Wandering around a corner of Axiomatic Set Theory

Deepest Appreciations to Dr. Kakuda

By Yasuo Kanai Yamato University

Bibliography

- **1** Introduction to Mathematical Logic, Elliott Mendelson, Chapman and Hall/CRC
- 2 The Consistency of the Continuum Hypothesis. Gödel, K., Princeton University Press, Princeton, (1940).

- 3 Some strong axioms of infinity incompatible with the axiom of contructibility, Frederick Rowbottom, Annals of Mathematical Logic, Volume 3, No. 1 (1971) pp. 1-44
- **4** Boolean-valued Models and Independence Proofs in Set Theory, J.L.Bell, Oxford University Press (1978/1/12)

- **5** Set Theory (The Third Millennium Edition, revised and expanded), Thomas Jech, Springer Monographs in Mathematics
- 6 Precipitous ideals, T. Jech, M. Magidor, W. Mitchell and K. Prikry, Journal of Symbolic Logic 45 (1980), pp.1–8

1. Ideals on Cradinals

Definition 1. Let κ be any regular uncountable cardinal and I a subset of $P(\kappa)$.

I is said to be a *non-trivial ideal on* κ if it satisfies that

- 1) $\{\xi\} \in I$, for each $\xi < \kappa$,
- 2) $X, Y \in I$ implies $X \cup Y \in I$,
- 3) $X \in I$, $Y \in P(\kappa)$ implies $X \cap Y \in I$.

The *dual filter* of I is denoted by I^* .

Definition 2. Let I be a non-trivial ideal on a regular uncountable cardinal κ .

Let λ be any cardinal.

- (1) I is said to be λ -complete
- if for any family $\{X_{\xi} \in I \mid \xi < \mu \}$ of cardinality $\mu < \lambda$, $\cup X_{\xi}$ is in I.
- (2) *I* is said to be *normal*
- if for each family $\{X_{\xi} \in I \mid \xi < \kappa \}$ of I, $\nabla X_{\xi} = \{ \alpha < \kappa \mid \text{for some } \beta < \alpha, \alpha \in X_{\beta} \} \text{ is in } I.$
- (3) Moreover, if $X \in I$ or $\kappa X \in I$ for each $X \subseteq \kappa$, I is said to be a *prime ideal* and the dual filter said to be an *ultrafiler on* κ .

Denition 3. Given an ultrafilter U on I and L-structures A_i , $i \in I$, the *ultraproduct* $\Pi_U A_i$ is the unique L-structure B such that:

- (1) The universe of *B* is the set $B = \prod_{U} A_{i}$.
- (2) For each atomic formula $\varphi(x_1, \ldots, x_k)$ which has at most one symbol from the vocabulary L, and each $f_1, \ldots, f_k \in \Pi_{i \in I} A_i$,

$$B \models \varphi(f_{IU}, \ldots, f_{kU}) \text{ iff } \{i \in I \mid A_i \models \varphi(f_1(i), \ldots, f_k(i))\} \in U.$$

The *ultrapower* of an *L*-structure *A* modulo *U*, denoted by $\text{Ult}_I(A, U)$, is defined as the ultraproduct $\Pi_{IJ}A = \Pi_{IJ}A_i$ where $A_i = A$ for each $i \in I$.

Definition 4. (Solovay 7)Suppose that I is an ideal on κ . Then, $P(\kappa)/I$ is a Boolean algebra. If we force with $P(\kappa)/I$ (without the zero element) then we get a V-ultrafilter $G_I \subseteq P(\kappa)$.

With this ultrafilter we can take the ultraproduct $\mathrm{Ult}_{\kappa'}(V',G_I)$ using functions $f\in ({}^{\kappa}V)'$ in V'. This gives us a generic elementary embedding

$$j: V \to \mathrm{Ult}_{\kappa'}(V',G_I).$$

An ideal *I* is *precipitous* if this generic ultrapower is always well-founded.

Results

Theorem 1. (7) Let λ be any cardinal $\leq \kappa^+$ and I a κ -complete non-trivial ideal on κ . Then the following are equivalent.

- (1) I is λ -saturated.
- (2) Each member of $Ult_{\kappa'}(V',G_I)$ can be represented by a functional of cardinality less than λ .
- (3) Each ordinal less than j(sat(I)') in $\text{Ult}_{\kappa'}(V', G_I)$ can be represented by a functional of cardinality less than λ .

