Several values in Cichon's diagram

Diego A. Mejía
diego.mejia@shizuoka.ac.jp
Shizuoka University

RIMS Workshop
Mathematical Logic and Its Applications September 28th, 2016

Cichon's diagram

For a set X and an ideal \mathcal{I} of subsets of X, define

Cichon's diagram

For a set X and an ideal \mathcal{I} of subsets of X, define $\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union is not in \mathcal{I}.

Cichon's diagram

For a set X and an ideal \mathcal{I} of subsets of X, define
$\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union is not in \mathcal{I}.
$\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\bigcup \mathcal{F}=X$.

Cichon's diagram

For a set X and an ideal \mathcal{I} of subsets of X, define
$\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union is not in \mathcal{I}.
$\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\bigcup \mathcal{F}=X$.
$\operatorname{non}(\mathcal{I})$ The uniformity of the ideal \mathcal{I} is the least size of a subset of X that is not in \mathcal{I}.

Cichon's diagram

For a set X and an ideal \mathcal{I} of subsets of X, define
$\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union is not in \mathcal{I}.
$\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\bigcup \mathcal{F}=X$.
$\operatorname{non}(\mathcal{I})$ The uniformity of the ideal \mathcal{I} is the least size of a subset of X that is not in \mathcal{I}.
$\operatorname{cof}(\mathcal{I})$ The cofinality of the ideal \mathcal{I} is the least size of a cofinal subfamily of $\langle\mathcal{I}, \subseteq\rangle$.

Cichon's diagram

For a set X and an ideal \mathcal{I} of subsets of X, define
$\operatorname{add}(\mathcal{I})$ The additivity of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union is not in \mathcal{I}.
$\operatorname{cov}(\mathcal{I})$ The covering of the ideal \mathcal{I} is the least size of a family $\mathcal{F} \subseteq \mathcal{I}$ whose union covers X, i.e., $\cup \mathcal{F}=X$.
$\operatorname{non}(\mathcal{I})$ The uniformity of the ideal \mathcal{I} is the least size of a subset of X that is not in \mathcal{I}.
$\operatorname{cof}(\mathcal{I})$ The cofinality of the ideal \mathcal{I} is the least size of a cofinal subfamily of $\langle\mathcal{I}, \subseteq\rangle$.
We are interested in the meager ideal \mathcal{M} and the null ideal \mathcal{N} on \mathbb{R}.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq *^{*} g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq * g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.
Consider the following cardinal invariants.
(1) The (un)bounding number \mathfrak{b} is the least size of a \leq^{*}-unbounded family of ω^{ω}.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq * g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.
Consider the following cardinal invariants.
(1) The (un)bounding number \mathfrak{b} is the least size of $a \leq^{*}$-unbounded family of ω^{ω}.
(2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D\left(f \leq^{*} g\right)$.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq^{*} g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.
Consider the following cardinal invariants.
(1) The (un)bounding number \mathfrak{b} is the least size of a \leq^{*}-unbounded family of ω^{ω}.
(2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D\left(f \leq^{*} g\right)$.
(3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \not \neq^{*} y\right)$.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq * g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.
Consider the following cardinal invariants.
(1) The (un)bounding number \mathfrak{b} is the least size of $a \leq^{*}$-unbounded family of ω^{ω}.
(2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D\left(f \leq^{*} g\right)$.
(3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \not \neq^{*} y\right)$.
(4) $\operatorname{cov}(\mathcal{M})$ is the least size of an $E \subseteq \omega^{\omega}$ such that $\forall x \in \omega^{\omega} \exists y \in E\left(x \not \neq^{*} y\right)$.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq * g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.
Consider the following cardinal invariants.
(1) The (un)bounding number \mathfrak{b} is the least size of a \leq^{*}-unbounded family of ω^{ω}.
(2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D\left(f \leq^{*} g\right)$.
(3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \not \neq^{*} y\right)$.
(4) $\operatorname{cov}(\mathcal{M})$ is the least size of an $E \subseteq \omega^{\omega}$ such that
$\forall x \in \omega^{\omega} \exists y \in E(x \neq * y)$.
(5) \mathfrak{c} denotes the size of the continuum.

