A Max-Correlation White Noise Test for Weakly Dependent Time Series

Jonathan B. Hill Department of Economics, University of North Carolina at Chapel Hill.
Kaiji Motegi Faculty of Political Science and Economics, Waseda University.

1. Introduction

Consider a covariance stationary time series \(\{y_t\} \) with mean zero. Define autocorrelations \(\rho(h) \equiv E[y_t y_{t-h}] \). Then, the white noise hypothesis is written as \(H_0: \rho(h) = 0 \) for all \(h \geq 1 \).

We use dependent wild bootstrap to allow for weak dependence under \(H_0 \).

Desired Properties of White Noise Tests
- Applicable to both observed and filtered data.
- Allow for weak dependence under \(H_0 \) (e.g. bilinear, GARCH).
- Allow for lag length \(L_n \to \infty \) with a fast rate \(L_n = o(n) \).
- Achieve sharp size and high power in finite sample.

We propose a new test that accomplishes ALL above: max-correlation test with dependent wild bootstrap.

2. Max-Correlation Test

We propose a max-correlation test statistic:

\[
T_n = \sqrt{n} \max_{1 \leq h \leq L_n} |\hat{\rho}_n(h)|.
\]

Previous tests include the Ljung-Box Q-test:

\[
Q_n = n \sum_{h=1}^{L_n} \frac{n+2}{n-h} \hat{\rho}_n(h).
\]

the generalized Andrews-Ploberger test:

\[
\text{AP}_n = \sup_{L \in (1, \infty)} \{ n(1 - \lambda^L) \left(\sum_{k=1}^{n} \lambda^{k-L} \hat{\rho}_n(h) \right)^2 \},
\]

and others (e.g. Shao’s spectral test, Hong’s standardized Q-test).

3. P-Value Computation

We use Shao’s dependent wild bootstrap (DWB) to compute p-values. This approach sidesteps extreme value theory (e.g. Xiao and Wu, 2014).

4. Simulation Study

4.1. Empirical Size (Nominal Size = 5%)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{A. } n = 100 & \text{i.i.d.} & \text{GARCH} & \text{Bilinear} \\
\hline
L = 5 & L = 21 & L = 5 & L = 21 & L = 5 & L = 21 \\
\hline
\text{Max} & .053 & .033 & .039 & .024 & .065 & .027 \\
Q & .057 & .017 & .021 & .006 & .044 & .013 \\
AP & .161 & .199 & .124 & .176 & .189 & .221 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{B. } n = 1000 & \text{i.i.d.} & \text{GARCH} & \text{Bilinear} \\
\hline
L = 5 & L = 144 & L = 5 & L = 144 & L = 5 & L = 144 \\
\hline
\text{Max} & .054 & .024 & .029 & .012 & .055 & .019 \\
Q & .044 & .020 & .020 & .000 & .041 & .002 \\
AP & .072 & .080 & .073 & .094 & .095 & .106 \\
\hline
\end{array}
\]

Max test achieves most accurate size.

- Q-test is seriously under-sized for large \(L \).
- AP test is seriously over-sized when \(n = 100 \).

4.2. Empirical Power

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{A. } n = 100 & \text{AR}(1) & \text{AR}(2) & \text{AR}(12) \\
\hline
L = 5 & L = 21 & L = 5 & L = 21 & L = 5 & L = 21 \\
\hline
\text{Max} & .271 & .121 & .593 & .354 & .082 & .166 \\
Q & .182 & .051 & .439 & .088 & .076 & .103 \\
AP & .159 & .139 & .300 & .275 & .172 & .220 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{B. } n = 1000 & \text{AR}(1) & \text{AR}(2) & \text{AR}(12) \\
\hline
L = 5 & L = 144 & L = 5 & L = 144 & L = 5 & L = 144 \\
\hline
\text{Max} & 1.00 & .996 & 1.00 & 1.00 & .063 & 1.00 \\
Q & 1.00 & .078 & 1.00 & .552 & .056 & .247 \\
AP & .970 & .954 & 1.00 & .999 & .084 & .086 \\
\hline
\end{array}
\]

Max test achieves highest power.

- In particular, the max test is powerful for remote autocorrelations (seasonality).

5. Conclusions

We establish a new white noise test based on the maximum autocorrelation.

We use dependent wild bootstrap to allow for weak dependence under \(H_0 \) (e.g. bilinear, GARCH).

Our test outperforms the Ljung-Box Q-test and the generalized Andrews-Ploberger test.

10th Spring Meeting of Japan Statistical Society, Tohoku University, March 5, 2016.