In the above, a functional F is a set of functions such that the set $\{ dom(f) | f \in F \}$ is I-disjoint.

And, j is the canonical elementary embedding of V' into $\text{Ult}_{\kappa'}(V', G_I)$ in $V[G_I]$, and sat(I) is the least cardinal μ such that I is not μ -saturated.

Recall that x' is a P-name for x in the ground model for any notion of forcing P.

Since each functional of cardinality $\leq \kappa$ is equal to an ordinary function in the generic extension $V[G_I]$, we can have that:

Corollary. (7) A κ -complete non-trivial ideal I is κ^+ -saturated if and only if each ordinal in $\text{Ult}_{\kappa'}(V', G_I)$ can be represented by an ordinary function in V.

= 集合論のはじまり =

カントール 1

三角級数の表す関数の 一意性を証明する (1870) → 含む関数の三角級数表現の 一意性(1872) (derived set) → 超限順序数,基数(1895,1897)

実数全体の非可

算性(1873)

超越数全体の 非可算性 ハウスドルフ 非可算順序型

(1908)

巨大基数理論の起こり

ボレル集合の超 限階層(1905)

デデキント カントール 3

集合による数学の記述(1871)

ルベーグ積 分(1902)

ベールの関数.

カテゴリ(1899)

デデキントの(切 断による)実数の 定義(1872) ボレル集合:実数 の記述部分集合 (1898)

フレーゲの → ツェルメロの選 論理の形式 → 択公理の考察 的体系(1879) → (1904)

ラッセルの `パラドックス (1901)

クラトフスキの順序対 ウィナーの順序対 ハウスドルフの順序対 (1914) ヴィタリ(1908) 選択公理より(ルベーグ)可測でない集合を ツェルメロの選 択公理の考察 (1904) (置換公理, 分離公

理)•整列可能定理

ツェルメロの集 合論の公理 (1908)

ツェルメロ集合論

- 1) 外延性公理
- 2) 空集合の公理
- 3) 対集合の公理
- 4) 和集合の公理
- 5) 冪集合の公理
- 6) 選択公理
- 7)無限公理
- 8) 分離公理

ハウスドルフ(1914)

1914年に『集合論基礎』

(Grundzüge der Mengenlehre)

を出版

導く

フランケル(1921-22),

スコーレム(1923)

集合論の公理

ツェルメロの集合論の公理+置換公理

超限順序数 --- 超限帰納法 ----

ミリマノフの 累積的階層 (1917)

Bibliographies

7 Real-valued measurable cardinals Axiomatic Set Theory, R.M. Solovay (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I. (1971), pp. 397–428

- 8 Saturated ideals in Boolean extensions, Yuzuru Kakuda, Nagoya Math. J. Volume 48 (1972), 159-168.
- 9 On a condition for Cohen extensions which preserve precipitous ideals, Yuzuru Kakuda, The Journal of Symbolic Logic, Volume 46(2): 296-300, 1981.
- ① Saturation of Ideals and Pseudo-Boolean Algebras of Ideals on Sets, Yuzuru Kakuda, Mathematics seminar notes, Volume 6(2), 269-321, 1978.

- ① On splitting stationary subsets of large cardinals, Structural properties of ideals, J. E. Baumgartner, A. D. Taylor, and S. Wagon, The Journal of Symbolic Logic, Volume 42: 203-214, 1977.
- ② Saturation properties of ideals in generic extensions I · II, J.E.Baumgartner and A.Taylor, Trans. Amer. Math. Soc., vol.270, pp557-574 (1982).
- (3) Flipping properties: A unifying thread in the theory of large cardinals, F.G.Abramson, L.A.Harrington, E.M. Kleinberg, W.S. Zwicker, Annals of Mathematical Logic, Volume 12, pp 25-58,1977,

- The evolution of large cardinal axioms in set theory, A. Kanamori and M. Magidor, in: 'Higher set theory (G. Müller and D. Scott, eds)' Lecture Notes in Mathematics, vol.669, Springer-Verlag, Berlin, pp99-275,1978,
- (5) Mathematical Logic, Joseph R. Shoenfield, A K Peters/CRC Press

2. Properties of Ideals

Definition 5. Let I be a non-tricial κ -complete ideal on κ . Then

- 1) I is said to be λ -saturated if there is no I-disjoint subfamily of $P(\kappa) I$ (, this family is denoted by I^+) of cardinality λ , where I-disjoint means that $A \cap B$ is in I for any pair (A,B) of distinct elements of I.
- 2) *I* is said to be *completive* if the quotient algebra $P(\kappa)/I$ is complete.
- 3) I is said to be λ -distributive if the quotient algebra $P(\kappa)/I$ is λ -distributive.

