Several values in Cichoń's diagram

Diego A. Mejía diego.mejia@shizuoka.ac.jp

Shizuoka University

RIMS Workshop Mathematical Logic and Its Applications September 28th, 2016

For a set X and an ideal $\mathcal I$ of subsets of X, define $\operatorname{add}(\mathcal I)$ The additivity of the ideal $\mathcal I$ is the least size of a family $\mathcal F\subseteq \mathcal I$ whose union is not in $\mathcal I$.

- $\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F}\subseteq\mathcal{I}$ whose union is not in \mathcal{I} .
- $\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\bigcup \mathcal{F} = X$.

- $\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F}\subseteq\mathcal{I}$ whose union is not in \mathcal{I} .
- $\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F}\subseteq\mathcal{I}$ whose union covers X, i.e., $\bigcup\mathcal{F}=X$.
- $non(\mathcal{I})$ The *uniformity of the ideal* \mathcal{I} is the least size of a subset of X that is not in \mathcal{I} .

- $\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F}\subseteq\mathcal{I}$ whose union is not in \mathcal{I} .
- $\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\bigcup \mathcal{F} = X$.
- $\operatorname{non}(\mathcal{I})$ The uniformity of the ideal \mathcal{I} is the least size of a subset of X that is not in \mathcal{I} .
- $\operatorname{cof}(\mathcal{I})$ The *cofinality of the ideal* \mathcal{I} is the least size of a cofinal subfamily of $\langle \mathcal{I}, \subseteq \rangle$.

For a set X and an ideal \mathcal{I} of subsets of X, define

- $\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F}\subseteq\mathcal{I}$ whose union is not in \mathcal{I} .
- $\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\bigcup \mathcal{F} = X$.
- $\operatorname{non}(\mathcal{I})$ The uniformity of the ideal \mathcal{I} is the least size of a subset of X that is not in \mathcal{I} .
 - $\operatorname{cof}(\mathcal{I})$ The *cofinality of the ideal* \mathcal{I} is the least size of a cofinal subfamily of $\langle \mathcal{I}, \subseteq \rangle$.

We are interested in the meager ideal $\mathcal M$ and the null ideal $\mathcal N$ on $\mathbb R$.

For $f,g\in\omega^{\omega}$,

• f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

Consider the following cardinal invariants.

(1) The (un)bounding number $\mathfrak b$ is the least size of a \leq^* -unbounded family of ω^ω .

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

- (1) The (un)bounding number $\mathfrak b$ is the least size of a \leq^* -unbounded family of ω^ω .
- (2) The dominating number $\mathfrak d$ is the least size of a dominating family D, that is, $\forall f \in \omega^\omega \exists g \in D(f \leq^* g)$.

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

- (1) The (un)bounding number $\mathfrak b$ is the least size of a \leq^* -unbounded family of ω^ω .
- (2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D(f \leq^* g)$.
- (3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F(x \neq^* y)$.

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

- (1) The *(un)bounding number* $\mathfrak b$ is the least size of a \leq^* -unbounded family of ω^ω .
- (2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D(f \leq^* g)$.
- (3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F(x \neq^* y)$.
- (4) $cov(\mathcal{M})$ is the least size of an $E \subseteq \omega^{\omega}$ such that $\forall x \in \omega^{\omega} \exists y \in E(x \neq^* y)$.

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

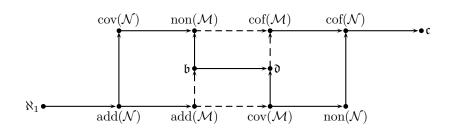
- (1) The *(un)bounding number* $\mathfrak b$ is the least size of a \leq^* -unbounded family of ω^ω .
- (2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D(f \leq^* g)$.
- (3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F(x \neq^* y)$.
- (4) $\operatorname{cov}(\mathcal{M})$ is the least size of an $E \subseteq \omega^{\omega}$ such that $\forall x \in \omega^{\omega} \exists y \in E(x \neq^* y)$.
- (5) ¢ denotes the size of the continuum.

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \neq^* g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

- (1) The (un)bounding number $\mathfrak b$ is the least size of a \leq^* -unbounded family of ω^ω .
- (2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D(f \leq^* g)$.
- (3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F(x \neq^* y)$.
- (4) $\operatorname{cov}(\mathcal{M})$ is the least size of an $E \subseteq \omega^{\omega}$ such that $\forall x \in \omega^{\omega} \exists y \in E(x \neq^* y)$.
- (5) c denotes the size of the continuum.
- (3) and (4) by Bartoszynski (1987).

