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Abstract

This paper develops fuzzy cluster analysis with mixed frequency data. Time series are often

sampled at different frequencies like month, quarter, etc. The classic fuzzy cluster analysis simply

aggregates all data into the common lowest frequency and then computes a similarity matrix. Such

temporal aggregation may yield inaccurate or misleading results due to information loss. Inspired by

the growing literature of Mixed Data Sampling (MIDAS) regression technique, this paper proposes a

way to construct a similarity matrix exploiting all data available whatever their sampling frequencies

are. Empirical illustration using recent Japanese and U.S. macroeconomic indicators suggests that

the mixed frequency approach produces clearly different partition trees than the classic low frequency

approach does.

1 Introduction

Time series are often sampled at different frequencies like month, quarter, year, etc. When the classic

fuzzy cluster analysis is applied to multivariate time series data with mixed frequencies, it naı̈vely ag-

gregates all data into the common lowest frequency and then compute a similarity matrix. A potential

problem of this approach is that we are discarding a lot of information on high frequency time series. As

a result we may get inaccurate or even misleading implications. It is thus desired to develop a new type

of fuzzy cluster analysis that exploits all data available whatever their sampling frequencies are.

Handling mixed frequency data is not an issue limited to fuzzy cluster analysis. This is a universal

problem that challenges time series analysis in general. Ghysels, Santa-Clara, and Valkanov (2004),

Ghysels, Santa-Clara, and Valkanov (2006), and Andreou, Ghysels, and Kourtellos (2010) propose an

innovative regression technique that avoids temporal aggregation: Mixed Data Sampling (MIDAS) re-

gression. Assume each low frequency time periodτL ∈ {1, . . . , TL} containsm ∈ N high frequency

time periods. The ratio of sampling frequencies,m, is equal to 3 for a month vs. quarter mixture, 12 for

a month vs. year mixture, and so on. The basic idea of MIDAS regression is to regress a low frequency

variablexL onto allm observations of a high frequency variablexH :

xL(τL) = α + β1xH(τL, 1) + · · · + βmxH(τL,m) + uL(τL), τL = 1, . . . , TL. (1.1)
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xH(τL, j) is thej-th high frequency observation ofxH within low frequency periodτL. Note that the

classic single-frequency regression works on aggregatedxH and hence is written as:

xL(τL) = α + β
m∑

j=1

wjxH(τL, j) + uL(τL), (1.2)

wherew = [w1, . . . , wm]′ represents a linear aggregation scheme that is given, fixed, or pre-determined.

It includes flow sampling (wj = 1/m for j = 1, . . . ,m) and stock sampling (wm = 1 andwj = 0 for

j = 1, . . . ,m − 1) as special cases. Clearly, model (1.1) is more general than model (1.2) and hence

captures the relationship betweenxH andxL more accurately.

As surveyed by Andreou, Ghysels, and Kourtellos (2011) and Armesto, Engemann, and Owyang

(2010), the MIDAS literature is growing very rapidly in the past decade. Most recent development in-

cludes Anderson, Deistler, Felsenstein, Funovits, Zadrozny, Eichler, Chen, and Zamani (2012), Ghysels

(2012), and McCracken, Owyang, and Sekhposyan (2013). They extend the MIDAS concept to vec-

tor autoregression (VAR) in order to treat more than two variables at the same time. Foroni, Ghysels,

and Marcellino (2013) provide a survey of mixed frequency VAR models and related literature. Ghy-

sels, Hill, and Motegi (2013) propose Granger causality tests based on Ghysels’ (2012) mixed frequency

VAR. Ghysels, Hill, and Motegi (2014) invent another mixed frequency Granger causality test that is

useful when the ratio of sampling frequenciesm is large.

So far the MIDAS framework has never been introduced to fuzzy cluster analysis, and this paper fills

that gap. We show via simple Monte Carlo simulations that there exists a certain sort of interdependence

betweenxL andxH that the MIDAS regression can capture but the classic low frequency regression

cannot. Using the fuzzy cluster analysis with mixed frequency data, we analyze the interdependence

between recent Japanese and U.S. macroeconomy. The mixed frequency approach and the conventional

low frequency approach produce clearly different partition trees.

