Dynamics of Duality: How Duality Emerges, Changes, and Breaks

Yoshihiro Maruyama

Hakubi, School of Humanities, Kyoto University

27 Sep 2016

Outline

- Introduction
 - Wittgenstein's conception of space
 - Hilbert's programme via duality
 - A bird's-eye view of logical dualities
- Duality in Logic and Algebraic Geometry
 - Completeness as duality
 - Nullstellensatz as duality
- Answering the Three Questions
 - Duality theories via CT and UA
 - Chu duality theory
 - When duality breaks

Outline

- Introduction
 - Wittgenstein's conception of space
 - Hilbert's programme via duality
 - A bird's-eye view of logical dualities
- Duality in Logic and Algebraic Geometry
 - Completeness as duality
 - Nullstellensatz as duality
 - ullet Completeness \simeq Nullstellensatz
- Answering the Three Questions
 - Duality theories via CT and UA
 - Chu duality theory
 - When duality breaks

4/24

Wittgenstein's Conception of Space

Wittgenstein gives a fresh look at the issue of the relationships between space and points:

What makes it apparent that space is not a collection of points, but the realization of a law? (Philosophical Remarks, p.216)

Wittgenstein's intensional view on space is a compelling consequence of his persistent disagreement with the set-theoretical extensional view of mathematics:

Mathematics is ridden through and through with the pernicious idioms of set theory. One example of this is the way people speak of a line as composed of points. A line is a law and isn't composed of anything at all. (Philosophical Grammar, p.211)

Duality exists b/w point-set and point-free spaces (cf. Newton vs. Leibniz).

5 / 24

Hilbert's Programme

Coquand et al. assert:

A partial realisation of Hilbert's programme has recently proved successful in commutative algebra [..] One of the key tools is Joyal's point-free version of the Zariski spectrum as a distributive lattice [..] (Spectral schemes as ringed lattices, 2009)

In this paper they contrive a constructive version of Gro.'s schemes.

 In my view, Spec : Alg → Sp is the introduction of ideal elements in Hilbert's sense; its adjoint functor is their elimination.

Duality has contributed to Hilbert's programme and constructivism. The point-free Tychonoff theorem is AC-free; this is classic. Yet the state-of-the-art goes far beyond it. Not just general topology.

The Duality Picture, Mathematically

The duality picture:

	Ontic	Epistemic	
Complex Geometry	Complex Surface	Function Field	Riemann
Algebraic Geometry	Variety/Scheme	k-Algebra/Ring	Hilbert-Grothendieck
Representation Th.	Group	Representations	Pontryagin-Tannaka
Topology	Topological Space	Algebra of Opens	Isbell-Papert
Convex Geometry	Convex Space	Semantic Domain	M. (2011; 2013)
Logic	Space of Models	Algebra of Theories	Stone
Computer Science	System	Observable Properties	Abramsky-Smyth
System Scicence	Controllability	Observability	Kalman
Quantum Physics	State Space	Alg. of Observables	von Neumann

There are a variety of duality theories available to unite them. Conceptually, they are all *ontic-epistemic* dualities.

Lawvere on Categories and Philosophy

In Lawvere's terms, duality arises between the formal and the conceptual, which, he believed, is relevant to Hegelian dialectics.

[A]dvances forged by category theorists will be of value to dialectical philosophy, lending precise form [..] to ancient philosophical distinctions such as [..] objective vs. subjective, being vs. becoming, space vs. quantity [..] (Lawvere 1992)

Categorical philosophy, if not dialectics, is gradually growing in both continental and analytic traditions (e.g., A. Rodin and J. Ladyman).

• I argued for "categorical logical positivism" and "pluralistic unified science" as its goal in my recent *Synthese* paper.

The Duality Picture, Philosophically

A philosophical perspective on the ontic-epistemic duality, or put another way, the realism-antirealism duality (cf. Dummett):

	Ontic	Epistemic	
Descartes	Matter	Mind	Cartesian Dualism
Kant	Thing-in-itself	Appearance	Idealism
Cassirer	Substance	Function	Logical Idealism
Heidegger	Essence	Existence	Analysis of Dasein
Whitehead	Reality	Process	Holism/Organicism
Wittgenstein	World	Language	Logical Philosophy
Searle	Intentionality	Simulatability	Philosophy of Mind
Dummett	Truth	Verification	Theory of Meaning

The ontic and the epistemic could be united, at least in the case of Dummett's dualism b/w truth and verification conditional semantics.

