Computably enumerable structures: Domain dependence

By Bakh Khoussainov Computer Science Department The University of Auckland

References:

- 1. with Gavryushkin and Stephan in APAL (2014).
- 2. with Gavryushkin, Stephan, Jain in TCS (2016).
- 3. with Turetsky, Semukhin, Fokina in JSL (2016).
- 4. with Miyasnikov in Trans of the AMS (2014).

Plan:

- 1. Motivation.
- 2. Definitions and examples.
- 3. Reducibility \leq_{c} .
- 4. Case studies.

Motivation:

Quotient sets appear all over mathematics. Here is an example:

Theorem (Homomorphism Theorem):

For any countable algebra **A** there exists an onto homomorphism from the term algebra **F** onto **A** $h: \mathbf{F} \rightarrow \mathbf{A}$.

Hence, the algebra **A** is isomorphic to **F**/E, where

 $E = \{ (x,y) \mid h(x) = h(y) \}.$

So, by the last part:

- 1. Elements of **A** are E-equivalence classes.
- 2. Operations of **A** are induced by operations of **F**.

How do we view the algebra A?

View F as a computable algebra

 $F=(\omega; f_0, f_1, ..., f_k).$

Representation Theorem:

For every countable algebra **A** there is an equivalence relation *E* on ω such that **A** is isomorphic to the quotient algebra

$$F/E = (\omega/E; f_0, f_1, \dots, f_k).$$

So, the *domain* of **A** is ω/E , and the operations of **A** are induced by computable operations respecting E.

Hence, computability-theoretic complexity of **A** hides not in its Atomic diagram but rather in E (the equality relation).

E-structures

Our interest is in structures with domain ω/E .

Definition 1: An *E*-structure is of the form $(\omega/E; f_1, ..., f_k, P_1, ..., P_m)$, where

Each f_i is induced by a computable map respecting E.
Each P_j is induced by a c.e. predicate respecting E.

A structure is c.e. if it is an E-structure for some c.e. E. An E-structure is an E-algebra if it has no predicates.

We often assume that E is a c.e. equivalence relation.

Examples

Example 1.

Every countable algebra is an E-algebra for some E.

Example 2 (Makanin).

Let S be the semi-group generated by a, b, c such that

ccbb = bbcc, bcccbb = cbbbcc, accbb = bba, abcccbb = cbba, bbccbbbbcc = bbccbbbbcca

Let E be the word problem on S; E is a c.e. relation. View {**a**, **b**, **c**}* as ω . So, the domain of S is ω /E; the concatenation respects E, and E is undecidable.

The classes K_E(C)

Definition 2:

Given an equivalence relation E and a class C of structures, set

K_E(C)

be the class of all E-structures (isomorphic to a structure) from C.

Definition 3:

If a structure **A** belongs to $K_E(C)$ then E realises **A**. Otherwise, we say that E omits **A**.

What do these definitions tell us?

1. Let us fix E. The set

 $K_E(C) = \{A \mid A \text{ is in } C \text{ and isomorphic to an E-structure} \}$

represents the algebraic content of E.

2. Let us fix a class C. The set

K_C = {E | E realises all structures from C}

represent computability-theoretic content of C.

The class K_E(C)

Let C be the class of all structures. Consider:

 $K_E(C) = \{A \mid A \text{ is in } C \text{ and is isomorphic to an } E \text{ structure}\}.$

Here are types of questions one might ask:

- 1. Does $K_E(C)$ contain a linear order?
- 2. Does $K_E(C)$ contain a finitely generated algebra?
- 3. Are there groups, rings or Boolean algebras in $K_E(C)$?
- 4. Can we say anything reasonable about structures in the class $K_E(C)$? Can we describe them?

花より団子

Example 1: Implications of non-computability

Let E be non computable equivalence relation. Then the class $K_E(C)$ excludes the following structures:

- Finitely generated structures whose all nontrivial quotients are finite (Malcev).
- All structures with finitely many congruencies only, such as fields (Ershov).
- ➢ Noetherian rings (Bour).
- Finitely presented and residually finite algebras (Malcev, McKenzie).
- Complete infinite graph (Khoussainov, Stephan).

Example 2: Implications of an algebraic assumption

Assumption: The class K_E(C) possesses an algebra A whose all nontrivial quotients are finite. Then:

- > Either E is computable or tr (E) is hyperimmune.
- If E is not computable then
 - (1) every E-algebra is locally finite.
 - (2) every E-algebra is residually finite.
 - (3) the language of the algebra **A** must contain a function symbol of airty > 1.

Example 3: Varia

- 1. If E is pre-complete then E realises no linear order.
- 2. If E realises a finitely branching directed tree, then each equivalence class is computable.
- 3. If any two distinct E-equivalence class are not recursively separable and E realises a linear order L, then L must be dense.

小打も積もれば大木を倒す

Reducibility ≤_c

Definition 4: Let C be a class of structures. Let E_1 and E_2 be c.e. equivalence relations.