The present paper is organized as follows. Section 2 describes our methodology. Section 3 runs the

Monte Carlo simulations. Section 4 presents the empirical application. Section 5 concludes the paper.

2 Methodology

Although our methodology could be applied to an arbitrary number of sampling frequencies, this paper

assumes for expositional simplicity that there are only two: either high frequency or low frequency.

Suppose that we haveKH high frequency variablesxH,1, . . . , xH,KH
andKL low frequency variables

xL,1, . . . , xL,KL
. We thus haveK = KH + KL variables in total. Each low frequency time periodτL

havem high frequency periods. The ratio of sampling frequenciesm may depend on low frequency time

periods in some applications like week vs. month (one month contains four or five weeks). This paper

assumes for simplicity thatm is constant over time (e.g. month vs. quarter wherem is always 3).

Consider a low frequency time periodτL. In the first high frequency period withinτL, we observe

xH,1(τL, 1), . . . , xH,KH
(τL, 1). In the second high frequency period withinτL, we observexH,1(τL, 2),

. . . , xH,KH
(τL, 2), and so on. In the last high frequency period withinτL, we observexH,1(τL,m),
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. . . , xH,KH
(τL,m) as well asxL,1(τL), . . . , xL,KL

(τL). The assumption thatxL is observed at the last

high frequency period is just by convention, and can be relaxed if desired. See Figure 1 for a visual

explanation of these notations. In the figure there are assumed to be only one high frequency variable

xH and only one low frequency variablexL (i.e. KH = KL = 1). We sequentially observexH(τL, 1),
xH(τL, 2), . . . , xH(τL,m), xL(τL) in low frequency periodτL.

Before describing our own methodology, let us recall how we usually apply the classic fuzzy cluster

analysis to mixed frequency data. What we used to do is aggregating each high frequency variable into

low frequency first of all:xH,k(τL) =
∑m

j=1 wk
j xH,k(τL, j) for k = 1, . . . ,KH . wk = [wk

1 , . . . , wk
m]′

represents a linear aggregation scheme forxH,k (e.g. stock sampling, flow sampling, etc.). Now we have

all K variables having a single frequency, so we compute a similarity matrix in a usual way. A well-

known similarity measure is correlation coefficient or something similar. ConsiderxL,1 and aggregated

xH,1 for instance. A common way of defining a similarity measure between these two variables is to run

ordinary least squares (OLS) with respect to a linear regression model:

xL,1(τL) = α + βxH,1(τL) + uL,1(τL), τL = 1, . . . , TL (2.3)

and then calculateR2. Let α̂ and β̂ be OLS estimators forα andβ, respectively. Usinĝα and β̂, we

compute residualŝuL,1(τL) = xL,1(τL) − α̂ − β̂xH,1(τL). R2 is defined as follows:

R2 = 1 −
∑TL

τL=1 û2
L,1(τL)∑TL

τL=1(xL,1(τL) − x̄L,1)2
,

wherex̄L,1 = (1/TL)
∑TL

τL=1 xL,1(τL). It is well-known thatR2 is equal to the squared correlation

coefficient betweenxL,1 and aggregatedxH,1 in this bivariate setting.

When the classic fuzzy cluster analysis computesR2 between two high frequency variables (sayxH,1

andxH,2), past papers often work on aggregatedxH,1 and aggregatedxH,2. They usually create a single-

frequency setting at the very beginning of analysis, so never exploit original high frequency observations

of xH,1, . . . , xH,KH
. After gettingR2 for all possible pairs, the usual clustering procedure (e.g. Zadeh’s

method, Ward’s method) used to be applied in order to draw a partition tree. Finally, an optimal level of

the partition tree is determined by fuzzy theory.

A potential problem of these classic procedures is that the temporal aggregation of high frequency

variables may cause inaccurate or misleading results due to information loss. Assumingm = 3 for

example, the existing approach discards roughly two-thirds of the entire information contained in original

high frequency variables. Information loss gets even larger asm increases, a typical example being

month vs. year withm = 12.

