (low persistence in xH)

A.1.1. n = 80 A.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .055, .046 1 .057, .054 .059, .057 4 .052, .053 1 .052, .063 .053, .060

8 .046, .045 2 .056, .050 .051, .039 8 .052, .045 2 .053, .048 .053, .045

12 .048, .041 3 .050, .051 .051, .041 12 .045, .046 3 .042, .053 .049, .051

24 .043, .046 4 .054, .038 .054, .047 24 .041, .031 4 .049, .045 .051, .046

A.2. d = 0.8 (high persistence in xH)

A.2.1. n = 80 A.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .056, .036 1 .057, .043 .054, .050 4 .051, .032 1 .054, .052 .048, .041

8 .054, .040 2 .053, .038 .054, .040 8 .049, .050 2 .049, .040 .052, .046

12 .047, .034 3 .050, .039 .049, .039 12 .052, .061 3 .054, .048 .046, .056

24 .043, .041 4 .058, .051 .056, .036 24 .040, .034 4 .049, .040 .050, .047

B. Decaying Causality: bj = (−1)j−10.3/j for j = 1, . . . , 12

B.1. d = 0.2 (low persistence in xH)

B.1.1. n = 80 B.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .523, .624 1 .089, .083 .681, .649 4 .878, .920 1 .118, .109 .932, .919

8 .410, .481 2 .078, .073 .574, .540 8 .809, .868 2 .103, .094 .880, .859

12 .361, .434 3 .068, .054 .518, .481 12 .770, .826 3 .090, .078 .852, .846

24 .270, .250 4 .072, .065 .493, .445 24 .692, .639 4 .078, .081 .832, .790

B.2. d = 0.8 (high persistence in xH)

B.2.1. n = 80 B.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .533, .631 1 .073, .058 .676, .679 4 .881, .906 1 .088, .079 .930, .899

8 .443, .487 2 .068, .055 .583, .553 8 .833, .879 2 .070, .070 .885, .866

12 .413, .434 3 .059, .050 .515, .529 12 .816, .826 3 .070, .067 .861, .835

24 .311, .251 4 .065, .050 .482, .426 24 .733, .675 4 .071, .054 .837, .790

There is weak persistence in xL (a = 0.2) and low-to-high decaying causality with alternating signs: cj = (−1)j−1×0.4/j

for j = 1, . . . , 12. The models estimated have two low frequency lags of xL (i.e. q = 2). The max test p-value is computed

using 5000 draws from the null limit distribution. The Wald test p-value is computed using the parametric bootstrap

based on Gonçalves and Kilian (2004), with 1000 bootstrap replications. Nominal size is 5%. The number of Monte

Carlo samples is 5000 for max tests and 1000 for Wald tests.
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Table 1: Continued

C. Lagged Causality: bj = 0.3× I(j = 12) for j = 1, . . . , 12

C.1. d = 0.2 (low persistence in xH)

C.1.1. n = 80 C.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .066, .054 1 .135, .107 .066, .047 4 .071, .058 1 .198, .184 .066, .068

8 .059, .063 2 .101, .108 .073, .087 8 .063, .058 2 .143, .159 .098, .073

12 .327, .275 3 .089, .093 .065, .053 12 .763, .610 3 .135, .126 .079, .074

24 .235, .161 4 .085, .078 .068, .071 24 .685, .434 4 .130, .114 .071, .062

C.2. d = 0.8 (high persistence in xH)

C.2.1. n = 80 C.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .073, .060 1 .477, .443 .066, .043 4 .079, .069 1 .778, .749 .063, .062

8 .094, .098 2 .387, .353 .407, .371 8 .115, .140 2 .699, .677 .713, .699

12 .346, .430 3 .351, .284 .347, .337 12 .854, .862 3 .660, .607 .667, .614

24 .276, .237 4 .323, .242 .315, .258 24 .788, .703 4 .623, .546 .624, .575

D. Sporadic Causality: (b3, b7, b10) = (0.2, 0.05,−0.3) and bj = 0 for other j’s

D.1. d = 0.2 (low persistence in xH)

D.1.1. n = 80 D.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .218, .231 1 .069, .058 .076, .068 4 .451, .451 1 .075, .061 .064, .059

8 .170, .174 2 .062, .055 .053, .056 8 .374, .346 2 .063, .071 .065, .054

12 .373, .386 3 .057, .053 .059, .049 12 .809, .812 3 .060, .042 .059, .045

24 .276, .255 4 .065, .057 .056, .044 24 .721, .644 4 .057, .060 .062, .055

D.2. d = 0.8 (high persistence in xH)