9/24

Stone-type Dualities

The algebra of propositions is dual to the space of models:

- Classical logic: 0-dim. compact T₂ spaces.
 - Props. are closed opens, for which LEM holds.
- Intuitionistic logic: non-T₂ sp. Compact sober sp. such that its compact opens form a basis, and the interiors of their boolean combinations are compact (M.-Sato; cf. Lurie's HTT).
 - Props. are compact opens. The topo. meaning of LEM is 0-dim.
- Modal logic: Vietoris coalgebra over space.
 - Modal operators amount to Vietoris hyperspaces.
 - Abramsky-Kupke-Kurz-Venema duality; see my JPAA paper.

The existence of unit ensures duals spaces are compact; otherwise they are locally compact. The same holds for Gelfand duality as well.

Stone-type Dualities (cont'd)

- First-order logic. Two approaches: topological groupoids (spaces of models with automorphisms) and indexed/fibrational Stone spaces (duals of Lawvere hyperdoctrines).
 - Higher-order logic. Indexed Stone sp. still work (duals of triposes).
- Infinitary logic. Not even locally compact spaces. Adjunctions.
 - May not be enough models/points to separate non-equiv. props.
 - No need for AC due to infinitary operations, i.e., no need to reduce infinitaries on the topological side into finitaries on the algebraic.
- Many-valued logics. It depends. Rational polyhedra for Ł. Mostly subsumed under the framework of dualities induced by Ω (or Chu sp.), which may be multiple truth values (we shall get back to this).

Outline

- Introduction
 - Wittgenstein's conception of space
 - Hilbert's programme via duality
 - A bird's-eye view of logical dualities
- Duality in Logic and Algebraic Geometry
 - Completeness as duality
 - Nullstellensatz as duality
- Answering the Three Questions
 - Duality theories via CT and UA
 - Chu duality theory
 - When duality breaks

Completeness as Duality

Logical Completeness:

- $Form \circ Mod(T) = T$.
 - $Form(\mathcal{M}) :=$ the formulae valid in any $M \in \mathcal{M}$.
 - $Form \circ Mod(T)$ = the formulae valid in any model of T.
- Nullstellensatz: $I \circ V(J) = \sqrt{J}$.
 - *V* gives zeros; *I* gives polynomials vanishing on varieties.
 - No $\sqrt{}$ in logic? If $\varphi \wedge \varphi$ is refutable, so is φ (contraction).
- It tells us order-theoretic duality b/w theories and models.
 - $T \subset T'$ iff $Mod(T) \supset Mod(T')$. The same holds for *Form*.
 - Form and Mod give a pair of (dually) adjoint functors.
- Adding non-incl. arrows and equipping Mod(T) with a topology, it becomes Stone duality.

Nullstellensatz as Duality

Hilbert Nullstellensatz:

- $I \circ V(J) = \sqrt{J}$ for an ideal $J \subset k[x_1, ..., x_n]$ with k an ACF.
 - $\sqrt{J} := \{p \mid \exists n \in \mathbb{N} \ p^n \in J\}$. J is a radical ideal iff $\sqrt{J} = J$.
- It tells us order-theoretic duality b/w the radical ideals of $k[x_1, ..., x_n]$ and the affine varieties over k.
 - By adding more arrows, it becomes cat. equiv. b/w finitely generated reduced k-algebras and affine varieties over k.
- This extends to the scheme-theoretical duality.

Theories = Ideals. Models = Zeros. This is known since Joyal.

• My claim: Completeness = Nullstellensatz; Stone duality = Hilbert duality, both up to $\mathbb{GF}(p^n)$.

Dualities in Logic and Algebraic Geometry

Completeness: T = the formulas valid on Mod(T). Nullstellensatz: J = the polynomials vanishing on V(J) where J is a radical ideal (this always holds in a Bool. ring).