Now we explain how to exploit mixed frequency data efficiently. Based on the MIDAS literature, it

is straightforward to generalize model (2.3) to a mixed frequency framework:

xL,1(τL) = α + β1xH,1(τL, 1) + · · · + βmxH,1(τL,m) + uL,1(τL), τL = 1, . . . , TL. (2.4)

We run OLS with respect to model (2.4) and then computeR2, or adjustedR2 if we want to take model
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parsimony into account. Since model (2.4) hasm + 1 regressors, adjustedR2 is computed as follows:

R̄2 = 1 −
1

TL−(m+1)

∑TL
τL=1 û2

L,1(τL)
1

TL−1

∑TL
τL=1(xL,1(τL) − x̄L,1)2

.

The MIDAS framework does not involve temporal aggregation, so it allows us to work on high fre-

quency data when we compute (adjusted)R2 between two high frequency variables, sayxH,1 andxH,2.

Simply regress one onto the other in a single-frequency (but high frequency) setting, and then calculate

(adjusted)R2. After getting (adjusted)R2 for all possible pairs, just a usual clustering procedure is

applied (e.g. drawing a partition tree, finding an optimal level of the tree based on fuzzy theory, etc.).

3 Illustrative Simulation Study

We run simple Monte Carlo experiments in order to highlight an advantage of the MIDAS regression

approach over the traditional low frequency approach. We simulate 100,000 samples from a linear data

generating process (DGP):

xL(τL) = 0.2xH(τL, 1) + 0.1xH(τL, 2) − 0.2xH(τL, 3) + εL(τL), τL = 1, . . . , 10. (3.5)

xH(τL, 1), xH(τL, 2), xH(τL, 3) are mutually and serially uncorrelated standard normal random num-

bers.εL(τL) are serially uncorrelated random numbers drawn fromN(0, 0.1). We assume independence

betweenxH andεL. The ratio of sampling frequencies,m, is set to be 3 so that this experiment can be

thought of as a month vs. quarter analysis just like Section 4. Sample size in terms of low frequency is

assumed to be only 10 quarters in order to match the empirical application below. Increasing the sample

size would not change the main conclusion of this experiment, however.

In the true DGPxH does have a relevant impact onxL, but we have both positive and negative im-

pacts at the same time.xH(τL, 1) andxH(τL, 2) have positive coefficients (0.2 and 0.1), whilexH(τL, 3)
has a negative coefficient of -0.2. It is not uncommon to encounter mixed signs in theory and practice of

economics.

For each sample we fit a MIDAS regression model:

xL(τL) = α + β1xH(τL, 1) + β2xH(τL, 2) + β3xH(τL, 3) + uL(τL) (3.6)

as well as the classic low frequency regression model:

xL(τL) = α + βxH(τL) + uL(τL),

where we assume flow samplingxH(τL) = (1/3)
∑3

j=1 xH(τL, j). For each regression model we

compute adjustedR2 and then plot a histogram in order to compare the model adequacy.

Figure 2 plots the histograms of adjustedR2, written asR̄2. Panel (a) is concerned with the MIDAS

regression, while Panel (b) is concerned with the low frequency regression. The horizontal axis hasR̄2,
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while the vertical axis has the normalized frequency that adds up to 1.

In Panel (a), about 65% of the total replications getR̄2 beyond 0.9, and about 90% of the total

replications getR̄2 beyond 0.8. This means that the MIDAS regression model fits simulated data very

well, an expected result since model (3.6) is correctly specified relative to DGP (3.5).

In Panel (b), about 55% of the total replications get negativeR̄2, and about 70% of the total replica-

tions getR̄2 below 0.1. This means that the classic low frequency regression model with flow sampling

cannot capture the underlying relationship betweenxL andxH at all. A key here is that we have both

positive coefficients (i.e. 0.1, 0.2) and a negative coefficient (i.e. -0.2) in the DGP. Flow aggregation takes

a arithmetic mean ofxH(τL, 1), xH(τL, 2), xH(τL, 3) and hence the positive impact and negative impact

offset each other, yielding spuriously weak impact of aggregatedxH onxL. This example highlights an

advantage of the MIDAS regression approach which is free of temporal aggregation.

4 Empirical Application

Using the mixed frequency fuzzy cluster analysis, we investigate the interaction among recent macroeco-

nomic time series in Japan and the U.S. Section 4.1 describes data while Section 4.2 presents empirical

findings.