D.2.1. n = 80 D.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .195, .183 1 .138, .110 .071, .068 4 .395, .378 1 .215, .206 .074, .067

8 .160, .152 2 .105, .099 .139, .118 8 .331, .325 2 .174, .155 .226, .234

12 .363, .427 3 .099, .094 .115, .103 12 .807, .844 3 .156, .148 .202, .186

24 .268, .266 4 .096, .079 .102, .094 24 .723, .674 4 .132, .136 .167, .165

E. Uniform Causality: bj = 0.02 for j = 1, . . . , 12

E.1. d = 0.2 (low persistence in xH)

E.1.1. n = 80 E.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .061, .049 1 .103, .107 .065, .056 4 .071, .049 1 .148, .128 .062, .054

8 .053, .048 2 .075, .063 .053, .042 8 .061, .055 2 .107, .101 .057, .052

12 .056, .043 3 .071, .079 .056, .054 12 .061, .060 3 .093, .089 .056, .044

24 .048, .042 4 .062, .060 .056, .042 24 .052, .063 4 .085, .087 .057, .047

E.2. d = 0.8 (high persistence in xH)

E.2.1. n = 80 E.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

4 .066, .058 1 .154, .132 .065, .051 4 .067, .069 1 .247, .241 .064, .067

8 .064, .046 2 .106, .072 .089, .056 8 .077, .071 2 .186, .180 .126, .114

12 .069, .050 3 .103, .094 .075, .051 12 .089, .081 3 .165, .146 .101, .113

24 .064, .054 4 .094, .070 .073, .072 24 .083, .061 4 .156, .138 .104, .098
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Table 2: Rejection Frequencies of High-to-Low Causality Tests Based on MF-VAR(2) - GARCH
Error and Robust Covariance Matrix for Max Tests

A. Non-Causality: b = 024×1

A.1. d = 0.2 (low persistence in xH)

A.1.1. n = 80 A.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .046, .043 1 .060, .054 .055, .044 16 .043, .052 1 .054, .049 .049, .037

20 .045, .040 2 .060, .055 .060, .044 20 .053, .040 2 .049, .053 .059, .055

24 .045, .048 3 .051, .038 .046, .037 24 .047, .040 3 .047, .055 .052, .031

A.2. d = 0.8 (high persistence in xH)

A.2.1. n = 80 A.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .046, .037 1 .054, .046 .054, .050 16 .052, .037 1 .054, .048 .055, .042

20 .047, .048 2 .054, .042 .056, .046 20 .043, .046 2 .048, .048 .056, .056

24 .041, .043 3 .054, .042 .049, .042 24 .046, .042 3 .050, .048 .053, .046

B. Decaying Causality: bj = (−1)j−10.3/j for j = 1, . . . , 24

B.1. d = 0.2 (low persistence in xH)

B.1.1. n = 80 B.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .312, .337 1 .094, .087 .680, .651 16 .736, .785 1 .117, .100 .930, .931

20 .273, .314 2 .082, .063 .564, .553 20 .707, .716 2 .097, .100 .890, .883

24 .259, .239 3 .074, .057 .514, .507 24 .697, .654 3 .093, .069 .855, .810

B.2. d = 0.8 (high persistence in xH)

B.2.1. n = 80 B.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .354, .324 1 .080, .069 .689, .671 16 .771, .780 1 .099, .091 .928, .923

20 .312, .280 2 .064, .076 .571, .563 20 .741, .724 2 .087, .092 .897, .879

24 .315, .262 3 .073, .045 .523, .469 24 .731, .679 3 .081, .088 .860, .829

There is weak persistence in xL (a = 0.2) and low-to-high decaying causality with alternating signs:

cj = (−1)j−1 × 0.4/j for j = 1, . . . , 12. The models estimated have two low frequency lags of xL (i.e. q = 2).

