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千里の道も一歩から 
 



Motivation: 
Quotient sets appear all over mathematics.  Here is an example: 
 
Theorem (Homomorphism Theorem): 
For any countable algebra A there exists an onto 
homomorphism from the term algebra F onto A   

h : FàA.  
Hence, the algebra A is isomorphic to F/E, where 
 

     E = { (x,y) | h(x) = h(y)}. 
 
So, by the last part: 
 

1.  Elements of A are E-equivalence classes. 
2.  Operations of A are induced by operations of F. 



How do we view the algebra A? 
View F as  a computable algebra  
 

                                F=(ω; f0, f1, …, fk). 
 
Representation Theorem: 
For every countable algebra A there is an equivalence relation E  
on ω such that A is isomorphic to the quotient algebra 
 
                              F/E= (ω/E; f0, f1, …, fk). 
 
So, the domain of A is ω/E, and the operations of A are induced 
by computable operations respecting E. 
 
Hence, computability-theoretic complexity of A hides not in its 
Atomic diagram but rather in E (the equality relation). 



E-structures 

Our interest is in structures with domain ω/E.  
 

Definition 1:  An E-structure is of the form  
(ω/E; f1,…., fk, P1,….,Pm), where 

 

Ø Each fi is induced by a computable map respecting E. 
Ø Each Pj is induced by a c.e. predicate respecting E. 
 

A structure is c.e. if it is an E-structure for some c.e. E.  
An E-structure is an E-algebra if it has no predicates. 
 

We often assume that E is a c.e. equivalence relation. 
 



Examples 
Example 1.  
Every countable algebra is an E-algebra for some E. 
 

Example 2 (Makanin).  
Let S be the semi-group generated by a, b, c such that 
 

ccbb = bbcc, bcccbb = cbbbcc, accbb = bba, 
abcccbb = cbba, bbccbbbbcc = bbccbbbbcca 
 

Let E be the word problem on S; E is a c.e. relation. 
View {a, b, c}* as ω. So, the domain of S is ω/E; the 
concatenation  respects E, and E is undecidable. 
 
 
 



The classes KE(C) 
Definition 2: 
Given an equivalence relation E and a class C of 
structures, set 

KE(C) 
 

be the class of all E-structures (isomorphic to a 
structure) from C. 
 
Definition 3: 
If a structure A belongs to KE(C)  then E realises A. 
Otherwise, we say that E omits A. 



What do these definitions tell us? 

1. Let us fix E. The set 
 

KE(C) = {A | A is in C and isomorphic to an E-structure} 
 
represents the algebraic content of E.  
 
2. Let us fix a class C. The set 

 

KC = {E | E realises all structures from C} 
 

represent computability-theoretic content of C. 
 

  



The class KE(C) 
Let C be the class of all structures. Consider: 
 

KE(C) = {A | A is in C and is isomorphic to an E structure}. 
 

Here are types of questions one might ask: 
 

1.  Does KE(C) contain a linear order? 

2.   Does KE(C)  contain a finitely generated algebra? 

3.  Are there groups, rings or Boolean algebras in KE(C)? 

4.  Can we say anything reasonable about structures in 
the class KE(C) ? Can we describe them? 

 
花より団子 



Let E be non computable equivalence relation. Then 
the class KE(C) excludes the following structures: 
 
Ø Finitely generated structures whose all nontrivial 

quotients are finite (Malcev). 
Ø All structures with finitely many congruencies only, 

such as fields (Ershov). 
Ø Noetherian rings (Bour). 
Ø Finitely presented and residually finite algebras 

(Malcev, McKenzie). 
Ø Complete infinite graph (Khoussainov, Stephan). 
 

Example 1: Implications of non-computability 



Example 2: Implications of an algebraic 
assumption 

Assumption: The class KE(C) possesses an algebra 
A whose all nontrivial quotients are finite. Then: 
 
Ø   Either E is computable or tr (E) is hyperimmune. 
Ø  If E is not computable then 
         (1) every  E-algebra is locally finite. 
         (2) every  E-algebra is residually finite. 
         (3) the language of the algebra A must  
               contain a function symbol of airty > 1. 
 
 
 



1.  If E is pre-complete then E realises no 
linear order. 

2.  If E realises a finitely branching directed 
tree, then each equivalence class is 
computable. 

3.  If any two distinct E-equivalence class are 
not recursively separable and E realises a 
linear order L, then L must be dense. 

 
 

小打も積もれば大木を倒す 

Example 3: Varia 



Reducibility ≤C 
Definition 4:  Let C be a class of structures.  
Let E1 and E2 be c.e. equivalence relations.  
 
Say that E1 is C-reducible to E2, written E1 ≤C E2, if all 
structures in C realised by E1 are also realised by E2. 
 
Say that E1 and E2 have the same C-degree,  
written E1 =C E2, if E1 ≤CE2  and  E2 ≤C E1. 
 
The reducibility ≤C induces the partial order on the set 
of all C-degrees.  
 

