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What is Reverse Mathematics?

Hilbert’s reductionism program (1920s):

Find a good axiomatic system T for the entire mathematics,
and prove the ‘consistency of T’ by a ‘finitistic method’.

This program failed because of Gödel’s incompleteness
theorem (1930).

⇒Which axioms are exactly needed for mathematics?
⇒ Reverse Mathematics
H. Friedman’s theme (1976):

very often, if a theorem τ of ordinary mathematics is proved from
the “right” axioms, then τ is equivalent to those axioms over some
weaker system in which itself is not provable.
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What is Reverse Mathematics?

Reverse Mathematics program (Friedman Simpson program)
1 Formalize the theorem τ of “core of math” within an

appropriate axiomatic system.
2 Find the weakest axiom T in which we can prove τ.
3 Classify “core of math” using the logical strength.

( “core of math”: basic theorems of analysis, algebra, geometry,
etc.)
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language of second-order arithmetic (L2)

Definition (language of second order arithmetic)

number variables:x, y, z, . . . set variables:X ,Y ,Z , . . .

constant symbols:0, 1 function symbols:+, ·
relation symbols:=, <, ∈
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Classes of formulas

bounded formula: all quantifiers are of the form ∀x < y, ∃x < y.

arithmetical formulas:(θ: bounded formula)
Σ0

n formula: ∃x1∀x2 . . . xnθ

Π0
n formula: ∀x1∃x2 . . . xnθ

analytic formula:(φ: arithmetical formula)
Σ1

n formula:∃X1∀X2 . . .Xnφ

Π1
n formula:∀X1∃X2 . . .Xnφ
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Induction axioms

Σi
j induction (IΣi

j): for any φ(x) ∈ Σi
j ,

φ(0) ∧ ∀x(φ(x)→ φ(x + 1))→ ∀xφ(x).

∆i
j induction (I∆i

j): for any φ(x) ∈ Σi
j and ψ(x) ∈ Πi

j ,

∀x(φ(x)↔ ψ(x))→ (φ(0)∧∀x(φ(x)→ φ(x + 1))→ ∀xφ(x)).

Σi
j bounding (BΣi

j): for any φ(x, y) ∈ Σi
j ,

∀x < u∃yφ(x, y)→ ∃v∀x < u∃y < vφ(x, y).

Note that BΣ0
j+1 = I∆0

j over IΣ0
1. (Slaman 2004)
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Comprehension axioms

Σi
j (Πi

j) comprehension: for any φ(x) ∈ Σi
j ,

∃X∀x(φ(x)↔ x ∈ X).

∆i
j comprehension: for any φ(x) ∈ Σi

j and ψ(x) ∈ Πi
j ,

∀x(φ(x)↔ ψ(x))→ ∃X∀x(φ(x)↔ x ∈ X).

weak König’s lemma:
for any infinite tree T ⊆ 2<N, ∃X∀n(X [n] ∈ T),
where X [n] = ⟨X(0), . . . ,X(n − 1)⟩.
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Subsystems of second-order arithmetic

Big five
RCA0: “discrete ordered semi-ring”+Σ0

1 induction
+∆0

1 comprehension.

WKL0: RCA0 + weak König’s lemma.

ACA0: RCA0 + Σ1
0 comprehension.

ATR0: RCA0 + arithmetical transfinite recursion.

Π1
1CA0: RCA0 + Π1

1 comprehension.
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Subsystems of second-order arithmetic

Big five
RCA0: In this system, we need to prove everything
“recursively”.

WKL0: We can use Σ0
1-separation,

or we can use Hiene/Borel compactness.

ACA0: We can use number quantifier freely,
or we can use sequential compactness.

ATR0: We can compare well orderings.

Π1
1CA0: We can check well-foundedness.
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Aim of Reverse Mathematics

Comparing with the previous systems, we can classify the
“difficulty / complexity / strength” of theorems of various fields.

Analysis
differential equations (Cauchy/Peano’s theorem, etc.)
measure theory

Combinatorics
Ramsey’s theorem
Graph theory (Higman’s lemma, Kruscal’s theorem, Graph
minor theorem, etc.)