Say that E_1 is C-reducible to E_2 , written $E_1 \leq_C E_2$, if all structures in C realised by E_1 are also realised by E_2 .

Say that E_1 and E_2 have the same C-degree, written $E_1 =_{\mathbf{C}} E_2$, if $E_1 \leq_{\mathbf{C}} E_2$ and $E_2 \leq_{\mathbf{C}} E_1$.

The reducibility \leq_{c} induces the partial order on the set of all C-degrees.

Case Study 1: Linear orders

Let X be a co-infinte c.e. subset of ω . Consider E(X)={(n,k) | n=k or both n, k are in X}.

Theorem 1:

- E(X) realises a linear order L with X representing a isolated point of L iff X is recursive.
- E(X) realises a linear order with X being an end point iff X is semirecursive (also C. Jockusch).
- E(X) realises a linear order iff X is one-one reducible to the join of two c.e. semirecursive sets.

Case Study 1: Linear Orders

Corollary: If X is maximal, r-maximal, creative or simple but not hyper-simple then E(X) realises no linear order.

Assume X is simple.

Theorem 2:

- If X is not 1-to-1 redicible to a join of two semirecursive sets then E(X) realises no linear order.
- > If X is semirecursive then E(X) realises the following linear orders: $n+\omega$, ω^*+n , $\omega+1+\omega^*$.
- > If X is 1-to-1 reducible to a join of two semirecrsive sets then E(X) realises ω +1+ ω * only.

Beyond E(X)

Theorem 3:

For every n>0 theer exists a c.e. equivalence relation E that realises exactly n linearly ordered sets.

Corollary:

There exists a c.e. equivalence relation such that the only linear order realised by E is the order of rational numbers.

Case Study 2: Class Alg of algebras Definition 5:

An algebra **A** is *trivial* if each operation of **A** is either a constant function or a projection.

We have the order \leq_{Alg} among equivalence relations.

Theorem 4:

- The order ≤_{Alg} has a minimal element E. Moreover, E can be made computably enumerable.
- 2. The order \leq_{Alg} has ω many maximal elements.

Case Study 3: Isle graphs

Definition 6:

An *isle* is a countable graph that has infinitely many isolated points. If an isle has finitely many edges only then we call the isle finitary.

So, we can consider the partial order \leq_{Isle} .

Theorem 5:

The partial order \leq_{Isle} has the least element. Any c.e. equivalence relation with cohesive transversal represents the minimal element.

Case Study 3: Isle graphs

Recall that $E_0 \leq_{FF} E_1$ if there exists a computable function f such that for all n,m we have

(n,m) is in E_0 if and only if (f(n), f(m)) is in E_1 .

Theorem 6:

If $E_0 \leq_{FF} E_1$ then then $E_0 \leq_{Isle} E_1$. Hence, the partial order \leq_{Isle} has the largest element.

七転び八起き

Atoms for partial order \leq_{Isle}

Theorem 7:

The partial order \leq_{lsle} possesses a unique atom.

The proof uses the notion of e-state borrowed from the construction of maximal sets.

Case Study 4: Partition graphs

Definition 7:

A graph G = (V, Edge) is a **partition graph** if there is a partition A_0, A_1, \ldots Of V such that $\{x, y\} \in Edge$ iff no *k* exists for which x, $y \in A_k$.

We call A_0 , A_1 , . . . the anti-clique components of the graph. There are two trivial partition graphs:

- The complete graph.
- The graph whose all vertices are isolated.

Case Study 4: Partition graphs

Denote the class of partition graphs by *Part*. So, we have the partial order \leq_{Part} .

Theorem 8:

The equivalence relation id_{ω} is the largest element of the partial order \leq_{Part} .

Theorem 9:

The pre-complete equivalence relation is the least element in the partial order \leq_{Part} .

Finitary partition graphs

Definition 8:

A partition graph is **finitary** if it possesses finitely many anti-clique components only.

Let G be a finitary partition graph. The isomorphism type of G is determined by:

- 1. The number of its infinite anti-cluqie components.
- 2. The number of its finite anti-clique components and their cardinalites.

Finitary partition graphs

Let *F* be the set of all *E* equivalence relations that realise finiatary partition graphs.

Definition 9:

An equivalence relation *E* has type (n, m) if *n* and *m* are the largest integers such that for all $1 \le i < n, j < m, E$ realises finitary partition graphs with *i* infinite components and *j* finite components.

Theorem 10:

For each n and m there exists an E of type (n, m).

Full description of F

Theorem 11:

The partial order **F** is isomorphic to the two-dimensional grid-order

({(n,m) | n,m are in ω } U { ω }; \leq),

where \leq is the component-wise order on the set of pairs.

十人十色

Open Problem(s)

Select your favorite class C of structures (e.g. n-ary trees, planar graphs, groups, rings, semigroups, lattices, Boolean algebras).

Study C-reducibility for these classes.

- Study degrees of E that realise all structures from C.
- Let E be an equivalence relations. Describe structures from class C that are realised by E.

酒は本心を表す