- The correspondence looks clear, and yet there are some complications involved.
- Models are in Ω^{κ} and varieties are in k^n .
- \mathbb{F}_2 in logic and $\bar{\mathbb{F}}_2$ in the corresponding geometry.

Completeness from Nullstellensatz

Assume $v(\varphi(x_1,...,x_n)) = 0$ for any $\{0,1\}$ -valuation v.

• We can naturally consider $\varphi \in \mathbb{F}_2[x_1,...,x_n]$ by rewriting φ using 0,1, XOR (addition) and AND (multiplication) only.

Then,
$$\varphi \in I(\mathbb{F}_2^n) = I \circ V(J)$$
 where $J := \langle x_1^2 - x_1, ..., x_n^2 - x_n \rangle$.

• Nullstellensatz over $\bar{\mathbb{F}}_2$ tells us: $I \circ V(J) = \sqrt{J}$.

Hence, $\varphi = 0$ in $\mathbb{F}_2[x_1, ..., x_n]/\sqrt{J}$. This implies:

- $\neg \varphi$ is provable in any standard calculus for CL.
 - $\mathbb{F}_2[x_1,...,x_n]/\sqrt{J}$ can be seen as a calculus and be shown to be equivalent w.r.t. provability to LK, NK, etc.

Completeness thus follows from Nullstellensatz over $\bar{\mathbb{F}}_2$.

Yoshihiro Maruyama Dynamics of Duality 27 Sep 2016 15 / 24

Nullstellensatz from Completeness

Conversely, Nullstellensatz follows from Completeness.

- For example, consider two infinitary geometries over \mathbb{F}_2 .
 - One is induced by infinite coordinates $(x_1, x_2, ..., x_n, ...)$.
 - The other is induced by infinitary multiplication.
- A Nullstellensatz-type thm. in the former follows from the (strong) completeness of classical propositional logic.
- A Nullstellensatz-type thm. in the latter follows from the completeness of infinitary logic (w.r.t. infinitary calculus).
 - We assume J in each Nullstellensatz contains $x_i^2 x_i$.
 - Nullstellensatz can fail in some ∞ -dim. geometries.

The link b/w completeness and Nullstellensatz extends to $\mathbb{GF}(p^n)$.

Further Interactions b/w Logic and Alg. Geom.

This allows us to go back and fourth b/w Logic and Alg. Geom. E.g.,

- A variety is irreducible iff its coord. ring is an integral dom.
 For a theory T, Mod(T) is irreducible iff T is complete.
- A variety has a unique, minimal, irreducible decomposition.
 If T contains finitely many atomic propositions, Mod(T) has a unique, minimal, irreducible decomposition.
- $X \subset Fml$ is satisfiable iff so is any finite subset of it.
 - $X \subset \mathbb{F}_2[x_1,...,x_n,...]$ has a common zero iff so is any finite subset.
 - This is not trivial, since the ring is not Noetherian. Logic would contribute to ∞-dimensional alg. geometry.

Stone duality for $\mathbb{GF}(p^n)$ -val. logic is Hilbert duality for geometry over $\mathbb{GF}(p^n)$.

Outline

- Introduction
 - Wittgenstein's conception of space
 - Hilbert's programme via duality
 - A bird's-eye view of logical dualities
- Duality in Logic and Algebraic Geometry
 - Completeness as duality
 - Nullstellensatz as duality
- Answering the Three Questions
 - Duality theories via CT and UA
 - Chu duality theory
 - When duality breaks

Duality Induced by Janusian Objects

Lawvere says:

A potential duality arises when a single object lives in two different categories.

Let Ω be in **Alg** and **Sp**, general categories of algebras and of spaces.

- If the harmony condition holds (in my formulation), there is a dual adjunction b/w **Alg** and **Sp**, given by $\operatorname{Hom}_{\mathbf{C}}(\cdot,\Omega)$ and $\operatorname{Hom}_{\mathbf{D}}(\cdot,\Omega)$.
 - Harmony basically means algebraic operations are continuous.
- This includes Gelfand duality ($\Omega = \mathbb{C}$) and Pontryagin duality ($\Omega = \{z \in \mathbb{C} : |z| = 1$) as well. Ω may be multiple truth values.