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss. Completeness: Bartoszyński, Judah, Miller, Shelah.



Also $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}\ \text{and}\ \operatorname{cof}(\mathcal{M}) = \max\{\mathfrak{d}, \operatorname{non}(\mathcal{M})\}.$

Main problem

Main problem

Obtain models where many different cardinal invariants in Cichoń's diagram assume pairwise different values

Main problem

Main problem

Obtain models where many different cardinal invariants in Cichoń's diagram assume pairwise different values

• csi of proper forcing only allows to assign \aleph_1 and \aleph_2 .

Main problem

Main problem

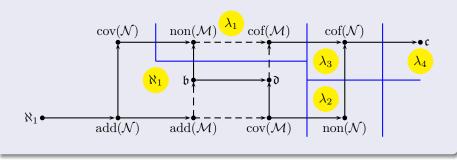
Obtain models where many different cardinal invariants in Cichoń's diagram assume pairwise different values

- csi of proper forcing only allows to assign \aleph_1 and \aleph_2 .
- Many models are obtained from FS (finite support) iterations of ccc posets, but such an iteration forces $\operatorname{non}(\mathcal{M}) \leq \mu \leq \operatorname{cov}(\mathcal{M})$ where μ is the cofinality of the length of the iteration (when μ has uncountable cofinality).

A non FS example

Theorem (A. Fischer, Goldstern, Kellner and Shelah)

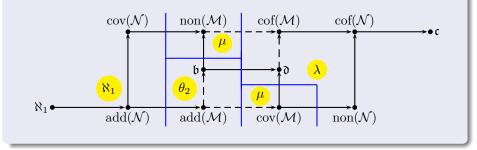
If $\aleph_1 < \lambda_1, \lambda_2 < \lambda_3 < \lambda_4$ are pairwise distinct cardinals such that $\lambda_i^{\aleph_0} = \lambda_i$ for i=1,2,3,4, then it is consistent that



Consistency examples (1)

Theorem (Brendle; Judah-Shelah's FS techniques 1990's)

If $\theta_2 \leq \mu$ are uncountable regular cardinals and $\lambda \geq \mu$ such that $\lambda^{<\theta_2} = \lambda$, then it is consistent that



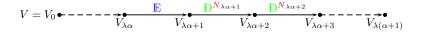
Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

(i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)

$$V = V_0 \bullet - - - - \frac{\mathbb{E}}{V_{\lambda \alpha}} \bullet V_{\lambda \alpha + 1}$$

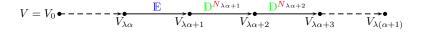
Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

- (i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)
- (ii) a σ -centered subposet of *Hechler forcing* \mathbb{D} (standard forcing that adds a dominating real) of size $< \theta_2$.



Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

- (i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)
- (ii) a σ -centered subposet of *Hechler forcing* $\mathbb D$ (standard forcing that adds a dominating real) of size $<\theta_2$. Concretely, of the form $\mathbb D^N$ for some transitive model N of ZFC^* of size $<\theta_2$.



Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

- (i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)
- (ii) a σ -centered subposet of *Hechler forcing* $\mathbb D$ (standard forcing that adds a dominating real) of size $<\theta_2$. Concretely, of the form $\mathbb D^N$ for some transitive model N of ZFC^* of size $<\theta_2$.

$$V = V_0 \bullet - - - - \underbrace{\downarrow}_{V_{\lambda\alpha}} \underbrace{\downarrow}_{V_{\lambda\alpha+1}} \underbrace{\downarrow}_{V_{\lambda\alpha+2}} \underbrace{\downarrow}_{V_{\lambda\alpha+3}} \underbrace{\downarrow}_{V_{\lambda\alpha+3}} - - \underbrace{\downarrow}_{V_{\lambda(\alpha+1)}} \underbrace{\downarrow}_{V_{\lambda(\alpha+1)}}$$

Counting argument: Any $Z \in V_{\lambda\alpha}$ subset of ω^{ω} of size $< \theta_2$ is contained in some $N_{\lambda\alpha+\varepsilon}$ ($\varepsilon < \lambda$).

Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

- (i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)
- (ii) a σ -centered subposet of *Hechler forcing* $\mathbb D$ (standard forcing that adds a dominating real) of size $<\theta_2$. Concretely, of the form $\mathbb D^N$ for some transitive model N of ZFC^* of size $<\theta_2$.

$$V = V_0 \bullet - - - - \underbrace{V_{\lambda\alpha}}_{V_{\lambda\alpha}} \underbrace{V_{\lambda\alpha+1}}_{V_{\lambda\alpha+1}} \underbrace{V_{\lambda\alpha+2}}_{V_{\lambda\alpha+2}} \underbrace{V_{\lambda\alpha+3}}_{V_{\lambda\alpha+3}} - \underbrace{V_{\lambda(\alpha+1)}}_{V_{\lambda\mu}}$$

Counting argument: Any $Z \in V_{\lambda\alpha}$ subset of ω^{ω} of size $< \theta_2$ is contained in some $N_{\lambda\alpha+\varepsilon}$ ($\varepsilon < \lambda$).

Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

- (i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)
- (ii) a σ -centered subposet of *Hechler forcing* $\mathbb D$ (standard forcing that adds a dominating real) of size $<\theta_2$. Concretely, of the form $\mathbb D^N$ for some transitive model N of ZFC^* of size $<\theta_2$.

$$V = V_0 \bullet - - - - \underbrace{V_{\lambda\alpha}}_{V_{\lambda\alpha}} \underbrace{V_{\lambda\alpha+1}}_{V_{\lambda\alpha+1}} \underbrace{V_{\lambda\alpha+2}}_{V_{\lambda\alpha+2}} \underbrace{V_{\lambda\alpha+3}}_{V_{\lambda\alpha+3}} - \underbrace{V_{\lambda(\alpha+1)}}_{V_{\lambda\mu}}$$

Counting argument: Any $Z \in V_{\lambda\alpha}$ subset of ω^{ω} of size $< \theta_2$ is contained in some $N_{\lambda\alpha+\varepsilon}$ ($\varepsilon < \lambda$). Thus, $V_{\lambda\mu} \models \theta_2 \leq \mathfrak{b}$.

Perform a FS iteration of length $\lambda\mu$ (ordinal product) using

- (i) \mathbb{E} (standard ccc poset that adds and eventually different real in ω^ω)
- (ii) a σ -centered subposet of *Hechler forcing* $\mathbb D$ (standard forcing that adds a dominating real) of size $<\theta_2$. Concretely, of the form $\mathbb D^N$ for some transitive model N of ZFC^* of size $<\theta_2$.

$$V = V_0 \bullet - - - - \underbrace{V_{\lambda\alpha}}_{\lambda\alpha} \underbrace{V_{\lambda\alpha+1}}_{\lambda\alpha+1} \underbrace{V_{\lambda\alpha+2}}_{\lambda\alpha+2} \underbrace{V_{\lambda\alpha+3}}_{\lambda\alpha+3} - \underbrace{V_{\lambda(\alpha+1)}}_{\lambda(\alpha+1)} - \underbrace{V_{\lambda\mu}}_{\lambda\mu}$$

Counting argument: Any $Z \in V_{\lambda\alpha}$ subset of ω^{ω} of size $< \theta_2$ is contained in some $N_{\lambda\alpha+\varepsilon}$ ($\varepsilon < \lambda$). Thus, $V_{\lambda\mu} \models \theta_2 \leq \mathfrak{b}$.

How to obtain $\mathfrak{b} \leq \theta_2$, $\operatorname{cov}(\mathcal{N}) = \aleph_1$, and the other equalities in $V_{\lambda\mu}$?

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

• $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$.

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

• $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$.

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$. In V_{λ} , the λ -many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda\mu}$.

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$. In V_{λ} , the λ -many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $< \lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{N}) = \aleph_1$.

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$. In V_{λ} , the λ -many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{N}) = \aleph_1$. In V_{ω_1} it is added a family of null sets of size \aleph_1 that covers the reals, and this family still covers in $V_{\lambda\mu}$.

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$. In V_{λ} , the λ -many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $< \lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{N}) = \aleph_1$. In V_{ω_1} it is added a family of null sets of size \aleph_1 that covers the reals, and this family still covers in $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \text{non}(\mathcal{N})$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$. In V_{λ} , the λ -many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $< \lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{N}) = \aleph_1$. In V_{ω_1} it is added a family of null sets of size \aleph_1 that covers the reals, and this family still covers in $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \text{non}(\mathcal{N})$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{M}) \leq \mu \leq \text{non}(\mathcal{M})$ because of the eventually different reals added by \mathbb{E} .