Information theory
Algorithmic randomness, etc.

Foundations of mathematics
Continuity of R
Categoricity of N

. . .
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Reverse Mathematics

Theorem
The following are provable within RCA0.

1 The structure theorem for finitely generated abelian group.
2 Mean value theorem.
3 Implicit function theorem.
4 Taylor’s expansion theorem for holomorphic function.
5 Baire Category theorem.
6 The Riemann mapping theorem for a polygonal region.
7 . . .
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Theorem
The following are equivalent over RCA0.

1 WKL0.
2 Hiene Borel compactness for [0, 1].
3 Completeness theorem/ compactness theorem.
4 Uniqueness of algebraic closures of a countable field.
5 Every continuous function on [0, 1] has a maximum.
6 The Jordan–Schönflies theorem.
7 The Cauchy integral theorem.
8 The Riemann mapping theorem for a Jordan region.
9 . . .
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Reverse Mathematics

Theorem
The following are equivalent over RCA0.

1 ACA0.
2 Ramsey’s theorem: RTn for n ≥ 3.
3 Every countable countable vector space has a basis.
4 Every countable commutative ring has a maximal ideal.
5 Arzela/Ascoli’s theorem.
6 The Riemann mapping theorem (over WKL0).
7 . . .

We will check the strength of Ramsey’s theorem in this way.
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Ramsey’s theorem

We will argue in RCA0.

Definition (Ramsey’s theorem.)

RTn
k : for any P : [N]n → k , there exists an infinite set H ⊆ N

such that |P([H]n)| = 1.

RTn
∞ := ∀k RTn

k .

RT∞∞ := ∀n RTn.

(We often omit ∞.)

Proposition (RCA0)

1 If n′ ≤ n, k ′ ≤ k , then RTn
k ⇒ RTn′

k ′ .
2 RTn

k ⇒ RTn
k+1.
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Ramsey’s theorem

Proposition (RCA0)

For any n ∈ ω, RTn+1
2 ⇒ RTn.

Thus,
RT1

2 ≤ RT1 ≤ RT2
2 ≤ RT2 ≤ RT3

2 ≤ RT3 ≤ RT4
2 ≤ . . .
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Separation

Using computability theory, we have the following.

RCA0 ⊬ RT2
2. (Specker 1971)

⇑ there exists a computable coloring
which has no computable homogeneous set.

Later, RCA0 + RT2
2 ⊢ DNR (HJHLS 2008).

RCA0 + RT2 ⊬ RT3
2. (Seetapun 1995)

⇑ Cone avoidance for coloring for pairs.
Later, low2-basis theorem (CJS 2001).

RCA0 + RT2 ⊬ WKL0. (Liu 2011)
⇑ DNR2 avoidance for coloring for pairs.

Combining with the first-order strength (later), we have,

RT1
2 < RT1 < RT2

2 < RT2 < RT3
2 = RT3 = · · · = RTn < RT.
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Weaker principles

There are many combinatorial principles deduced from RT2
2.

Definition
CAC: every infinite poset has an infinite chain or antichain.

ADS: every infinite linear ordering has an infinite ascending or
descending sequence.

SADS: every linear ordering of order type ∗N ⊔ N has an
infinite ascending or descending sequence.

EM: every infinite complete directed graph (tournament) has
an infinite transitive subgraph.

D2
2: for any ∆0

2 set A, A or Ac has an infinite subset.

COH: for any sequence of sets ⟨Rn | n ∈ N⟩, there exists an
infinite set X such that ∀n(X ⊆∗ Rn ∨ X ⊆∗ Rc

n ).
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Weaker versions of RT2
2

We consider some restricted version of RT2
2.

Definition
Let P be a 2-coloring.

P is stable ∀a∃n∀b , c ≥ n(P(a, b) = P(a, c)).

P is semi-transitive iff P(a, b) = P(b , c) = 1→ P(a, c) = 1.

P is transitive iff P(a, b) = P(b , c)→ P(a, b) = P(a, c).