This allowed me to solve an open problem by B. Jacobs on duality for algebras of the distribution monad (*Categorical Duality Theory*, 2013).

Natural Duality Theory

Term functions mean functions definable by given basic operations.

- In classical logic, $Term(\mathbf{2}^n, \mathbf{2}) = Func(\mathbf{2}^n, \mathbf{2})$, i.e., all functions are definable by the Boolean operations.
 - This is exactly the functional completeness of classical logic.
- Primal duality thm: if all functions are term functions of L, the cat. of L-algebras is dually equivalent to the cat. of Stone spaces.
 - $\mathbb{GF}(p^n)$ is primal, and $\mathbb{GF}(p^n)$ -algebras are dual to Stone spaces. This is Hilbert duality for geometry over Galois fields.
- In intuitionistic logic, $Term(\mathbf{2}^n, \mathbf{2}) = Cont(\mathbf{2}^n, \mathbf{2})$ where $\mathbf{2}$ is the Sierpinski sp. I have shown if all continuous functions are term functions of L, L-algebras are dually equivalent to Heyting spaces.
 - I have also shown the modal or coalg. version of primal duality.

Lambek reduced Gelfand duality to an infinitary primal duality theorem.

Chu Space Theory

A Chu space (over **Set** or SMCC) is a triple $(X, Y, e : X \times Y \rightarrow \Omega)$.

- Logic: (Mod, Fml, e). $e(M, \varphi) = 1$ iff $M \models \varphi$. May be multi-val'd.
 - Induces Stone-type dualities via $Hom(-, \Omega)$.
- Can do the same with algebras and their prime/maximal *Spec*.
- Physics: (*State*, *Proj*, *e*). $e(\varphi, P) = \langle \varphi | P | \varphi \rangle$ for normalised φ .
 - Allows to characterise symmetries (cf. Wigner thm).
 - Induces an operationalist form of state-observable duality.
- Chu duality theory allows us to unify logical and physical dualities.

Ref: M., From Operational Chu Duality to Coalgebraic Quantum Symmetry (2013), which builds upon Abramsky's "Big Toy Models" and Pratt's "Stone Gamut".

Chu Duality Theory

- There are a broad class of T₁-type dualities, a general theory of which is given in my Chu duality paper above.
 - Varieties over an ACF are not sober, but T₁.
 - This motivates us to develop T₁-type dualities.
 - Maximal Spec plays a crucial rôle, and accordingly morphisms must change so as to preserve maximal filters/ideals.
- The most basic one is the duality between T₁ spaces (with cont. maps) and coatomistic frames (with maximal homomorphisms).
 - This is, to be surprise, rarely mentioned in the literature, most accounts of locale theory dealing with the sober-type duality alone.
- The duality of operational QM is of T₁-type as well.

When Duality Breaks

Duality-breaking is caused by either an excess of the ontic (space) or an excess of the epistemic (algebra).

- Non-commutative geometry concerns an excess of the epistemic.
 - There are too many algebras, compared to topo. spaces, which are all commutative, and cannot capture the non-commutative realm.
 - There is an impossibility thm. by Heunen and von den Berg.

My remedy: given a non-commutative alg. or substructural logic (FL), take its commutative/structural part ($FL_{ewc} = IL$), dualise it as a space, and equip it with a structure sheaf. Scheme-theoretical duality theory.

Concluding Remarks

How does duality emerge, change, and break after all?

- Emergence: when one object lives in two cats., harmoniously.
 - In my dual adjunctions b/w algebras and spaces, the harmony condition basically means the algebraic operations are continuous.
- Mutation: the more operations, the less structures on duals.
 - If you have all (resp. cont.) functions as your term operations, duals are the simplest (resp. Heyting). Functional completeness.
 - I also explained what we have to change in order to adapt the base Stone duality to an extended situation (intuitionistic, modal, etc.).
- Breaking: caused by either an excess of the epistemic or an excess of the ontic (e.g., non-commutativity).

This ends my talk. Thank you for your patience.