Sketch

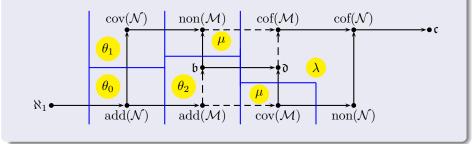
Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda\mu} \models \mathfrak{b} \leq \theta_2$. In V_{θ_2} it is added an unbounded family of size θ_2 that is preserved unbounded up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \mathfrak{d}$. In V_{λ} , the λ -many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{N}) = \aleph_1$. In V_{ω_1} it is added a family of null sets of size \aleph_1 that covers the reals, and this family still covers in $V_{\lambda\mu}$.
- $V_{\lambda\mu} \models \lambda \leq \text{non}(\mathcal{N})$.
- $V_{\lambda\mu} \models \text{cov}(\mathcal{M}) \le \mu \le \text{non}(\mathcal{M})$ because of the eventually different reals added by \mathbb{E} .
- $V_{\lambda\mu} \models \text{non}(\mathcal{M}) \le \mu \le \text{cov}(\mathcal{M})$ because of the Cohen reals added at limit stages.

Consistency examples (2)

Theorem (From Brendle; Judah-Shelah's FS techniques 1990's)

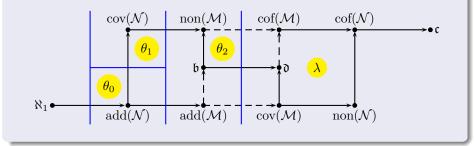
If $\theta_0 \le \theta_1 \le \theta_2$ are uncountable regular cardinals and $\lambda^{<\theta_2} = \lambda$, then it is consistent that



Consistency examples (3)

Theorem (From Brendle, Judah-Shelah's FS techniques 1990's)

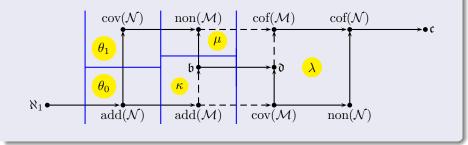
If $\theta_0 \le \theta_1 \le \theta_2$ are uncountable regular cardinals and $\lambda^{<\theta_2} = \lambda$, then it is consistent that



Consistency examples (4)

Theorem (Goldstern - M. - Shelah 2016)

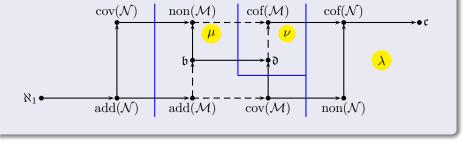
Let $\theta_0 \leq \theta_1 \leq \kappa = \kappa^{\aleph_0} \leq \mu = \mu^{\aleph_0}$ be uncountable regular cardinals, $\mu < \lambda = \lambda^{<\mu} \leq 2^{\kappa}$. Then, there is a ccc poset forcing



Consistency examples (5)

Theorem (M. 2013)

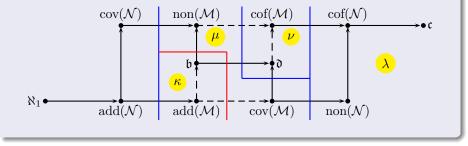
Let $\mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_0} = \lambda$. Then, there is a ccc poset forcing



Consistency examples (6)

Theorem (Fischer - Friedman - M. - Montoya)

Let $\kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_0} = \lambda$. Then, there is a ccc poset forcing



Definition

Let M be a transitive model of ZFC^* . $\mathbb{P} \in M$ and \mathbb{Q} posets. We say that \mathbb{P} is a complete suborder of \mathbb{Q} with respect to M, denoted by $\mathbb{P} \lessdot_M \mathbb{Q}$, if $\mathbb{P} \subseteq \mathbb{Q}$ and any maximal antichain of \mathbb{P} in M is also a maximal antichain of \mathbb{Q} .

Definition

Let M be a transitive model of ZFC^* . $\mathbb{P} \in M$ and \mathbb{Q} posets. We say that \mathbb{P} is a complete suborder of \mathbb{Q} with respect to M, denoted by $\mathbb{P} <_M \mathbb{Q}$, if $\mathbb{P} \subseteq \mathbb{Q}$ and any maximal antichain of \mathbb{P} in M is also a maximal antichain of \mathbb{Q} .

