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Motivation:

Quotient sets appear all over mathematics. Here is an example:

Theorem (Homomorphism Theorem):
For any countable algebra A there exists an onto
homomorphism from the term algebra F onto A
h : F2A.
Hence, the algebra A is isomorphic to F/E, where

E={(xy) | h(x)=h(y);.

So, by the last part:

1. Elements of A are E-equivalence classes.
2. Operations of A are induced by operations of F.



How do we view the algebra A?
View F as a computable algebra

F=(w; fy, Ty, ..., ).

Representation Theorem:
For every countable algebra A there is an equivalence relation E
on w such that A is isomorphic to the quotient algebra

F/E= (W/E; f, f,, ..., F).

So, the domain of A is w/E, and the operations of A are induced
by computable operations respecting E.

Hence, computability-theoretic complexity of A hides not in its
Atomic diagram but rather in E (the equality relation).



E-structures

Our interest is in structures with domain w/E.

Definition 1: An E-structure is of the form
(WE;f,..... 1, P,,.....P_), where

» Each f; is induced by a computable map respecting E.
» Each P; is induced by a c.e. predicate respecting E.

A structure is c.e. if it is an E-structure for some c.e. E.
An E-structure is an E-algebra if it has no predicates.

We often assume that E is a c.e. equivalence relation.



Examples

Example 1.
Every countable algebra is an E-algebra for some E.

Example 2 (Makanin).
Let S be the semi-group generated by a, b, ¢ such that

ccbb = bbcc, beccecbb = cbbbcec, accbb = bba,
abcccbb = cbba, bbccbbbbcc = bbccbbbbcca

Let E be the word problem on S; E is a c.e. relation.
View {a, b, ¢}* as w. So, the domain of S is w/E; the
concatenation respects E, and E is undecidable.



The classes K(C)

Definition 2:
Given an equivalence relation E and a class C of

structures, set
K:(C)

be the class of all E-structures (isomorphic to a
structure) from C.

Definition 3:
If a structure A belongs to K-(C) then E realises A.
Otherwise, we say that E omits A.



What do these definitions tell us?

1. Let us fix E. The set
Ke(C) ={A | Ais in C and isomorphic to an E-structure}

represents the algebraic content of E.

2. Let us fix a class C. The set

Kc = {E | E realises all structures from C}

represent computability-theoretic content of C.



The class K¢(C)

Let C be the class of all structures. Consider:

Ke(C) ={A | Aisin C and is isomorphic to an E structurej}.

Here are types of questions one might ask:

1. Does K¢(C) contain a linear order?
2. Does K¢ (C) contain a finitely generated algebra?
3. Are there groups, rings or Boolean algebras in K;(C)?

4. Can we say anything reasonable about structures in
the class K¢(C) ? Can we describe them?
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Example 1: Implications of non-computability

Let E be non computable equivalence relation. Then
the class K (C) excludes the following structures:

» Finitely generated structures whose all nontrivial
quotients are finite (Malcev).

» All structures with finitely many congruencies only,
such as fields (Ershov).

» Noetherian rings (Bour).

» Finitely presented and residually finite algebras
(Malcev, McKenzie).

» Complete infinite graph (Khoussainov, Stephan).



Example 2: Implications of an algebraic
assumption

Assumption: The class K;(C) possesses an algebra
A whose all nontrivial quotients are finite. Then:

» Either E is computable or tr (E) is hyperimmune.
» If E is not computable then
(1) every E-algebra is locally finite.
(2) every E-algebra is residually finite.
(3) the language of the algebra A must
contain a function symbol of airty > 1.



Example 3: Varia

f E is pre-complete then E realises no
Inear order.

f E realises a finitely branching directed
tree, then each equivalence class is
computable.

. If any two distinct E-equivalence class are
not recursively separable and E realises a
linear order L, then L must be dense.
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Reducibility =

Definition 4: Let C be a class of structures.
Let E, and E, be c.e. equivalence relations.

Say that E, is C-reducible to E,, written E, <. E,, if all
structures in C realised by E, are also realised by E.,.

Say that E, and E, have the same C-degree,
written E, =c E,, if E; S;E, and E, s, E,.