4.1 Data

For each of Japan and the U.S., we prepare monthly unemployment rate (UR), monthly consumer price

index (CPI), and quarterly real gross domestic product (GDP). All data are publicly available online.

Japanese unemployment and CPI can be found at the website of Statistics Bureau, the Ministry of Internal

Affairs and Communications. Japanese GDP can be found at the website of Cabinet Office. All U.S.

series are downloadable at Federal Reserve Economic Data (FRED).

Note that unemployment rate and CPI are released each month while GDP is released each quarter.

This is a typical example where the mixed frequency approach matters. We have four high frequency

variables (KH = 4) and two low frequency variables (KL = 2). We take year-to-year change in monthly

unemployment rate to remove potential seasonal effects. Similarly, we take year-to-year growth rate of

monthly CPI and quarterly GDP.

Unemployment, CPI, and GDP are generally regarded as key indicators representing overall macroe-

conomic performance. In particular, negative correlation between unemployment rate and CPI is known

as the Phillips Curve. Also, negative correlation between unemployment rate and GDP is known as the

Okun Curve.

Our sample period covers July 2011 through March 2014, which has 30 months (or 10 quarters).

This is a relatively small sample, and the largest possible sample we could take is January 1981 - March

2014 (Japan’s quarterly real GDP in 1980 or before cannot be retrieved). Such a large sample would most

likely contain many structural breaks, however. We have a number of historical events that have most

likely changed the interdependence structure among Japanese and U.S. macroeconomic time series. To

name a few, we had Japan’s stock market bubble and burst in late 1980s, dot-com bubble in late 1990s,
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subprime mortgage crisis in late 2000s, and a devastating earthquake in Japan in March 2011. Our

sample July 2011 - March 2014 does not contain any of them, and can be thought of as a relatively stable

sample period. A virtue of the mixed frequency approach is that it allows us to work on such a short

sample period. If we took the classic low frequency approach, the number of observations would be only

10 for each series. Since we are taking the mixed frequency approach, the number of observations is 30

for unemployment and CPI and 10 for GDP.

Figure 3 plots year-to-year change in monthly unemployment rate, year-to-year growth rate of monthly

CPI, and year-to-year growth rate of quarterly real GDP in Japan and the U.S. Panels (a)-(d) plot the

monthly series, while Panels (e) and (f) plot the quarterly series. Vertical axes for Panels (a)-(c) span

[−1.5, 2], while the vertical axes for Panels (d)-(f) span[−1, 5]. Sample period covers July 2011 through

March 2014.

Panels (a) and (b) indicate that unemployment rate is declining slowly but consistently in both Japan

and the U.S. Panel (f) agrees with Panel (b) that the U.S. economy is expanding at a steady rate, showing

the real GDP growth between 1% and 3.5%. Panel (e), however, suggests that Japan ran into a short

recession late 2012 and early 2013. The real GDP growth in that period is marginally below zero. The

discrepancy between Panels (a) and (e) implies that unemployment and GDP measure different aspects

of macroeconomic activity, at least in recent Japan.

Panels (c) and (d) highlight the difference between Japanese goods market and U.S. goods market.

Japan had been suffering from prolonged deflation since 1990s although that seems to be over very

recently. As seen in Panel (c), Japan’s inflation got positive and began rising in the middle of 2013,

reaching about 1.5% in 2014. The U.S. in contrast has never experienced deflation in the past decades.

Panel (d) shows moderately high U.S. inflation (2-4%) until middle 2012 and stable inflation (1-2%)

since then.

Table 1 reports sample mean, median, minimum, maximum, standard deviation, skewness, and kur-

tosis of each series plotted in Figure 3. Table 1 provides basically the same implications as Figure 3.

First, unemployment rates in Japan and the U.S. are declining on average at a slow rate. The mean is

-0.36 for Japan and -0.80 for the U.S., while the standard deviation is 0.20 for Japan and 0.23 for the

U.S. Second, Japan is moving from deflation to inflation while the U.S. is having consistent inflation.

The minimum is -0.90 for Japan and 0.92 for the U.S. while the maximum is 1.61 for Japan and 3.85 for

the U.S. Third, the U.S. has higher and more stable real GDP growth than Japan in our sample period.