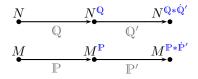
If $N \supseteq M$ is a transitive model of ZFC^* and $\mathbb{Q} \in N$, $\mathbb{P} \lessdot_M \mathbb{Q}$ implies that, if G is \mathbb{Q} -generic over N then $G \cap \mathbb{P}$ is \mathbb{P} -generic over M and $M[G \cap \mathbb{P}] \subseteq N[G]$.

$$N \bullet \longrightarrow N[G]$$

$$M \bullet \longrightarrow M[G \cap \mathbb{P}]$$

Lemma

In the context of the previous definition, assume that $\dot{\mathbb{P}}' \in M$ is a \mathbb{P} -name and $\dot{\mathbb{Q}}' \in N$ is a \mathbb{Q} -name, both of posets. If $\mathbb{P} \lessdot_M \mathbb{Q}$ and \mathbb{Q} forces (over N) that $\dot{\mathbb{P}}' \lessdot_{M^{\mathbb{P}}} \dot{\mathbb{Q}}'$, then $\mathbb{P} * \dot{\mathbb{P}}' \lessdot_M \mathbb{Q} * \dot{\mathbb{Q}}'$.



Lemma

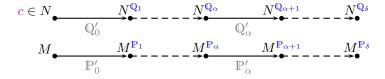
In the context of the previous definition, assume that $\dot{\mathbb{P}}' \in M$ is a \mathbb{P} -name and $\dot{\mathbb{Q}}' \in N$ is a \mathbb{Q} -name, both of posets. If $\mathbb{P} \lessdot_M \mathbb{Q}$ and \mathbb{Q} forces (over N) that $\dot{\mathbb{P}}' \lessdot_{M^{\mathbb{P}}} \dot{\mathbb{Q}}'$, then $\mathbb{P} * \dot{\mathbb{P}}' \lessdot_M \mathbb{Q} * \dot{\mathbb{Q}}'$.

Lemma (Brendle-Fischer 2011)

Let $\mathbb{P}_{\delta} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{P}}'_{\alpha} : \alpha < \delta \rangle$ and $\mathbb{Q}_{\delta} = \langle \mathbb{Q}_{\alpha}, \dot{\mathbb{Q}}'_{\alpha} : \alpha < \delta \rangle$ be FS iterations in M and N, respectively. If $\mathbb{P}_{\alpha} \lessdot_{M} \mathbb{Q}_{\alpha}$ and $\Vdash_{\mathbb{Q}_{\alpha},N} \dot{\mathbb{P}}'_{\alpha} \lessdot_{M^{\mathbb{P}_{\alpha}}} \dot{\mathbb{Q}}'_{\alpha}$ for all $\alpha < \delta$, then $\mathbb{P}_{\delta} \lessdot_{M} \mathbb{Q}_{\delta}$

Preservation of unbounded reals

Let $M \subseteq N$ be transitive models of ZFC^* , $c \in \omega^\omega \cap N$ unbounded over M (that is, no member of $\omega^\omega \cap M$ dominates c) and a coherent pair of FS iterations as below.



Preservation of unbounded reals

Let $M \subseteq N$ be transitive models of ZFC^* , $c \in \omega^\omega \cap N$ unbounded over M (that is, no member of $\omega^\omega \cap M$ dominates c) and a coherent pair of FS iterations as below.

$$c \in N \xrightarrow{N^{\mathbf{Q}_1}} \xrightarrow{N^{\mathbf{Q}_{\alpha}}} \xrightarrow{N^{\mathbf{Q}_{\alpha}+1}} \xrightarrow{N^{\mathbf{Q}_{\delta}}}$$

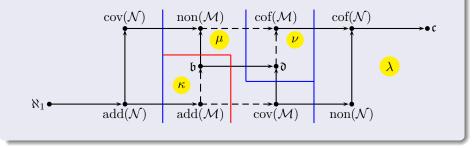
$$M \xrightarrow{M^{\mathbf{P}_1}} \xrightarrow{\mathbb{P}'_0} \xrightarrow{M^{\mathbf{P}_{\alpha}}} \xrightarrow{M^{\mathbf{P}_{\alpha}+1}} \xrightarrow{M^{\mathbf{P}_{\delta}}}$$

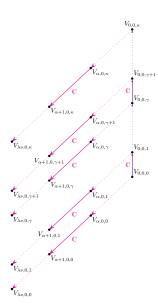
We are interested in preserving c unbounded, i.e., to obtain c unbounded over $M^{\mathbb{P}_{\delta}}$. The relevant theory is known from **Blass-Shelah 1984**; **Brendle-Fischer 2011**; **M. 2013**.