Here we introduce the special definable ideals.

$$BD_{\kappa} = \{ X \in P(\kappa) \mid |X| < \kappa \}$$

This ideal is *the bounded ideal* on κ .

A subset C of κ is said to be a closed unbouded set if it satisfies that for any limit ordinal $\alpha < \kappa$, $\sup(C \cap \alpha) = \alpha$ and for any $\xi < \kappa$, there is $\alpha \in C$ with $\xi < \alpha$.

$$NS_{\kappa} = \{ X \in P(\kappa) \mid for some \\ closed unbounded set C, X \cap C = \emptyset \}$$

This ideal is the non-stationary ideal on κ .

Definition 6. κ is said to be a *stationary cardinal* if $\{ \mathbf{M}(X) \mid X \in \mathbf{NS}_{\kappa}^+ \}$ generates a proper κ -complete normal filter.

In the above, **M** is an operation defined by $\mathbf{M}(X) = \{ \xi < \kappa \mid cf(\xi) > \omega \text{ and } X \cap \xi \in NS_{\xi}^{+} \}$

Definition 7. (1) An ideal J on κ is said to be an \mathbf{M} -ideal if $A \in J^*$ implies $\mathbf{M}(A) \in J^*$.

(2) An extension J of I is said to be μ -I-closed generated by a subset S of I⁺

if
$$J = \{ X \subseteq \kappa \mid for some A \subseteq S, |A| < \mu$$

 $and [X]_I \le \bigvee_{Y \in A} [Y]_I \}.$

Definition 8. We define a sequence in NS_{κ} , called a *canonical Mahlo sequence* $< M_{\alpha} : \alpha < \theta(\kappa) > \text{ on } \kappa$, defined by recursion on α as follows: $M_0 = \kappa$; if $\alpha = \beta + 1$ and $\mathbf{M}(M_{\beta})$ is stationary in κ , $M_{\alpha} = \mathbf{M}(M_{\beta})$; and if α is limit, M_{α} is any stationary subset of κ such that $[M_{\alpha}]_{NS\kappa} = \bigwedge_{\beta < \alpha} [M_{\beta}]_{NS\kappa}$. If such a set does not exist, M_{α} is left undefined and set $\theta(\kappa) = \alpha$.

Definition 9. A λ -closed Mahlo family is a sequence $N = \langle A_{\alpha} : \alpha \leq \delta \rangle$ of subsets of NS_{κ} satisfying the following conditions.

- (1) $A_0 = NS_{\kappa}^*$, for all $\alpha < \delta$, $\emptyset \notin A_{\alpha}$, $A_{\alpha} \neq A_{\alpha+1}$ and $A_{\alpha} \subseteq A_{\alpha+1}$.
- (2) For each $\alpha < \delta$, $X \in A_{\alpha+1}$ iff $X \in A_{\alpha}$ or for some $Y \in A_{\alpha}$, $\mathbf{M}(Y) X \in NS_{\kappa}$.
- (3) If α is a limit ordinal less than δ , $X \in A_{\alpha}$ iff for some subset B of $\bigcup_{\beta < \alpha} A_{\beta}$ with $|B| < \lambda$ and for some $Y \in NS_{\kappa}^+$,

$$Y - X \in NS_{\kappa}$$
 and $[Y]_{NS\kappa} = \bigwedge_{Z \in B} [Z]_{NS\kappa}$.

(4) For any set $B \subseteq \bigcup_{\alpha \leq \delta} A_{\alpha}$ with $|B| < \lambda$, if $\bigwedge_{Z \in B} [Z]_{NS\kappa}$ exists and is equal to $[X]_{NS\kappa}$, then $X \in A_{\alpha}$ for some $\alpha \leq \delta$.

δ is *the length of* N denoted by l(N), and N is simply called *a Mahlo family* if $\lambda = |NS_{\kappa}^{+}|^{+}$.

Definition 10.