Cichon's diagram

For $f, g \in \omega^{\omega}$,

- f is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- f, g are eventually different, denoted by $f \not \neq * g$, iff $f(n) \neq g(n)$ for all but finitely many $n \in \omega$.
Consider the following cardinal invariants.
(1) The (un)bounding number \mathfrak{b} is the least size of $a \leq^{*}$-unbounded family of ω^{ω}.
(2) The dominating number \mathfrak{d} is the least size of a dominating family D, that is, $\forall f \in \omega^{\omega} \exists g \in D\left(f \leq^{*} g\right)$.
(3) $\operatorname{non}(\mathcal{M})$ is the least size of an $F \subseteq \omega^{\omega}$ such that $\neg \exists y \in \omega^{\omega} \forall x \in F\left(x \not \neq^{*} y\right)$.
(4) $\operatorname{cov}(\mathcal{M})$ is the least size of an $E \subseteq \omega^{\omega}$ such that
$\forall x \in \omega^{\omega} \exists y \in E\left(x \not \neq^{*} y\right)$.
(5) \mathfrak{c} denotes the size of the continuum.
(3) and (4) by Bartoszynski (1987).

Cichon's diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss. Completeness: Bartoszyński, Judah, Miller, Shelah.

Also $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}$ and $\operatorname{cof}(\mathcal{M})=\max \{\mathfrak{d}, \operatorname{non}(\mathcal{M})\}$.

Main problem

Main problem

Obtain models where many different cardinal invariants in Cichońs diagram assume pairwise different values

Main problem

Main problem

Obtain models where many different cardinal invariants in Cichońs diagram assume pairwise different values

- csi of proper forcing only allows to assign \aleph_{1} and \aleph_{2}.

Main problem

Main problem

Obtain models where many different cardinal invariants in Cichońs diagram assume pairwise different values

- csi of proper forcing only allows to assign \aleph_{1} and \aleph_{2}.
- Many models are obtained from FS (finite support) iterations of ccc posets, but such an iteration forces $\operatorname{non}(\mathcal{M}) \leq \mu \leq \operatorname{cov}(\mathcal{M})$ where μ is the cofinality of the length of the iteration (when μ has uncountable cofinality).

A non FS example

Theorem (A. Fischer, Goldstern, Kellner and Shelah)

If $\aleph_{1}<\lambda_{1}, \lambda_{2}<\lambda_{3}<\lambda_{4}$ are pairwise distinct cardinals such that $\lambda_{i}^{\aleph_{0}}=\lambda_{i}$ for $i=1,2,3,4$, then it is consistent that

Consistency examples (1)

Theorem (Brendle; Judah-Shelah's FS techniques 1990's)

If $\theta_{2} \leq \mu$ are uncountable regular cardinals and $\lambda \geq \mu$ such that $\lambda^{<\theta_{2}}=\lambda$, then it is consistent that

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})

$$
V=V_{0} \bullet----\vec{V}_{\lambda \alpha}^{0} \quad \mathbb{E} \xrightarrow[V_{\lambda \alpha+1}]{\bullet}
$$

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})
(ii) a σ-centered subposet of Hechler forcing \mathbb{D} (standard forcing that adds a dominating real) of size $<\theta_{2}$.

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})
(ii) a σ-centered subposet of Hechler forcing \mathbb{D} (standard forcing that adds a dominating real) of size $<\theta_{2}$. Concretely, of the form \mathbb{D}^{N} for some transitive model N of ZFC^{*} of size $<\theta_{2}$.

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})
(ii) a σ-centered subposet of Hechler forcing \mathbb{D} (standard forcing that adds a dominating real) of size $<\theta_{2}$. Concretely, of the form \mathbb{D}^{N} for some transitive model N of ZFC^{*} of size $<\theta_{2}$.

Counting argument: Any $Z \in V_{\lambda \alpha}$ subset of ω^{ω} of size $<\theta_{2}$ is contained in some $N_{\lambda \alpha+\varepsilon}(\varepsilon<\lambda)$.