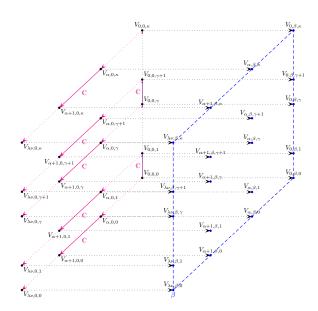
Consistency examples (6)

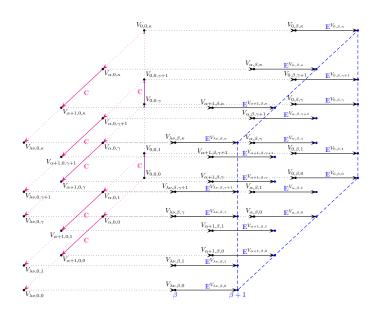
Theorem (Fischer - Friedman - M. - Montoya)

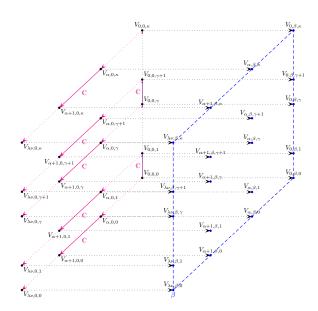
Let $\kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_0} = \lambda$. Then, there is a ccc poset forcing