The mean is 1.32 for Japan and 2.20 for the U.S. while the standard deviation is 1.50 for Japan and 0.65

for the U.S.

4.2 Empirical Results

We apply the mixed frequency fuzzy cluster analysis to the six variables described above. Recall that

(1) adjustedR2, written asR̄2, between a monthly variable and a quarterly variable is computed via the

MIDAS regression (2.4), (2)̄R2 between a monthly variable and another monthly variable is computed

on the standard single-frequency (but monthly) basis, and (3)R̄2 between a quarterly variable and the

other quarterly variable is computed on the standard single-frequency (quarterly) basis.
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For comparison, we also implement the classic fuzzy cluster analysis based onaggregatedhigh

frequency variables (cfr. model (2.3)). Since change in unemployment rate and the growth rate of CPI

are both flow variables, we employ flow aggregationxH(τL) = (1/3)
∑3

j=1 xH(τL, j) for each high

frequency series.

We employ Zadeh’s method (a.k.a. nearest neighbor method) and Ward’s method to draw partition

trees. We are interested in whether the mixed frequency approach and the classic low frequency approach

produce different partition trees, and how they are different if any.

Figure 4 plots partition trees based on Zadeh’s method. Panel (a) is concerned with mixed frequency

approach which works on monthly unemployment rate, monthly CPI, and quarterly GDP. Panel (b) is

concerned with the classic low frequency approach which works on quarterly unemployment rate, quar-

terly CPI, and quarterly GDP. Similarity value (i.e. adjustedR2) is put for each level.

Evidently, the mixed frequency approach and the low frequency approach produce different partition

trees. In the mixed frequency case U.S. unemployment and U.S. GDP merge first, which corresponds

to the Okun’s law (i.e. negative correlation between unemployment and GDP). In the low frequency

case Japanese CPI and Japanese GDP merge first and then the U.S. Okun-law relation shows up. This

suggests that the mixed frequency approach emphasizes the U.S. Okun-law relation more than the low

frequency approach does.

There is another difference between Panels (a) and (b) when there are three clusters. Both partition

trees have the same three clusters: (1) U.S. unemployment, U.S. GDP, and Japanese unemployment, (2)

Japanese CPI and Japanese GDP, and (3) U.S. CPI. How they merge differs across the trees, however. In

the mixed frequency case (1) and (2) merge and then (3) joins them. In the low frequency case (1) and

(3) merge and then (2) joins them.

We now determine an optimal level of each partition tree. There are three common ways to calculate

cluster size at each level: Max approach, Power mean approach, and Arithmetic mean approach (see

Chapter 2 of Yamashita and Takizawa (2010) for details). For each approach we find the optimal level

and put a letter ”M”, ”P”, or ”A” in Figure 4. All approaches agree that the optimal level in Panel (a) is

0.19, where we have (1) U.S. unemployment, U.S. GDP, and Japanese unemployment, (2) Japanese CPI

and Japanese GDP, and (3) U.S. CPI. All approaches agree that the optimal level in Panel (b) is 0.27,

where we have exactly same clusters (1), (2), and (3). Therefore, fuzzy decision suggests that the two

partition trees are similar at least at the optimal level. In this sense taking the mixed frequency approach

does not necessarily change an essential part of a partition tree, although it does change how individual

variables reach the optimal level and how optimal clusters merge each other.

Figure 5 plots partition trees based on Ward’s method. Panel (a) is concerned with mixed frequency

approach, while Panel (b) is concerned with the classic low frequency approach. Similarity value (i.e.

standardized adjustedR2) is put for each level.

As in Figure 4, the mixed frequency approach emphasizes the U.S. Okun-law relation more than the

low frequency approach does. In the mixed frequency case U.S. unemployment and U.S. GDP merge

first, as seen in Panel (a) of Figure 5. In the low frequency case Japanese CPI and Japanese GDP merge

first and then the U.S. Okun-law relation shows up.