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})
(ii) a σ-centered subposet of Hechler forcing \mathbb{D} (standard forcing that adds a dominating real) of size $<\theta_{2}$. Concretely, of the form \mathbb{D}^{N} for some transitive model N of ZFC^{*} of size $<\theta_{2}$.

Counting argument: Any $Z \in V_{\lambda \alpha}$ subset of ω^{ω} of size $<\theta_{2}$ is contained in some $N_{\lambda \alpha+\varepsilon}(\varepsilon<\lambda)$.

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})
(ii) a σ-centered subposet of Hechler forcing \mathbb{D} (standard forcing that adds a dominating real) of size $<\theta_{2}$. Concretely, of the form \mathbb{D}^{N} for some transitive model N of ZFC^{*} of size $<\theta_{2}$.

Counting argument: Any $Z \in V_{\lambda \alpha}$ subset of ω^{ω} of size $<\theta_{2}$ is contained in some $N_{\lambda \alpha+\varepsilon}(\varepsilon<\lambda)$. Thus, $V_{\lambda \mu} \models \theta_{2} \leq \mathfrak{b}$.

Sketch

Perform a FS iteration of length $\lambda \mu$ (ordinal product) using
(i) \mathbb{E} (standard ccc poset that adds and eventually diferent real in ω^{ω})
(ii) a σ-centered subposet of Hechler forcing \mathbb{D} (standard forcing that adds a dominating real) of size $<\theta_{2}$. Concretely, of the form \mathbb{D}^{N} for some transitive model N of ZFC^{*} of size $<\theta_{2}$.

Counting argument: Any $Z \in V_{\lambda \alpha}$ subset of ω^{ω} of size $<\theta_{2}$ is contained in some $N_{\lambda \alpha+\varepsilon}(\varepsilon<\lambda)$. Thus, $V_{\lambda \mu} \models \theta_{2} \leq \mathfrak{b}$.

How to obtain $\mathfrak{b} \leq \theta_{2}, \operatorname{cov}(\mathcal{N})=\aleph_{1}$, and the other equalities in $V_{\lambda \mu}$?

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\lambda \leq \mathfrak{d}$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu} \equiv \lambda \leq \mathfrak{d}$. In V_{λ}, the λ-many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda \mu}$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu} \models \mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\lambda \leq \mathfrak{d}$. In V_{λ}, the λ-many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\operatorname{cov}(\mathcal{N})=\aleph_{1}$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu} \equiv \lambda \leq \mathfrak{d}$. In V_{λ}, the λ-many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\operatorname{cov}(\mathcal{N})=\aleph_{1}$. In $V_{\omega_{1}}$ it is added a family of null sets of size \aleph_{1} that covers the reals, and this family still covers in $V_{\lambda \mu}$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu} \equiv \lambda \leq \mathfrak{d}$. In V_{λ}, the λ-many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\operatorname{cov}(\mathcal{N})=\aleph_{1}$. In $V_{\omega_{1}}$ it is added a family of null sets of size \aleph_{1} that covers the reals, and this family still covers in $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\lambda \leq \operatorname{non}(\mathcal{N})$.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu} \equiv \lambda \leq \mathfrak{d}$. In V_{λ}, the λ-many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\operatorname{cov}(\mathcal{N})=\aleph_{1}$. In $V_{\omega_{1}}$ it is added a family of null sets of size \aleph_{1} that covers the reals, and this family still covers in $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\lambda \leq \operatorname{non}(\mathcal{N})$.
- $V_{\lambda \mu} \models \operatorname{cov}(\mathcal{M}) \leq \mu \leq \operatorname{non}(\mathcal{M})$ because of the eventually different reals added by \mathbb{E}.

Sketch

Key point: Preservation theory of Judah-Shelah (1990) and Brendle (1991).