Note that if P is homogeneous on X, then, P is stable and
transitive on X.
We will compare weak principles with restricted versions of RT2

2.
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RT2
2 and weak principles

Theorem (Cholak/Jockusch/Slaman/Hirschfeldt/Shore)
1 (RCA0) CAC⇔ every semi-transitive coloring has an infinite

homogeneous set.
2 (RCA0) ADS⇔ every transitive coloring has an infinite

homogeneous set.
3 (RCA0) SADS⇔ every stable transitive coloring has an

infinite homogeneous set.
4 (RCA0) EM⇔ for any 2-coloring P, there exists an infinite set

X such that P is transitive on X.
5 (RCA0) D2

2 ⇔ every stable coloring has an infinite
homogeneous set.

6 (RCA0 + BΣ0
2) COH⇔ for any 2-coloring P, there exists an

infinite set X such that P is stable on X.
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RM zoo!

Corollary (RCA0)

RT2
2 = EM + ADS

= D2
2 + COH

= EM + SADS + COH.

Theorem (RCA0)

RT2
2 > D2

2 > SADS > AMT > RCA0,

RT2
2 > CAC > ADS > SADS > RT1 > RCA0,

RT2
2 > COH > RCA0, . . .

RT2
2 is not like “big five”, but plays a key role in reverse

mathematics.
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RM zoo!

Reverse mathematics zoo
http://rmzoo.math.uconn.edu/

There are more and more precise studies from the computability
theory.
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Proof-theoretic strength

How about the proof-theoretic aspects?

Theorem

Both RCA0 and WKL0 are Π1
1-conservative extensions of IΣ0

1.
(Harrington, et al.)

BΣ0
2 is a Π0

3-conservative extension of IΣ0
1.

(Parsons/Paris/Friedman)

IΣ0
1 is a Π0

2-conservative extension of Primitive Recursive
Arithmetic (PRA). (Parsons)

Thus, their provably recursive functions are all the same, primitive
recursive functions, and they are proof-theoretically equivalent.

Theorem

ACA0 is a Π1
1-conservative extension of PA (IΣ0

<∞).
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The strength of Ramsey’s theorem

Theorem (review)

Over RCA0,
1 RT1 is equivalent to BΣ0

2,
2 if n ≥ 3, RTn

2 is equivalent to ACA0.

Corollary
1 For n ≥ 3, RCA0 + RTn

2 and RCA0 + RTn are
proof-theoretically equivalent to PA.

2 RCA0 + RT1 is proof-theoretically equivalent to PRA.

How about RT2
2 or RT2?
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The first-order strength of Ramsey’s theorem

Theorem (Hirst)

Over RCA0, RT2
2 implies BΣ0

2 and RT2 implies BΣ0
3.

Theorem (Cholak/Jockusch/Slaman)

1 Both RCA0 + IΣ0
2 + RT2

2 and WKL0 + IΣ0
2 + RT2

2 are
Π1

1-conservative extensions of IΣ0
2.

2 Both RCA0 + IΣ0
3 + RT2 and WKL0 + IΣ0

3 + RT2 are
Π1

1-conservative extensions of IΣ0
3.

Thus,
BΣ0

2 ≤ (RCA0 + RT2
2)Π1

1
≤ IΣ0

2 and BΣ0
3 ≤ (RCA0 + RT2)Π1

1
≤ IΣ0

3.

Note that the proof-theoretic strength of IΣ0
2 is ωω

ω

, and it proves the
consistency of IΣ0

1 or the totality of the Ackermann function.
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Main question

Question

What are the first-order/proof-theoretic strength of RT2
2 and RT2?

Particularly,

Question (Seetapun/Slaman 1995)

What is the consistency strength of RT2
2?

Question (Cholak/Jockusch/Slaman 2001)

Does WKL0 + RT2
2 prove the totality of the Ackerman function?

Keita Yokoyama Strength of Ramsey’s theorem for pairs 27 / 51



Introduction
Ramsey’s theorem in second-order arithmetic

Conservation proof

Formalization of Ramsey’s theorem in SOA
Computability strength and RM
Proof-theoretic strength and first-order part

Recently, there are several important improvements.