Further, there is another difference when there are three clusters. Both partition trees have the same
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three clusters: (1) U.S. unemployment and U.S. GDP, (2) Japanese unemployment and U.S. CPI, and

(3) Japanese CPI and Japanese GDP. How they merge differs across the trees, however. In the mixed

frequency case (2) and (3) merge and then (1) joins them. In the low frequency case (1) and (3) merge

and then (2) joins them.

We now determine an optimal level of each partition tree with respect to Ward’s method. For Panel

(a), fuzzy decision with max approach chooses 0.66, where we have (i) U.S. unemployment and U.S.

GDP, (ii) Japanese unemployment, (iii) U.S. CPI, (iv) Japanese CPI, and (v) Japanese GDP. Fuzzy de-

cision with power mean approach and arithmetic mean approach agree with each other that the optimal

level is 0.34, where we have (1) U.S. unemployment and U.S. GDP, (2) Japanese unemployment and

U.S. CPI, and (3) Japanese CPI and Japanese GDP. For Panel (b), fuzzy decision with max approach

chooses 0.52, where we have (i’) Japanese CPI and Japanese GDP, (ii’) U.S. unemployment, (iii’) U.S.

GDP, (iv’) Japanese unemployment, and (v’) U.S. CPI. Fuzzy decision with power mean approach and

arithmetic mean approach agree with each other that the optimal level is 0.31, where we have exactly

(1), (2), and (3). Hence, we reach the same optimal clusters across Panels (a) and (b) if we take the

power mean approach or arithmetic mean approach. This result again suggests that taking the mixed

frequency approach does not necessarily change a core part of a partition tree, although it does change

how individual variables reach the optimal level and how optimal clusters merge each other.

In summary, Figures 4 and 5 suggest that taking the mixed frequency approach instead of the low

frequency approach may change empirical implications, whether Zadeh’s method or Ward’s method is

used. Optimal levels determined by fuzzy theory are likely unchanged, but the detailed structure of a

partition tree does change significantly.

5 Conclusions

Time series are often sampled at different frequencies like month, quarter, etc. When the classic fuzzy

cluster analysis is applied to multivariate time series data with mixed frequencies, it naı̈vely aggregates

all data into the common lowest frequency and then compute a similarity matrix. A potential problem of

this approach is that we are discarding a lot of information on high frequency time series. As a result we

may get inaccurate or even misleading implications.

To resolve this issue, we have proposed a new type of fuzzy cluster analysis that exploits all data

available whatever their sampling frequencies are. We use the Mixed Data Sampling (MIDAS) regression

technique that is increasingly popular in recent time series econometrics. Assuming each low frequency

periodτL containsm high frequency periods, the MIDAS regression model regresses a low frequency

variablexL onto allm observations of a high frequency variablexH . We compute (adjusted)R2 from

the MIDAS regression and then construct a similarity matrix just as usual.

We show via simple Monte Carlo simulations that the mixed frequency approach better captures the

underlying relationship betweenxL andxH than the existing low frequency approach. In particular,

the mixed frequency approach matters when the high frequency observations ofxH have positive and

negative impacts onxL at the same time.

We study recent Japan-U.S. macroeconomy, comparing the new fuzzy cluster analysis associated
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with the MIDAS regression and the classic fuzzy cluster analysis that works on aggregated single-

frequency data. The former works on monthly unemployment, monthly inflation, and quarterly GDP,

while the latter works on quarterly unemployment, quarterly inflation, and quarterly GDP. It turns out

that the mixed frequency approach and the low frequency approach produce clearly different partition

trees, whether we use Zadeh’s method (a.k.a. nearest neighbor method) or Ward’s method. In particular,

correlation between U.S. unemployment and U.S. GDP (i.e. the Okun law) is more emphasized in the

mixed frequency case. Optimal levels determined by fuzzy theory are likely unchanged, but the detailed

structure of a partition tree does change by switching from the low frequency approach to the mixed

frequency approach.
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Tables and Figures

Table 1: Sample Statistics
Note: This table reports sample mean, median, minimum, maximum, standard deviation, skewness, and kurtosis of each series

from July 2011 through March 2014, which has 30 months (or 10 quarters). We have three series for each of Japan and the

U.S.: year-to-year change in monthly unemployment rate, year-to-year growth rate of monthly consumer price index, and

year-to-year growth rate of quarterly gross domestic product.