ローマは一日にしてならず 



Case Study 1: Linear orders 
Let X  be a co-infinte c.e. subset of ω. Consider 
 

 E(X)={(n,k) | n=k or both n, k are in X}.  
 

Theorem 1: 
•  E(X) realises a linear order L with X representing a 
      isolated point of L iff X is recursive. 
 
•  E(X) realises a linear order with X being an end 

point iff X is semirecursive (also C. Jockusch). 

•  E(X) realises a linear order iff X is one-one reducible 
to the join of two c.e. semirecursive sets. 

 



Case Study 1: Linear Orders 
Corollary: If X is maximal, r-maximal, creative or simple 
but not hyper-simple then E(X) realises no linear order. 
 

Assume X is simple. 
 

Theorem 2: 
Ø If X is not 1-to-1 redicible to a join of two semirecursive 

sets then E(X) realises no linear order. 
Ø If X is semirecursive then E(X) realises the following 

linear orders: n+ω, ω*+n, ω+1+ω*. 
Ø If X is 1-to-1 reducible to a join of two semirecrsive sets 

then E(X) realises ω+1+ω* only. 



Theorem 3: 
For every n>0 theer exists a c.e. equivalence relation E  
that realises exactly n linearly ordered sets. 
 
Corollary:  
There exists a c.e. equivalence relation such that the  
only linear order realised by E is the order of rational  
numbers.  
 
 

 
見ぬが花 

Beyond E(X) 



Definition 5:  
An algebra A is trivial if each operation of A is either  
a constant function or a projection. 
 
We have the order ≤Alg among equivalence relations.  
 
Theorem 4:  
1.  The order ≤Alg has a minimal element E. Moreover, 

E can be made computably enumerable. 
2.  The order  ≤Alg  has ω many maximal elements. 

Case Study 2: Class Alg of algebras 



Case Study 3: Isle graphs 

Definition 6: 
An isle is a countable graph that has infinitely many 
isolated points. If an isle has finitely many edges only 
then we call the isle finitary.  
 
So, we can consider the partial order ≤Isle. 
 
Theorem 5:  
The partial order ≤Isle has the least element. Any c.e. 
equivalence relation with cohesive transversal 
represents the minimal element. 



Recall that E0 ≤FF E1 if there exists a computable 
function f such that for all n,m we have  

 

(n,m) is in E0  if and only if (f(n), f(m)) is in E1 . 
 

 
Theorem 6: 
If E0  ≤FF E1  then  then E0 ≤Isle E1. Hence, the partial 
order  ≤Isle   has the largest element. 
 
 

七転び八起き 

Case Study 3: Isle graphs 



Atoms for partial order  ≤Isle   

Theorem 7:  
The partial order ≤Isle possesses a unique atom. 
 
The proof uses the notion of e-state borrowed from the 
construction of maximal sets. 
	



Case Study 4: Partition graphs 
Definition 7:  
A graph  G = (V , Edge)  is a partition graph if there  is 
a partition A0, A1, . . . Of V such  that {x , y } ∈ Edge  iff 
no k exists  for which x , y ∈ Ak. 
 
We call A0, A1, . . . the anti-clique components of the 
graph. There  are two trivial partition graphs: 
•  The complete graph. 
•  The graph  whose all vertices  are isolated.  
 



Case Study 4: Partition graphs 

Denote  the class of partition graphs by Part .  
So, we have the partial order ≤Part . 
 
Theorem 8:  
The equivalence relation idω is the largest element of 
the partial order ≤Part . 
 
 
Theorem 9: 
The pre-complete equivalence relation is the least 
element in the partial order ≤Part . 
	



Definition 8:  
A partition graph  is finitary if it possesses finitely 
many anti-clique components only. 

Let G be a finitary partition graph.  The isomorphism 
type of G is determined by: 
 
1.  The number of its infinite anti-cluqie components. 
2.  The number of its finite anti-clique components 

and their cardinalites. 
 
 

Finitary partition graphs 



Finitary partition graphs 
Let F be the set of all E equivalence relations that realise 
finiatary partition graphs.  
 
Definition 9:  
An equivalence relation E has type (n, m) if n and m 
are the largest  integers such that for all 1 ≤ i < n,  j < m, 
E realises finitary partition graphs with i infinite 
components and j finite components. 
 
Theorem 10: 
For each  n and m there exists an E of type (n, m). 
	



Full description of F 

 
 
Theorem 11:  
The partial order F is isomorphic  to the two-dimensional 
grid-order 

( {(n,m) | n,m are in ω} U {ω}; ≤),  
 

where ≤ is the component-wise order on the set of pairs. 
 
 

十人十色 
	



Open Problem(s) 
Select your favorite class C of structures (e.g. n-ary 
trees, planar graphs, groups, rings, semigroups,  
lattices, Boolean algebras). 
 
Ø  Study C-reducibility for these classes. 

Ø  Study degrees of E that realise all structures from C. 

Ø  Let E be an equivalence relations. Describe 
structures from class C that are realised by E. 

酒は本心を表す 