- $V_{\lambda \mu}=\mathfrak{b} \leq \theta_{2}$. In $V_{\theta_{2}}$ it is added an unbounded family of size θ_{2} that is preserved unbounded up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\lambda \leq \mathfrak{d}$. In V_{λ}, the λ-many Cohen reals added satisfy that, for any $Z \subseteq \omega^{\omega}$ of size $<\lambda$, there is such a Cohen real that is not dominated by any member of Z. This property is preserved up to $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\operatorname{cov}(\mathcal{N})=\aleph_{1}$. In $V_{\omega_{1}}$ it is added a family of null sets of size \aleph_{1} that covers the reals, and this family still covers in $V_{\lambda \mu}$.
- $V_{\lambda \mu}=\lambda \leq \operatorname{non}(\mathcal{N})$.
- $V_{\lambda \mu} \models \operatorname{cov}(\mathcal{M}) \leq \mu \leq \operatorname{non}(\mathcal{M})$ because of the eventually different reals added by \mathbb{E}.
- $V_{\lambda \mu} \models \operatorname{non}(\mathcal{M}) \leq \mu \leq \operatorname{cov}(\mathcal{M})$ because of the Cohen reals added at limit stages.

Consistency examples (2)

Theorem (From Brendle; Judah-Shelah's FS techniques 1990's)

If $\theta_{0} \leq \theta_{1} \leq \theta_{2}$ are uncountable regular cardinals and $\lambda^{<\theta_{2}}=\lambda$, then it is consistent that

Consistency examples (3)

Theorem (From Brendle, Judah-Shelah's FS techniques 1990's)

If $\theta_{0} \leq \theta_{1} \leq \theta_{2}$ are uncountable regular cardinals and $\lambda^{<\theta_{2}}=\lambda$, then it is consistent that

Consistency examples (4)

Theorem (Goldstern - M. - Shelah 2016)

Let $\theta_{0} \leq \theta_{1} \leq \kappa=\kappa^{\aleph_{0}} \leq \mu=\mu^{\aleph_{0}}$ be uncountable regular cardinals, $\mu<\lambda=\lambda^{<\mu} \leq 2^{\kappa}$. Then, there is a ccc poset forcing

Consistency examples (5)

Theorem (M. 2013)

Let $\quad \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_{0}}=\lambda$. Then, there is a ccc poset forcing

Consistency examples (6)

Theorem (Fischer - Friedman - M. - Montoya)

Let $\kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_{0}}=\lambda$. Then, there is a ccc poset forcing

Coherent FS iterations

Definition

Let M be a transitive model of $\mathrm{ZFC}^{*} . \mathbb{P} \in M$ and \mathbb{Q} posets. We say that \mathbb{P} is a complete suborder of \mathbb{Q} with respect to M, denoted by $\mathbb{P} \lessdot M \mathbb{Q}$, if $\mathbb{P} \subseteq \mathbb{Q}$ and any maximal antichain of \mathbb{P} in M is also a maximal antichain of \mathbb{Q}.

Coherent FS iterations

Definition

Let M be a transitive model of $Z F C^{*} . \mathbb{P} \in M$ and \mathbb{Q} posets. We say that \mathbb{P} is a complete suborder of \mathbb{Q} with respect to M, denoted by $\mathbb{P} \lessdot M \mathbb{Q}$, if $\mathbb{P} \subseteq \mathbb{Q}$ and any maximal antichain of \mathbb{P} in M is also a maximal antichain of \mathbb{Q}.

If $N \supseteq M$ is a transitive model of $Z F C^{*}$ and $\mathbb{Q} \in N, \mathbb{P} \lessdot M \mathbb{Q}$ implies that, if G is \mathbb{Q}-generic over N then $G \cap \mathbb{P}$ is \mathbb{P}-generic over M and $M[G \cap \mathbb{P}] \subseteq N[G]$.

Coherent FS iterations

Lemma

In the context of the previous definition, assume that $\dot{\mathbb{P}}^{\prime} \in M$ is a \mathbb{P}-name and $\dot{\mathbb{Q}}^{\prime} \in N$ is a \mathbb{Q}-name, both of posets. If $\mathbb{P} \lessdot M \mathbb{Q}$ and \mathbb{Q} forces (over N) that $\dot{\mathbb{P}}^{\prime} \lessdot M_{\mathbb{P}^{\mathbb{P}}} \dot{\mathbb{Q}}^{\prime}$, then $\mathbb{P} * \dot{\mathbb{P}}^{\prime} \lessdot M \mathbb{Q} * \dot{\mathbb{Q}}^{\prime}$.