- (1) κ is said to be *greatly Mahlo* if $\theta(\kappa) \ge \kappa^+$.
- (2) κ is said to be *super Mahlo* if there is a Mahlo family.

Results

Theorem 2. (13) Let λ be any cardinal $\geq \kappa^+$. Then, there is a λ -closed Mahlo family if and only if κ bears a λ - NS_{κ} -closed M-ideal.

Corollary. (13) (1) κ is super Mahlo if and only if κ bears a NS_{κ} -closed M-ideal. (2) κ is greatly Mahlo if and only if κ bears a κ^+ - NS_{κ} -closed, i.e. normal M-ideal.

Lemma 3. (13) Let J be an ideal on κ extending NS_{κ} . Then we have:

- (1) J is κ -complete if and only if J is κ - NS_{κ} -closed.
- (2) J is normal and κ -complete if and only if J is κ^+ - NS_{κ} -closed

Lemma 4. (Baumgartner, Taylor and Wagon ① or Kakuda ②) If I is an M-ideal on κ , then for any stationary subset A of κ , $I \neq NS_{\kappa} A$.

Theorem 5. (Baumgartner, Taylor and Wagon ① or Kakuda ①)

- (1) I is κ -saturated if and only if the only non-trivial κ -I-closed ideals extending I are of the form $I \cap A$ for some $A \in I^+$.
- (2) Assume that I is normal. Then I is κ^+ -saturated if and only if the only non-trivial κ^+ -I-closed ideals extending I are of the form $I \upharpoonright A$ for some $A \in I^+$.

Theorem 6. (12) Let $\lambda \ge \kappa^+$ be any cardinal. I is λ -completive if and only if whenever J is a non-trivial |D|-I-closed extension of I generated by $D \subseteq I^+$ with $|D| < \lambda$, $J = I \upharpoonright A$ for some $A \in I^+$.

Corollary 1. (12) I is completive if and only if the only non-trivial I -closed ideals extending I are of the form $I \upharpoonright A$ for some $A \in I^+$.

Corollary 2. (12) If κ is a super Mahlo cardinal, then the non-stationary ideal NS_{κ} is not completive.

Assume that κ is a stationary cardinal and H the κ -complete normal filter generated by $\{ \mathbf{M}(X) \mid X \in \mathbf{NS}_{\kappa}^{+} \}.$

Let $A = \{ \alpha < \kappa \mid \alpha \text{ is weakly inaccessible } \}$. Then, we have the following.

Lemma 7. (12) A is stationary in κ , in fact, is in H^* .

- **Theorem 8. (12)** Every stationary cardinal is super Mahlo.
- **Corollary**. (12) (1) If κ is a weakly compact cardinal, then $P(\kappa) / NS_{\kappa}$ is not complete.
- (2) If κ carries a κ -complete κ -saturated ideal, then $P(\kappa) / NS_{\kappa}$ is not complete.

Theorem 9. (13) Assume that κ is a strongly compact cardinal, I is a non-trivial normal κ -complete ideal on κ and B is an I-regular complete Boolean algebra. Then if I is completive, it is B-valid that for some $A \subseteq \kappa^{\hat{}}$, $J \upharpoonright A$ is completive.

Corollary 1. (13) Let M be a transitive model of ZFC and in M, let κ be a strongly compact cardinal and λ a regular uncountable cardinal less than κ . Then there exists a generic extension M[G] in which

 $\kappa = \lambda^+$ and κ carries a non-trivial κ -complete ideal I which is completive but not κ^+ -saturated.

Corollary 2. (13))(2000) If ZFC + ``there is a strongly compact cardinal" is consistent, so is ZFC + ``there is a regular uncountable cardinal κ which bears a non-trivial κ -complete ideal I such that the quotient algebra $P(\kappa)/I$ is complete but not κ ⁺-saturated.

It should be noticed that if κ carries a non-trivial κ -complete ideal I which is completive but not κ^+ -saturated, then $\kappa^+ < 2^{\kappa}$.

Theorem 10. (Kanamori and Shelah(1995))

If ZFC + "there is a Woodin cardinal" is consistent, then so is ZFC + "there is a completive ideal I on \aleph_I , $2^{\aleph_0} = \aleph_I$ and $2^{\aleph_1} = \aleph_3$ (hence I is not \aleph_2 -saturated)". **Theorem 11.** (Gitik and Shelah(1997)) For any regular cardinal $\kappa \geq \aleph_2$, NS_{κ} is not κ^+ -saturated.