The max test p-value is computed using 5000 draws from the null limit distribution. The Wald test p-value is

computed using the parametric bootstrap based on Gonçalves and Kilian (2004), with 1000 bootstrap replica-

tions. Nominal size is α = 0.05. The number of Monte Carlo samples is 5000 for max tests and 1000 for Wald

tests.
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Table 2: Continued

C. Lagged Causality: bj = 0.3× I(j = 24) for j = 1, . . . , 24

C.1. d = 0.2 (low persistence in xH)

C.1.1. n = 80 C.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .051, .061 1 .056, .046 .055, .044 16 .051, .053 1 .056, .053 .049, .048

20 .048, .050 2 .115, .107 .064, .043 20 .056, .054 2 .179, .165 .056, .054

24 .205, .158 3 .099, .077 .061, .062 24 .682, .530 3 .164, .143 .088, .077

C.2. d = 0.8 (high persistence in xH)

C.2.1. n = 80 C.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .058, .046 1 .061, .060 .055, .040 16 .060, .040 1 .065, .056 .055, .051

20 .067, .051 2 .433, .402 .056, .041 20 .096, .112 2 .760, .752 .057, .065

24 .206, .281 3 .376, .362 .352, .311 24 .770, .740 3 .729, .709 .673, .640

D. Sporadic Causality: (b5, b12, b17, b19) = (−0.2, 0.1, 0.2,−0.35) and bj = 0 for other j’s

D.1. d = 0.2 (low persistence in xH)

D.1.1. n = 80 D.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .113, .117 1 .067, .063 .062, .055 16 .290, .276 1 .077, .057 .062, .053

20 .414, .440 2 .078, .064 .058, .057 20 .883, .886 2 .085, .070 .066, .063

24 .391, .373 3 .071, .055 .065, .058 24 .858, .881 3 .077, .079 .060, .068

D.2. d = 0.8 (high persistence in xH)

D.2.1. n = 80 D.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .111, .124 1 .068, .055 .061, .051 16 .256, .284 1 .069, .061 .057, .057

20 .429, .454 2 .088, .063 .078, .050 20 .877, .888 2 .105, .104 .087, .091

24 .415, .376 3 .078, .062 .072, .082 24 .883, .875 3 .093, .091 .097, .084

E. Uniform Causality: bj = 0.02 for j = 1, . . . , 24

E.1. d = 0.2 (low persistence in xH)

E.1.1. n = 80 E.1.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .051, .061 1 .091, .078 .054, .055 16 .062, .064 1 .152, .140 .063, .060

20 .050, .053 2 .107, .103 .062, .054 20 .060, .052 2 .166, .158 .060, .047

24 .049, .042 3 .091, .070 .054, .041 24 .055, .072 3 .140, .139 .058, .056

E.2. d = 0.8 (high persistence in xH)

E.2.1. n = 80 E.2.2. n = 160

MF LF (flow) LF (stock) MF LF (flow) LF (stock)

hMF Max, Wald hLF Max, Wald Max, Wald hMF Max, Wald hLF Max, Wald Max, Wald

16 .079, .077 1 .173, .175 .060, .051 16 .116, .130 1 .312, .292 .063, .061

20 .072, .070 2 .198, .187 .111, .107 20 .118, .092 2 .380, .391 .187, .176

24 .077, .065 3 .165, .148 .116, .104 24 .112, .121 3 .319, .311 .198, .215
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Table 3: Rejection Frequencies of Low-to-High Causality Tests Based on MF-VAR(1) - GARCH
Error and Robust Covariance Matrix for Max Tests

A. Non-Causality: c = 012×1

A.1 n = 80 A.2 n = 160

A.1.1 Mixed Frequency Tests without MIDAS A.2.1 Mixed Frequency Tests without MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .055, .054 .051, .039 .048, .049 .046, .046 4 .055, .058 .051, .050 .050, .048 .045, .038

8 .068, .047 .064, .045 .068, .047 .061, .050 8 .053, .044 .055, .049 .050, .033 .058, .036

12 .080, .047 .079, .041 .080, .047 .076, .046 12 .060, .054 .061, .044 .065, .047 .057, .039

24 .139, .044 .144, .062 .157, .046 .167, .052 24 .079, .052 .083, .037 .077, .046 .082, .046

A.1.2 Mixed Frequency Tests with MIDAS A.2.2 Mixed Frequency Tests with MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .051, .054 .051, .045 .046, .044 .042, .043 4 .054, .063 .050, .047 .047, .052 .041, .042

8 .056, .047 .049, .044 .051, .051 .042, .047 8 .048, .046 .046, .055 .046, .034 .050, .043

12 .056, .061 .051, .044 .049, .045 .043, .044 12 .049, .056 .048, .053 .049, .043 .044, .043