Theorem (Y)

WKL∗0 + RT2
2 is a Π0

2-conservative extension of RCA∗0.

Theorem (Chong/Slaman/Yang 2012 and 2014)

RCA0 + CAC is a Π1
1-conservative extension of RCA0 + BΣ0

2.

WKL0 + RT2
2 does not imply IΣ0

2.

Theorem (Chong/Kreuzer/Yang 2015)

WKL0 + D2
2 is Π0

3-conservative over RCA0 + WF(ωω).
(Note that WKL0 + D2

2 may not imply WF(ωω).)

Keita Yokoyama Strength of Ramsey’s theorem for pairs 28 / 51



Introduction
Ramsey’s theorem in second-order arithmetic

Conservation proof

Formalization of Ramsey’s theorem in SOA
Computability strength and RM
Proof-theoretic strength and first-order part

The proof-theoretic strength of RT2
2 and RT2

Theorem (Patey/Y)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0(+BΣ0
2).

(Here Π̃0
n-formula is of the form ∀Xθ where θ is Π0

n.)

Theorem (Slaman/Y)

WKL0 + RT2 is a Π1
1-conservative extension of RCA0 + BΣ0

3.

In particular,

Corollary

WKL0 + RT2
2 does not imply the consistency of IΣ0

1 nor the totality
of Ackermann function.
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The proof-theoretic strength of RT2
2 and RT2

The previous conservation proofs are formalizable within WKL0.
Thus, we have the following.

Corollary

PRA proves Con(PRA)↔ Con(WKL0 + RT2
2).

Corollary

PRA proves Con(IΣ0
2)↔ Con(WKL0 + RT2).

A new insight to Hilbert’s reductionism program(?):

Mathematicians Bridge Finite-Infinite Divide, Quanta
Magazine, May 24, 2016.

Some applications to computer science.
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The proof-theoretic strength and termination analysis

The study of the proof-theoretic strength provide some general
upper bounds for termination analysis.

Idea.

Assume that the soundness of a termination verifier V is
proved in a system T.

If V says that a program P terminates, then T proves the
termination of P.

“a program P terminates” is a Π2-statement.

Thus, if we know the Π2-consequences of T, then we know
the limitation of the verification power of V.

Note that this kind of method is used (based on first-order
arithmetic) in the study of termination of term rewriting, e.g., by
Bucholz (1995).
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Extract some information from RM

By our main theorem, and the following Parsons theorem,

Parsons(1970): if IΣ1 proves a Π2-statement ∀n∃kψ(n, k),
then there exists a primitive recursive function f such that
∀n∃k ≤ f(n)ψ(n, k) holds.

we have the following.

Theorem

If WKL0 + RT2
2 proves a Π2-statement ∀n∃kψ(n, k), then there

exists a primitive recursive function f such that ∀n∃k ≤ f(n)ψ(n, k)
holds.
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Extract some information from RM

Ramsey’s theorem is often used in the study of termination
analysis. For example, the following Podelski/Rybalchenko
termination theorem is provable within WKL0 + RT2

2.

Theorem (Podelski/Rybalchenko)

for any binary relation R ⊆ N2, R is well-founded if and only if there
exists T0, . . . ,Tk−1 ⊆ N2 such that tcl(R) ⊆ T0 ∪ · · · ∪ Tk−1 and
each Ti is well-founded.
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Extract some information from RM

Our main theorem observes the following.

Observation
If the termination of a program P is verified by the P/R termination
theorem, or, some other Ramsey type arguments, then there exists
a primitive recursive function f such that for any input n for P, P
terminates in f(n) steps.

Thus, the termination of the Ackermann function cannot be verified
by Ramsey’s theorem type arguments.
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Theorem (Slaman/Y)

WKL0 + RT2 is a Π1
1-conservative extension of RCA0 + BΣ0

3.

This is an easy consequence of the following lemma.

Lemma

Let (M,S) be a model of BΣ0
3 and let P : [M]2 → k (k ∈ M) be a

member of S. Then, there exists a set G ⊆ M such that P ↾ [G]2 is
constant, G is unbounded in M, and (M,S ∪ {G}) |= BΣ0

3.