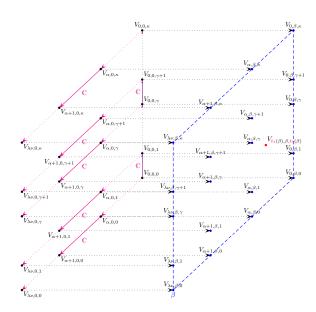


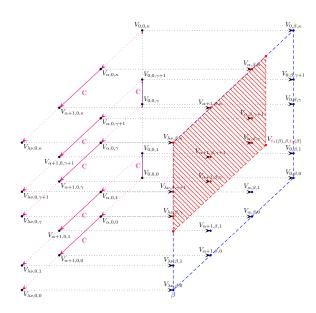


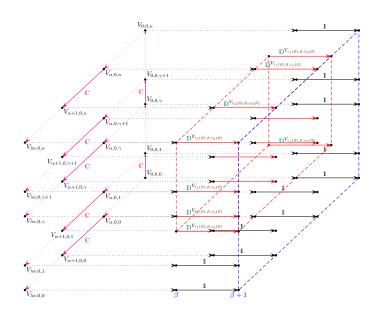


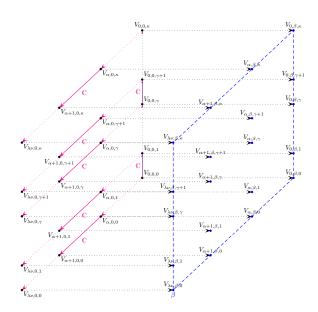


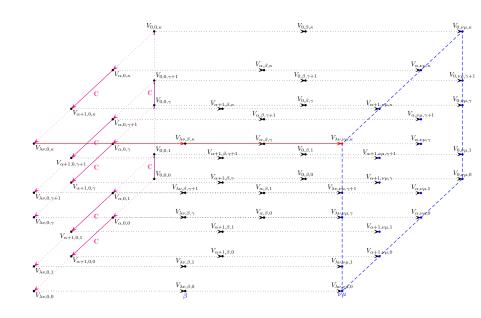


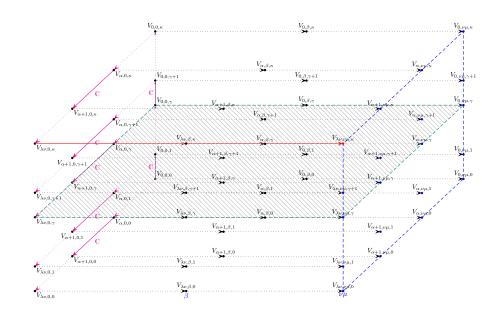


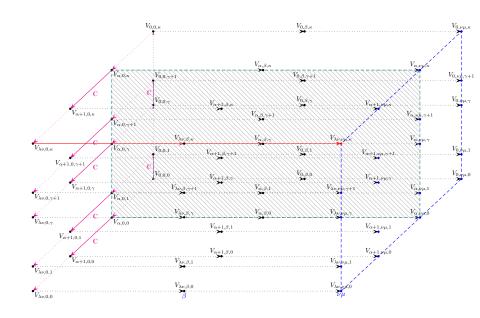


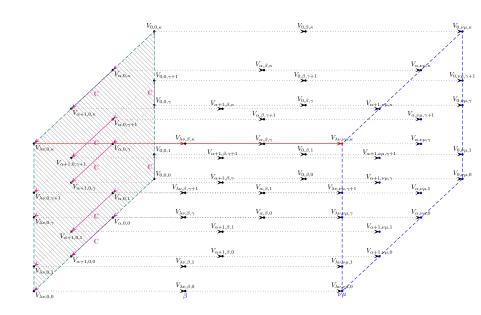


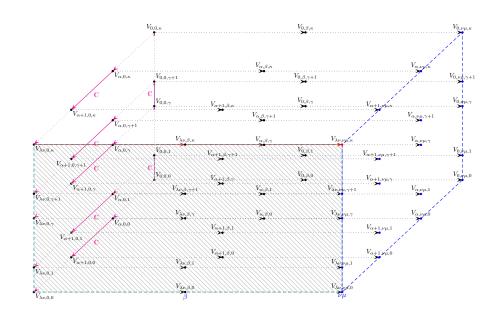


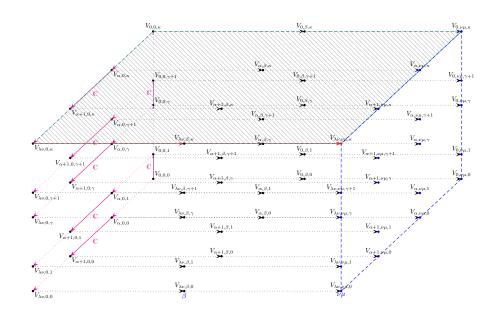








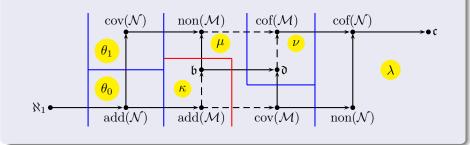




Consistency examples (7)

Theorem (Fischer - Friedman - M. - Montoya)

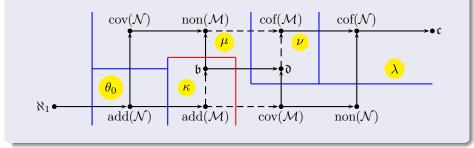
Let $\theta_0 \leq \theta_1 \leq \kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{<\theta_1} = \lambda$. Then, there is a ccc poset forcing



Consistency examples (8)

Theorem (Fischer - Friedman - M. - Montoya)

Let $\theta_0 \leq \kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{<\theta_0} = \lambda$. Then, there is a ccc poset forcing



The almost disjointness number

Theorem (Fischer - Friedman - M. - Montoya)

By slightly modifying the construction of the previous examples (except Goldstern - M. - Shelah), it can be forced, additionally, $\mathfrak{b} = \mathfrak{a}$.

The almost disjointness number

Theorem (Fischer - Friedman - M. - Montoya)

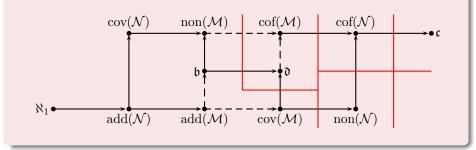
By slightly modifying the construction of the previous examples (except Goldstern - M. - Shelah), it can be forced, additionally, $\mathfrak{b} = \mathfrak{a}$.

Based in the theory of **Brendle-Fischer (2011)** to preserve mad families in matrix iterations.

Question (1)

Question

Is it consistent with ZFC that $cov(\mathcal{M}) < \mathfrak{d} < non(\mathcal{N}) < cof(\mathcal{N})$?



Question (2)

Question

Is it consistent with ZFC that $\mathfrak{b} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) < \mathfrak{c}$?