Coherent FS iterations

Lemma

In the context of the previous definition, assume that $\dot{\mathbb{P}}^{\prime} \in M$ is a \mathbb{P}-name and $\dot{\mathbb{Q}}^{\prime} \in N$ is a \mathbb{Q}-name, both of posets. If $\mathbb{P} \lessdot M \mathbb{Q}$ and \mathbb{Q} forces (over N) that $\dot{\mathbb{P}}^{\prime} \lessdot_{M^{\mathbb{P}}} \dot{\mathbb{Q}}^{\prime}$, then $\mathbb{P} * \dot{\mathbb{P}}^{\prime} \lessdot \varlimsup_{M} \mathbb{Q} * \dot{\mathbb{Q}}^{\prime}$.

Lemma (Brendle-Fischer 2011)

Let $\mathbb{P}_{\delta}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{P}}_{\alpha}^{\prime}: \alpha<\delta\right\rangle$ and $\mathbb{Q}_{\delta}=\left\langle\mathbb{Q}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}^{\prime}: \alpha<\delta\right\rangle$ be FS iterations in M and N, respectively. If $\mathbb{P}_{\alpha} \lessdot M \mathbb{Q}_{\alpha}$ and $\Vdash_{\mathbb{Q}_{\alpha}, N} \dot{\mathbb{P}}_{\alpha}^{\prime} \lessdot_{M^{\mathbb{P}} \alpha} \dot{\mathbb{Q}}_{\alpha}^{\prime}$ for all $\alpha<\delta$, then $\mathbb{P}_{\delta} \lessdot{ }_{M} \mathbb{Q}_{\delta}$

Preservation of unbounded reals

Let $M \subseteq N$ be transitive models of $\mathrm{ZFC}^{*}, c \in \omega^{\omega} \cap N$ unbounded over M (that is, no member of $\omega^{\omega} \cap M$ dominates c) and a coherent pair of FS iterations as below.

Preservation of unbounded reals

Let $M \subseteq N$ be transitive models of $\mathrm{ZFC}^{*}, c \in \omega^{\omega} \cap N$ unbounded over M (that is, no member of $\omega^{\omega} \cap M$ dominates c) and a coherent pair of FS iterations as below.

We are interested in preserving c unbounded, i.e., to obtain c unbounded over $M^{\mathbb{P}_{\delta}}$. The relevant theory is known from Blass-Shelah 1984; Brendle-Fischer 2011; M. 2013.

Consistency examples (6)

Theorem (Fischer - Friedman - M. - Montoya)

Let $\kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_{0}}=\lambda$. Then, there is a ccc poset forcing

Consistency examples (7)

Theorem (Fischer - Friedman - M. - Montoya)

Let $\theta_{0} \leq \theta_{1} \leq \kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{<\theta_{1}}=\lambda$. Then, there is a ccc poset forcing

Consistency examples (8)

Theorem (Fischer - Friedman - M. - Montoya)

Let $\theta_{0} \leq \kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{<\theta_{0}}=\lambda$. Then, there is a ccc poset forcing

The almost disjointness number

Theorem (Fischer - Friedman - M. - Montoya)

By slightly modifying the construction of the previous examples (except Goldstern - M. - Shelah), it can be forced, additionally, $\mathfrak{b}=\mathfrak{a}$.

The almost disjointness number

Theorem (Fischer - Friedman - M. - Montoya)

By slightly modifying the construction of the previous examples (except Goldstern - M. - Shelah), it can be forced, additionally, $\mathfrak{b}=\mathfrak{a}$.

Based in the theory of Brendle-Fischer (2011) to preserve mad families in matrix iterations.

Question (1)

Question

Is it consistent with ZFC that $\operatorname{cov}(\mathcal{M})<\mathfrak{d}<\operatorname{non}(\mathcal{N})<\operatorname{cof}(\mathcal{N})$?

Question (2)

Question

Is it consistent with ZFC that $\mathfrak{b}<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})<\mathfrak{c}$?