The reduciblility =, induces the partial order on the set
of all C-degrees.
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Case Study 1: Linear orders

Let X be a co-infinte c.e. subset of w. Consider
E(X)={(n,k) | n=k or both n, k are in X}.

Theorem 1:
 E(X) realises a linear order L with X representing a
isolated point of L iff X is recursive.

 E(X) realises a linear order with X being an end
point iff X is semirecursive (also C. Jockusch).

» E(X) realises a linear order iff X is one-one reducible
to the join of two c.e. semirecursive sets.



Case Study 1: Linear Orders

Corollary: If X is maximal, -maximal, creative or simple
but not hyper-simple then E(X) realises no linear order.

Assume X is simple.

Theorem 2:

» If X is not 1-to-1 redicible to a join of two semirecursive
sets then E(X) realises no linear order.

» If X is semirecursive then E(X) realises the following
linear orders: n+w, w*+n, w+71+w™.

» If X is 1-to-1 reducible to a join of two semirecrsive sets
then E(X) realises w+1+w™ only.



Beyond E(X)

Theorem 3:

For every n>0 theer exists a c.e. equivalence relation E
that realises exactly n linearly ordered sets.

Corollary:

There exists a c.e. equivalence relation such that the

only linear order realised by E is the order of rational
numbers.



Case Study 2: Class Alg of algebras

Definition 5:
An algebra A is trivial if each operation of A is either
a constant function or a projection.

We have the order <, , among equivalence relations.

Theorem 4:

1. The order =,,, has a minimal element E. Moreover,
E can be made computably enumerable.

2. The order =,, has w many maximal elements.



Case Study 3: Isle graphs

Definition 6:

An isle is a countable graph that has infinitely many
isolated points. If an isle has finitely many edges only
then we call the isle finitary.

So, we can consider the partial order <.

Theorem 5:
The partial order <., has the least element. Any c.e.

equivalence relation with cohesive transversal
represents the minimal element.



Case Study 3: Isle graphs

Recall that E, < E, if there exists a computable
function f such that for all n,m we have

(n,m)is in E, if and only if (f(n), f(m)) is in E, .

Theorem 6:

If E, < E, then then E, <, E,. Hence, the partial
order <., has the largest element.
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Atoms for partial order <=,

Theorem 7:
The partial order <, possesses a unique atom.

The proof uses the notion of e-state borrowed from the
construction of maximal sets.



Case Study 4: Partition graphs

Definition 7:

A graph G = (V, Edge) is a partition graph if there is
a partition A,, A, . . . Of V such that {x,y} € Edge iff
no k exists for whichx,y € A,.

We call A,, A, . . . the anti-clique components of the
graph. There are two trivial partition graphs:

* The complete graph.
* The graph whose all vertices are isolated.



Case Study 4: Partition graphs

Denote the class of partition graphs by Part .
So, we have the partial order <_ ;.

Theorem 8:
The equivalence relation id , is the largest element of

the partial order <p_,;.

Theorem 9:
The pre-complete equivalence relation is the least

element in the partial order <p_,;.



Finitary partition graphs

Definition 8:
A partition graph is finitary if it possesses finitely
many anti-clique components only.

Let G be a finitary partition graph. The isomorphism
type of G is determined by:

1. The number of its infinite anti-clugie components.

2. The number of its finite anti-cligue components
and their cardinalites.



Finitary partition graphs

Let F be the set of all E equivalence relations that realise
finiatary partition graphs.

Definition 9:

An equivalence relation E has type (n, m) if n and m
are the largest integers such thatforall1 <i<n, j<m,
E realises finitary partition graphs with /i infinite
components and j finite components.

Theorem 10:
For each n and m there exists an E of type (n, m).



Full description of F

Theorem 11:
The partial order F is isomorphic to the two-dimensional
grid-order

({(n,m) | n,m are in w} U {w}; <),

where < is the component-wise order on the set of pairs.
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Open Problem(s)
Select your favorite class C of structures (e.g. n-ary
trees, planar graphs, groups, rings, semigroups,
lattices, Boolean algebras).
» Study C-reducibility for these classes.

» Study degrees of E that realise all structures from C.

» Let E be an equivalence relations. Describe
structures from class C that are realised by E.

BIEARDERT