Mean Median Min. Max. Std. Dev. Skewness Kurtosis
Monthly UR (JP) -0.36 -0.30 -0.90 0.10 0.20 -0.50 3.93
Monthly UR (US) -0.80 -0.80 -1.30 -0.30 0.23 -0.28 3.18
Monthly CPI (JP) 0.24 0.10 -0.90 1.61 0.74 0.65 2.33
Monthly CPI (US) 2.06 1.76 0.92 3.85 0.85 0.89 2.60
Quarterly GDP (JP) 1.32 1.31 -0.48 3.22 1.50 0.04 0.94
Quarterly GDP (US) 2.20 2.01 1.32 3.27 0.65 0.46 2.03
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. . .

Note: This figure explains a standard notation in the Mixed Data Sampling (MIDAS) literature. Assume there are only one

high frequency variablexH and only one low frequency variablexL. In low frequency periodτL, we sequentially observe

xH(τL, 1), xH(τL, 2), . . . , xH(τL, m), xL(τL).

Figure 1: Visual Explanation of Mixed Frequency Time Series
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(a) Mixed Frequency Approach (b) Low Frequency Approach

Note: This figure plots the histograms of adjustedR2 computed through Monte Carlo simulations. Panel (a) is concerned with

the MIDAS regression that regresses a low frequency variablexL onto high frequency observations ofxH , while Panel (b) is

concerned with the conventional low frequency regression that regressesxL ontoaggregatedhigh frequency variablexH . The

horizontal axis has adjustedR2, while the vertical axis has the normalized frequency that adds up to 1.

Figure 2: Histograms of AdjustedR2 (Monte Carlo Simulations)
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(c) Monthly CPI (Japan)
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(d) Monthly CPI (US)

-1
0
1
2
3
4
5

3 4 1 2 3 4 1 2 3 4 1
2011 2012 2013 2014

% growth rates

(e) Quarterly GDP (Japan)
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Note: This figure plots year-to-year change in monthly unemployment rate, year-to-year growth rate of monthly consumer

price index, and year-to-year growth rate of quarterly real gross domestic product in Japan and the U.S. Panels (a)-(d) plot

the monthly series, while Panels (e) and (f) plot the quarterly series. Vertical axes for Panels (a)-(c) span[−1.5, 2], while the

vertical axes for Panels (d)-(f) span[−1, 5]. Sample period covers July 2011 through March 2014, which has 30 months (or 10

quarters).

Figure 3: Monthly Unemployment Rate, Monthly CPI, and Quarterly GDP
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(a) Mixed Frequency Approach
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(b) Low Frequency Approach

Note: This figure plots partition trees based on Zadeh’s method (a.k.a. nearest neighbor method). Panel (a) is concerned with

mixed frequency approach which works on monthly unemployment rate, monthly consumer price index, and quarterly gross

domestic product. Panel (b) is concerned with the classic low frequency approach which works on quarterly unemployment

rate, quarterly CPI, and quarterly GDP. Similarity value (i.e. adjustedR2) is put for each level. There are three common ways

to calculate cluster size at each level: Max approach, Power mean approach, and Arithmetic mean approach (see Chapter 2 of

Yamashita and Takizawa (2010) for details). For each approach we find the optimal level using fuzzy decision theory and put a

letter ”M”, ”P”, or ”A”.

Figure 4: Partition Trees (Zadeh’s Method)
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(a) Mixed Frequency Approach
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(b) Low Frequency Approach

Note: This figure plots partition trees based on Ward’s method. Panel (a) is concerned with mixed frequency approach which

works on monthly unemployment rate, monthly consumer price index, and quarterly gross domestic product. Panel (b) is

concerned with the classic low frequency approach which works on quarterly unemployment rate, quarterly CPI, and quarterly

GDP. Similarity value (i.e. standardized adjustedR2) is put for each level. There are three common ways to calculate cluster

size at each level: Max approach, Power mean approach, and Arithmetic mean approach (see Chapter 2 of Yamashita and

Takizawa (2010) for details). For each approach we find the optimal level using fuzzy decision theory and put a letter ”M”, ”P”,

or ”A”.

Figure 5: Partition Trees (Ward’s Method)
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