Problems

Is it true that NS_{λ} is not completive for any regular cardinal $\lambda \geq \aleph_2$?

= 測度問題 =

ボレル集合はベール関数による開区間の逆像

ルジン、ススリン

の解析集合(1917)

ルベーグ可測

ルベーグの測度 問題(1904)

区間 I=[0,1] のすべての部分 集合上で定義された(負の値を とらない)測度 m で次の条件を 満たすものが存在するか?

- 1) *A と B が*(平行移動で)合同 ならば *m*(*A*) = *m*(*B*)
- 2) m(X) = 1
- 3) $m(U_{r=1}^{\infty}S_n) = \sum_{r=1}^{\infty} m(S_n)$ ただし、 S_n は互いに共通部分をもたない。(完全加法性)

ジョルダン '測度' (1902) ジョルダンの面積 = ジョルダン '測度' J は 次の2つを満たす。

- (1) $J(A) \ge 0$, $J(\emptyset) = 0$
- (2) $A \cap B = \emptyset$ ならば $J(A \cup B) = J(A) + J(B)$ (有限加法性) この2つが、「面積とは何か?」の答えである。(ルベーグ「積分・長さおよび面積」)

→ ハウスドルフ 測度の 大域的問題(1914) ₃

ハウスドルフ 測度の大域的問題(1914)

n次元ユークリッド空間の各有界集合 E に負でない実数 m(E) を対応させる、次の条件を満たす関数 m は存在するか?

- 1) m(I) = 1 ただし, I は単位立法体
- 2) $E_1 \cap E_2 = \emptyset$ $\text{tising} m(E_1 \cup E_2) = m(E_1) + m(E_2)$
- 3) $E_1 \geq E_2$ が合同ならば $m(E_1) = m(E_2)$

バナッハの n = 1,2 に対する 肯定的解決(1923)

V

バナッハ, タルスキーの定理(1924)

選択公理を仮定して、n≥3では上記ハウスドルフの問題を否定的に解決 =バナッハ-タルスキーの逆理 〈ルベーグ可測〉 ボレル集合(1898) **↓**

ルジン, ススリン の解析集合(1917)

V

ルジン, シェルピン スキーの射影集合 (1925)

バナッハ, クラトフスキーの定理(1929)

連続体仮説を仮定すると. 区間 I=[0.1] のすべての部分集合上で定義された完全 加法的測度 mで → 連続体仮説への疑念

- 1) 1点の測度は 0 である
- (I) = 1 を満たすものは存在しない。

連続体仮説を仮定すると、数直線上で定 義された非可測関数で、高々可算集合を除 いて連続となるものが存在する。

ウラムの定理(1930)

集合 *E* の濃度が &₁, &₂, &₃, ···, &_n,···, &_ω の いずれであっても、Eのすべての部分集合 上で定義された完全加法的測度 mで

- 1) 1点の測度は 0 である
- (I) = 1 を満たすものは存在しない。

測度問題の巨大 基数の必要性

= イデアルとは =

デデキントのイデアル論(1871) ボレルのσ-イデアル (強ルベーグ測度零 ウラムのω上の イデアル) (1919) 超フィルター(1929) ブール環における イデアル(1929) ウラムのフィルター, 超フィルター(1930) ストーン(1936) ブルバキの一員 ブール環におけるイ であるカルタンのイ デアル分析 デアル (1936) タルスキーのイデアル(1940?)

3. Distributive Ideals on Boolean Algebras

Definition 11. Let *B* be any Boolean algebra and *I* a subset of *B*.

I is said to be an *ideal on B* if it satisfies that

- 1) $0 \in I$,
- 2) $a, b \in I$ implies $a \lor b \in I$,
- 3) $a \in I$, $b \in B$ implies $a \land b \in I$, where 0 is the least element, and \lor (join) and \land (meet) are the Boolean operations.