This is done by carefully formalizing the low2-solution construction
for RT2.

Most Π1
1-conservation results are shown in this way

(constructing an ω-extension).
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Theorem (Patey/Y)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0(+BΣ0
2).

(Here Π̃0
n-formula is of the form ∀Xθ where θ is Π0

n.)

Key techniques:

Indicator argument by Kirby/Paris.

α-largeness for PH-like statements by Ketonen/Solovay.

(also developed by Kotlarski, Weiermann, . . . )

Arithmetical Mathias forcing for RT2
2 by

Cholak/Jockusch/Slaman.

(also developed by Chong, Yang, . . . )

A generalization of the Parsons theorem.

Recursively saturated models and resplendency by
Barwise/Schlipf.
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Ramsey’s theorem and its finite approximation

An important finite consequence of Ramsey’s theorem is the
following Paris-Harrington principle.

Theorem (PH2
2)

For any X0 ⊆inf N, there exists F ⊆fin X0 such that for any
f : [F ]2 → 2 there exists H ⊆ F such that H is homogeneous for f
and H is relatively large, i.e., |H| > min H.

PH2
2 is an easy consequence of WKL0 + RT2

2.

Actually, we can prove it just within RCA0.

The Π̃0
3-part of (infinite) Ramsey’s theorem is characterized by

“iterated version” Paris-Harrington-like principles.
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Ramsey’s theorem and its finite approximation

Definition (RCA0)

A finite set X ⊆ N is said to be 0-dense if |X | > min X.

A finite set X is said to be m + 1-dense if for any P : [X ]2 → 2,
there exists Y ⊆ X which is m-dense and P-homogeneous.

Note that “X is m-dense” can be expressed by a Σ0
0-formula.

Definition

mPH2
2: for any X0 ⊆inf N, there exists F ⊆fin X0 such that F is

m-dense.

Note that mPH2
2 is still a consequence of WKL0 + RT2

2 for any
m ∈ ω.
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Conservation via density

By a simple generalization of indicator arguments we have the
following.

Theorem (A generalization of Bovykin/Weiermann)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of
RCA0 + {mPH2

2 | m ∈ ω}.

Thus, to prove the main theorem, what we need is the following.

WANT

For each m ∈ ω, prove mPH2
2 within RCA0.

Since m-dense sets are very complicated, we will decompose the
density notion.
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α-large sets

We want to bound the size of m-dense sets.
For that, we use a tool from proof theory.

Definition
For ordinals below ωω (with a fixed primitive recursive ordinal
notation),

X is said to be α+ 1-large if X − {min X} is α-large,

X is said to be γ-large if X − {min X} is γ[min X ]-large (γ: limit),
where α+ ωk [x] = α+ ωk−1 · x.

X is m-large if |X | ≥ m.
X is ω-large if |X | > min X, i.e., relatively large.
X is ωk+1-large if X − {min X} splits up into min X many
ωk -large sets.
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PH2
2 with α-large sets

Definition

X is said to be α-large(RT2
k ) if for any P : [X ]2 → k , there exists

Y ⊆ X which is α-large and P-homogeneous.

Here is an important result connecting α-largeness and PH.

Theorem (Solovay/Katonen 1981)

X is ωk+4-large⇒ X is ω-large(RT2
k ).

This supports the provability in RCA0.

Proposition

For any k ∈ ω, RCA0 ⊢ “any infinite set contains ωk -large set.”

Thus, 1PH2
2 is provable in RCA0.
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We want to generalize the previous situation.
Actually, what we have is the following.

WANT
For any k ∈ ω, find n ∈ ω so that RCA0 proves

X is ωn-large⇒ X is ωk -large(RT2
2).

This is enough to prove mPH2
2 within RCA0 by the following

argument.
ω6-large⇒ ω-large(RT2

2)⇒ 1-dense.
Take n2 ∈ ω so that ωn2-large⇒ ω6-large(RT2

2).
Then, ωn2-large⇒ 2-dense.
Take n3 ∈ ω so that ωn3-large⇒ ωn2-large(RT2

2).
Then, ωn3-large⇒ 3-dense.