24 .055, .052 .049, .060 .046, .039 .043, .035 24 .051, .058 .049, .048 .046, .046 .046, .047

A.1.3 Low Frequency Tests (Flow Sampling) A.2.3 Low Frequency Tests (Flow Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .056, .044 .053, .050 .052, .050 .043, .049 1 .053, .046 .051, .043 .054, .049 .042, .044

2 .063, .042 .053, .047 .047, .039 .050, .055 2 .054, .051 .054, .049 .049, .047 .051, .045

3 .060, .058 .056, .051 .052, .045 .055, .040 3 .053, .050 .054, .048 .049, .041 .052, .044

4 .060, .064 .057, .041 .053, .051 .050, .043 4 .053, .053 .058, .059 .055, .035 .049, .052

A.1.4 Low Frequency Tests (Stock Sampling) A.2.4 Low Frequency Tests (Stock Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .054, .057 .050, .041 .044, .049 .044, .050 1 .047, .029 .050, .048 .049, .056 .051, .045

2 .057, .039 .052, .042 .051, .046 .047, .051 2 .052, .054 .050, .057 .049, .053 .048, .052

3 .062, .034 .055, .048 .051, .046 .048, .047 3 .055, .057 .055, .036 .052, .061 .049, .047

4 .057, .044 .054, .043 .060, .049 .056, .046 4 .050, .042 .049, .052 .053, .032 .054, .039

The AR(1) coefficient for xL is a = 0.2, while the AR(1) coefficient for xH is d = 0.2. There is high-to-low

decaying causality with alternating signs: bj = (−1)j−1 × 0.2/j for j = 1, . . . , 12. The models estimated have

two low frequency lags of xL (i.e. q = 2). The max test p-value is computed using 5000 draws from the null

limit distribution. The Wald test p-value is computed using the parametric bootstrap based on Gonçalves and

Kilian (2004), with 1000 bootstrap replications. We implement mixed frequency tests with and without an Almon

MIDAS polynomial of dimension s = 3. Nominal size is α = 0.05. The number of Monte Carlo samples is 5000

for max tests and 1000 for Wald tests.
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Table 3: Continued

B. Decaying Causality: cj = (−1)j−1 × 0.3/j for j = 1, . . . , 12

B.1 n = 80 B.2 n = 160

B.1.1 Mixed Frequency Tests without MIDAS B.2.1 Mixed Frequency Tests without MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .459, .522 .353, .401 .290, .371 .208, .231 4 .823, .893 .739, .825 .695, .735 .578, .588

8 .471, .481 .357, .417 .295, .335 .220, .208 8 .818, .846 .744, .803 .687, .733 .585, .570

12 .464, .445 .370, .397 .320, .324 .234, .189 12 .824, .851 .740, .786 .677, .724 .596, .555

24 .508, .354 .430, .280 .393, .228 .333, .156 24 .813, .831 .751, .753 .702, .688 .614, .508

B.1.2 Mixed Frequency Tests with MIDAS B.2.2 Mixed Frequency Tests with MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .470, .548 .360, .431 .293, .381 .206, .250 4 .837, .901 .757, .835 .708, .747 .590, .623

8 .477, .523 .358, .464 .293, .392 .208, .232 8 .835, .881 .766, .844 .705, .778 .602, .626

12 .472, .534 .361, .465 .306, .396 .202, .252 12 .840, .894 .759, .847 .705, .804 .611, .634

24 .479, .540 .361, .470 .309, .380 .201, .237 24 .838, .909 .766, .853 .723, .799 .620, .623

B.1.3 Low Frequency Tests (Flow Sampling) B.2.3 Low Frequency Tests (Flow Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .096, .103 .083, .073 .065, .070 .066, .072 1 .159, .137 .125, .125 .093, .096 .090, .076

2 .102, .081 .082, .070 .070, .058 .061, .063 2 .155, .142 .119, .123 .108, .102 .093, .094

3 .107, .089 .084, .085 .072, .071 .069, .077 3 .145, .142 .116, .123 .107, .103 .094, .107

4 .107, .085 .086, .082 .073, .068 .069, .069 4 .150, .146 .119, .122 .102, .108 .086, .092

B.1.4 Low Frequency Tests (Stock Sampling) B.2.4 Low Frequency Tests (Stock Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .056, .054 .055, .052 .049, .049 .047, .040 1 .055, .065 .056, .059 .054, .049 .052, .058

2 .057, .038 .052, .035 .046, .058 .050, .043 2 .062, .054 .057, .051 .054, .050 .055, .047

3 .057, .053 .055, .045 .049, .048 .052, .057 3 .062, .053 .057, .062 .051, .057 .058, .049

4 .063, .059 .058, .049 .057, .046 .051, .044 4 .056, .055 .061, .060 .053, .062 .057, .036
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Table 3: Continued

C. Lagged Causality: cj = 0.25× I(j = 12) for j = 1, . . . , 12

C.1 n = 80 C.2 n = 160

C.1.1 Mixed Frequency Tests without MIDAS C.2.1 Mixed Frequency Tests without MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .054, .045 .054, .039 .211, .205 .139, .143 4 .054, .044 .053, .051 .513, .476 .429, .343

8 .068, .048 .065, .043 .208, .182 .167, .101 8 .056, .050 .054, .046 .522, .469 .425, .289

12 .081, .047 .080, .049 .240, .169 .181, .106 12 .066, .055 .058, .044 .519, .409 .428, .268

24 .132, .053 .144, .040 .309, .122 .271, .094 24 .083, .050 .084, .045 .528, .380 .450, .272

C.1.2 Mixed Frequency Tests with MIDAS C.2.2 Mixed Frequency Tests with MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .055, .036 .052, .047 .210, .213 .140, .155 4 .051, .041 .051, .048 .521, .478 .442, .343

8 .055, .042 .046, .045 .199, .196 .149, .121 8 .048, .048 .048, .042 .537, .476 .439, .309

12 .055, .047 .050, .050 .210, .205 .146, .126 12 .053, .060 .044, .047 .538, .472 .428, .318

24 .053, .055 .050, .035 .215, .213 .145, .129 24 .052, .046 .053, .044 .536, .487 .442, .356

C.1.3 Low Frequency Tests (Flow Sampling) C.2.3 Low Frequency Tests (Flow Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .093, .082 .088, .080 .072, .063 .063, .078 1 .156, .157 .126, .114 .111, .103 .104, .113

2 .103, .099 .086, .076 .075, .071 .068, .063 2 .150, .162 .128, .132 .110, .132 .096, .107

3 .108, .088 .087, .067 .077, .064 .075, .049 3 .153, .164 .124, .129 .110, .107 .099, .085

4 .101, .091 .088, .084 .078, .087 .077, .063 4 .151, .132 .133, .111 .110, .125 .100, .103

C.1.4 Low Frequency Tests (Stock Sampling) C.2.4 Low Frequency Tests (Stock Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .552, .553 .455, .439 .402, .398 .363, .340 1 .847, .870 .787, .785 .746, .752 .720, .705

2 .557, .525 .457, .450 .397, .374 .355, .304 2 .848, .863 .795, .775 .742, .735 .707, .650

3 .554, .521 .453, .415 .402, .378 .364, .342 3 .845, .836 .784, .763 .745, .714 .696, .651

4 .538, .501 .456, .415 .394, .344 .356, .283 4 .844, .848 .787, .778 .743, .740 .698, .662
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Table 3: Continued

D. Sporadic Causality: (c3, c7, c10) = (0.3, 0.15,−0.3) and cj = 0 for other j’s

D.1 n = 80 D.2 n = 160

D.1.1 Mixed Frequency Tests without MIDAS D.2.1 Mixed Frequency Tests without MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .471, .445 .386, .454 .488, .675 .378, .445 4 .834, .832 .810, .835 .913, .968 .860, .900

8 .464, .444 .385, .436 .495, .649 .382, .400 8 .831, .831 .791, .820 .908, .958 .853, .901

12 .464, .422 .410, .372 .510, .587 .391, .365 12 .834, .808 .794, .815 .908, .972 .855, .887

24 .510, .314 .471, .299 .574, .465 .492, .246 24 .825, .762 .787, .790 .908, .928 .854, .832

D.1.2 Mixed Frequency Tests with MIDAS D.2.2 Mixed Frequency Tests with MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .473, .467 .402, .490 .502, .698 .384, .467 4 .842, .843 .821, .839 .920, .974 .870, .911

8 .476, .493 .388, .489 .509, .700 .380, .473 8 .852, .857 .806, .840 .920, .972 .864, .929

12 .463, .487 .403, .468 .508, .697 .374, .476 12 .853, .850 .816, .858 .921, .987 .869, .920