...

Thus, for any m ∈ ω, there exists n ∈ ω such that
ωn-large⇒ m-dense.
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WANT
For any k ∈ ω, find n ∈ ω so that RCA0 proves

X is ωn-large⇒ X is ωk -large(RT2
2).

RT2
2 can be decomposed by using the idea of transitive coloring.

X is α-large(ADS) if for any transitive P : [X ]2 → 2, there
exists Y ⊆ X which is α-large and P-homogeneous.

X is α-large(EM) if for any P : [X ]2 → 2, there exists Y ⊆ X
which is α-large such that P is transitive on [Y ]2.

WANT
For any k ∈ ω, find n1, n2 ∈ ω so that RCA0 proves

X is ωn1-large⇒ X is ωk -large(ADS).

X is ωn2-large⇒ X is ωk -large(EM).
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Bounding α-large(ADS) and α-large(EM) sets

By a Solovay/Ketonen style discussion, we have

Theorem

X is ω2k+6-large⇒ X is ωk -large(ADS).

On the other hand, bounding α-large(EM) sets is more
complicated.
The following “grouping principle” is essential for this.
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The grouping principle

Definition (RCA0)
Let n, k ∈ ω.
Given f : [X ]2 → 2, an (ωn, ωk )-grouping for f is a finite family of
finite sets ⟨Fi ⊆ X | i < l⟩ such that

∀i < j < l max Fi < min Fj ,

∀i < l Fi is ωn-large,

{max Fi | i < l} is ωk -large, and,

∀i < j ∃c < 2∀x ∈ Fi ,∀y ∈ Fj f(x, y) = c.

FGP2
2(ω

n, ωk ): for any X0 ⊆inf N, there exists X ⊆fin X0 such that for
any f : [X ]2 → 2, there exists an (ωn, ωk )-grouping for f .

Bound for α-large(EM) can be obtained from a bound for FGP2
2.
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Bounding FGP2
2

WANT
For any n, k ∈ ω, there exists m ∈ ω such that

X is ωm-large⇒ any coloring f : [X ]2 → 2 has an
(ωn, ωk )-grouping for f .

This is obtained from the following theorem.

Theorem (Generalized Parsons theorem)

Let ψ(F) be a Σ0
1-formula. Assume that

RCA0 ⊢ ∀X ⊆ N(X is infinite→ ∃F ⊆fin Xψ(F)).

Then, there exists n ∈ ω such that

RCA0 ⊢ ∀Z ⊆fin N(Z is ωn-large→ ∃F ⊆ Zψ(F)).

Thus, if FGP2
2 is provable within RCA0, we have done.
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To prove the finite grouping principle...

WANT

Prove FGP2
2(ω

n, ωk ) for any n, k ∈ ω within RCA0.

FGP2
2 is a too complicated finite combinatorics and thus

analyzing this within RCA0 directly is hard.
Instead of proving FGP2

2 directly, we will consider infinite
combinatorial principle GP2

2 which implies FGP2
2.

⇒ Go back to infinite combinatorics.
We can show that GP2

2 + WKL0 is Π̃0
3-conservative extension

of RCA0 by
arithmetical Mathias forcing (low set construction), and,
Barwise/Schlipf arguments for recursive saturation.

Theorem

For any n, k ∈ ω, FGP2
2(ω

n, ωk ) is provable within RCA0.
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The proof-theoretic strength of RT2
2

Theorem (Patey/Y)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of RCA0,
thus, it is a Π0

2-conservative extension of PRA.

Corollary

WKL0 + RT2
2 does not imply the consistency of IΣ0

1 nor the totality
of Ackermann function.

Corollary

PRA proves Con(PRA)↔ Con(WKL0 + RT2
2).
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Questions

Question

Is WKL0 + RT2
2 Π1

1-conservative over RCA0 + BΣ0
2?

Question

Is there a significant speed-up between RCA0 and WKL0 + RT2
2?
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Thank you for your attention.
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