24 .503, .464 .403, .496 .506, .698 .385, .445 24 .852, .864 .821, .852 .933, .971 .868, .927

D.1.3 Low Frequency Tests (Flow Sampling) D.2.3 Low Frequency Tests (Flow Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .084, .067 .061, .056 .065, .065 .055, .043 1 .111, .088 .091, .092 .079, .071 .075, .075

2 .080, .070 .069, .061 .059, .055 .059, .066 2 .112, .097 .087, .068 .083, .076 .080, .090

3 .079, .075 .071, .067 .062, .055 .060, .055 3 .110, .102 .093, .093 .083, .071 .073, .064

4 .091, .062 .068, .060 .060, .056 .066, .047 4 .103, .088 .089, .098 .081, .071 .083, .054

D.1.4 Low Frequency Tests (Stock Sampling) D.2.4 Low Frequency Tests (Stock Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .058, .058 .046, .039 .050, .043 .050, .041 1 .058, .052 .046, .051 .049, .048 .048, .047

2 .061, .050 .054, .040 .051, .052 .049, .033 2 .061, .047 .054, .039 .053, .042 .052, .051

3 .055, .040 .060, .046 .045, .049 .052, .044 3 .052, .044 .049, .046 .051, .045 .053, .053

4 .057, .063 .053, .036 .055, .041 .054, .048 4 .062, .050 .055, .059 .052, .054 .055, .057
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Table 3: Continued

E. Uniform Causality: cj = 0.07 for j = 1, . . . , 12

E.1 n = 80 E.2 n = 160

E.1.1 Mixed Frequency Tests without MIDAS E.2.1 Mixed Frequency Tests without MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .131, .171 .150, .210 .164, .269 .103, .165 4 .247, .321 .290, .497 .319, .622 .220, .460

8 .140, .162 .179, .191 .179, .260 .126, .166 8 .245, .315 .302, .481 .319, .597 .243, .425

12 .166, .155 .180, .185 .203, .229 .158, .147 12 .254, .278 .313, .464 .340, .590 .252, .435

24 .221, .106 .282, .144 .302, .200 .261, .122 24 .286, .252 .346, .397 .383, .571 .296, .397

E.1.2 Mixed Frequency Tests with MIDAS E.2.2 Mixed Frequency Tests with MIDAS

rMF = 4 rMF = 8 rMF = 12 rMF = 24 rMF = 4 rMF = 8 rMF = 12 rMF = 24

hMF Max, Wald Max, Wald Max, Wald Max, Wald hMF Max, Wald Max, Wald Max, Wald Max, Wald

4 .133, .168 .151, .219 .159, .287 .106, .169 4 .250, .332 .296, .527 .322, .635 .216, .463

8 .130, .169 .160, .230 .157, .304 .108, .185 8 .242, .337 .297, .528 .316, .658 .232, .471

12 .140, .172 .144, .226 .157, .294 .109, .183 12 .252, .309 .293, .487 .321, .683 .235, .505

24 .136, .152 .156, .221 .156, .307 .100, .197 24 .256, .305 .301, .506 .319, .677 .230, .512

E.1.3 Low Frequency Tests (Flow Sampling) E.2.3 Low Frequency Tests (Flow Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .703, .680 .610, .592 .552, .520 .512, .475 1 .951, .944 .911, .907 .891, .875 .867, .850

2 .705, .701 .617, .590 .563, .530 .510, .473 2 .946, .952 .914, .906 .881, .870 .867, .826

3 .681, .701 .604, .580 .556, .527 .505, .472 3 .947, .934 .919, .909 .892, .867 .862, .822

4 .684, .667 .596, .554 .529, .498 .491, .439 4 .942, .935 .911, .896 .888, .866 .854, .820

E.1.4 Low Frequency Tests (Stock Sampling) E.2.4 Low Frequency Tests (Stock Sampling)

rLF = 1 rLF = 2 rLF = 3 rLF = 4 rLF = 1 rLF = 2 rLF = 3 rLF = 4

hLF Max, Wald Max, Wald Max, Wald Max, Wald hLF Max, Wald Max, Wald Max, Wald Max, Wald

1 .120, .118 .099, .095 .076, .080 .071, .076 1 .195, .180 .145, .156 .133, .115 .109, .116

2 .119, .112 .096, .092 .084, .067 .071, .077 2 .198, .180 .146, .143 .133, .130 .109, .117

3 .115, .128 .095, .089 .083, .071 .078, .071 3 .197, .187 .151, .158 .128, .127 .108, .126

4 .120, .111 .105, .089 .079, .071 .080, .077 4 .186, .172 .151, .149 .129, .118 .117, .103
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Table 4: Sample Statistics of U.S. Interest Rates and Real GDP Growth

mean median std. dev. skewness kurtosis
weekly 10 Year Treasury constant maturity rate 6.555 6.210 2.734 0.781 3.488
weekly Federal Funds rate 5.563 5.250 3.643 0.928 4.615
spread (10-Year T-bill minus Fed. Funds) 0.991 1.160 1.800 -1.198 5.611
percentage growth rate of quarterly GDP 3.151 3.250 2.349 -0.461 3.543

The sample period is January 5, 1962 through December 31, 2013, covering 2,736 weeks or 208 quarters.

Figure 1: Low-to-High Causal Patterns in Reduced Form
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(d) Uniform Causality

In the low-to-high causality simulation experiment, we start with a structural MF-VAR(1) data generating

process, and transform it to a reduced-form MF-VAR(1). This figure shows how each causal pattern in

the structural form is transformed in the reduced form. The AR(1) parameter of xH is fixed at d = 0.2.

The horizontal axis has the 1st through 12th lags, and the vertical axis has the reduced form coefficient

for each lag. In the structural form, the decaying causality is cj = (−1)j−1 × 0.3/j for j = 1, . . . , 12;

the lagged causality is cj = 0.25× I(j = 12); the sporadic causality is (c3, c7, c10) = (0.3, 0.15,−0.3) and

cj = 0 for all other j’s; the uniform causality is cj = 0.07 for all j’s. As indicated in Panels (a)-(d), the

causal patterns in the reduced form resemble the structural causal patterns.
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Figure 2: Time Series Plot of U.S. Interest Rates and Real GDP Growth
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This figure plots weekly 10-year Treasury constant maturity rate (blue, solid line), weekly effective federal funds

rate (red, dashed line), their spread 10Y−FF (gray, solid line), and the quarterly real GDP growth from previous

year (yellow, solid line). The sample period covers January 5, 1962 through December 31, 2013, which has 2,736

weeks or 208 quarters. The shaded areas represent recession periods defined by the National Bureau of Economic

Research (NBER).
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Figure 3: P-values for Tests of Non-Causality from Interest Rate Spread to GDP
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(a) MF Max Test
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(b) MF Wald Test
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(c) LF Max Test
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(d) LF Wald Test

Panel (a) contains rolling window p-values for the MF max test, Panel (b) represents the MF Wald test, Panel (c)

the LF max test, and Panel (d) the LF Wald test. MF tests concern weekly interest rate spread and quarterly GDP

growth, while LF tests concern quarterly interest rate spread and GDP growth. The sample period is January

5, 1962 through December 31, 2013, covering 2,736 weeks or 208 quarters. The window size is 80 quarters. The

shaded area is [0, 0.05], hence any p-value in that range suggests rejection of non-causality from the interest rate

spread to GDP growth at the 5% level for that window.
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Figure 4: Rolling Window P-values for Tests of Non-Causality from GDP to Interest Rate Spread

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1962:I -

1981:IV

1967:I -

1986:IV

1972:I -

1991:IV

1977:I -

1996:IV

1982:I -

2001:IV

1987:I -

2006:IV

1992:I -

2011:IV

(a) MF Max Test (w/o MIDAS)
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(b) MF Wald Test (w/o MIDAS)
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(c) MF Max Test (w/ MIDAS)
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(d) MF Wald Test (w/ MIDAS)
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(e) LF Max Test
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(f) LF Wald Test

Panel (a) contains rolling window p-values for the MF max test without MIDAS polynomial, Panel (b) represents

the MF Wald test without MIDAS polynomial, Panel (c) the MF max test with MIDAS polynomial, Panel (d)

the MF Wald test with MIDAS polynomial, Panel (e) the LF max test, and Panel (f) the LF Wald test. MF

tests concern weekly interest rate spread and quarterly GDP growth, while LF tests concern quarterly interest

rate spread and GDP growth. The sample period is January 5, 1962 through December 31, 2013, covering 2,736

weeks or 208 quarters. The window size is 80 quarters. The shaded area is [0, 0.05], hence any p-value in that

range suggests rejection of non-causality from GDP growth to the interest rate spread at the 5% level for that

window.
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