Definition 12. (Smith & Tarski (1956))

A Boolean algebra A is (α,β) -distributive if the following is satisfied: Given any double sequence $a \in A^{\alpha \times \beta}$ such that all the sums $\sum_{\eta < \beta} a_{\xi,\eta}$ for $\xi < \alpha$, their product $\prod_{\xi < \alpha} \sum_{\eta < \beta} a_{\xi,\eta}$, and all the products $\prod_{\xi < \alpha} a_{\xi,f(\xi)}$ for $f \in \beta^{\alpha}$ exist, then the sum $\sum_{f \in \beta^{\alpha}} \prod_{\xi < \alpha} a_{\xi,f(\xi)}$ also exists, and we have $\prod_{\xi < \alpha} \sum_{\eta < \beta} a_{\xi,\eta} = \sum_{f \in \beta^{\alpha}} \prod_{\xi < \alpha} a_{\xi,f(\xi)}$.

Generalized Distributivity

Definition 13. Let B be any Boolean algebra and f any function into P(B).

B is $\langle \lambda, f \rangle$ -distributive if *B* satisfies that for all *b* in *B*, if for each *a* in dom(*F*) $0 < b \le \bigvee f(a)$, then there is *v* in $\prod f$ such that for any *t* in $[\text{dom}(f)]^{<\lambda}$ $(b \land \bigwedge_{a \in t} v(a) > \mathbf{0})$.

Quote from my doctoral Dissertation

When we construct and develop a powerful set theory based on Zermelo-Fraenkel set theory, it happens quite often to find out one condition, say $h(\alpha)$, from each set of conditions, say A_{α} , whose disjunction is consistent (i.e., $\vee_{\alpha<\kappa}A_{\alpha}=1$ in Boolean terms) and arrange them into one consistent condition (i.e., $\wedge_{\alpha<\kappa}h(\alpha)>0$ in Boolean terms).

Results

Lemma 12. (Pierce) Let f be any function and let I be a λ -complete ideal in a μ -complete f-distributive Boolean algebra B, where λ and μ are cardinals such that $|\Sigma f| < \lambda$ and $|\Pi f| < \mu$. Then the following are equivalent.

- (1) *I* is *f*-distributive.
- (2) I is $|\Pi f|^+$ -complete.
- (3) $|\Pi f| < \lambda \text{ holds.}$

Corollary. Let f be any function on a cardinal η and let I be a λ -complete ideal in a μ -complete $\langle v, f \rangle$ -distributive Boolean algebra B, where λ , μ and ν are cardinals such that $\nu < \eta$, $|\Sigma f \upharpoonright X| < \lambda$ and $|\Pi f \upharpoonright X| < \mu$ for all X in $P_{<\nu}(\eta)$. Then if I is $\langle v, f \rangle$ -distributive, $\sup_{X \in P^{<\nu}(\eta)} |\Pi f \upharpoonright X|^+ < \lambda$ holds.

Theorem 13. (14) The following are equivalent in *ZF* set theory.

- (1) The κ -Axiom of Choice.
- (2) Every power set algebra is $\langle 2, \kappa \rangle$ -distributive.

- **Theorem 14. (14)** The following are equivalent in *ZF* set theory.
- (1) The Principle of Dependent Choice.
- (2) Every Boolean algebra is $\langle \omega, \omega \rangle$ -distributive.

Theorem 15. (11) Let κ be any cardinal and let B be a κ -complete Boolean algebra of cardinality λ . Then the following are equivalent.

- (1) There exists a κ -complete prime ideal in B.
- (2) There exists a $\langle \kappa, C_{\lambda,2} \rangle$ -distributive ideal in B.

In the above, $C_{\lambda,2}$ indicates the function on λ whose range is the singleton $\{2\}$.

Corollary. (11) (F.G. Abramson, L.A. Harrington, E.M. Kleinberg and W.S. Zwicker, C.A. DiPrisco and W.S. Zwicker ③) Let κ be any regular uncountable cardinal. Then we have:

- (1) κ is weakly compact if and only if BD κ is $\langle \kappa, C_{\kappa,2} \rangle$ -distributive.
- (2) κ is measurable if and only if BD κ is $\langle \kappa, C_{2^{\kappa}, 2} \rangle$ -distributive.
- (3) κ is strongly compact if and only if for each regular $\lambda \geq \kappa$, BD λ is $\langle \kappa, C_2 \lambda_2 \rangle$ -distributive.

Theorem 16. (11) The following are equivalent.

- (1) Whenever σ is a function on S satisfying the conditions (*) and $< t_a : a \in S >$ is a sequence with $t_a \subseteq \sigma(a)$ for each $a \in S$, there exists a set t such that for any $a \in S$ there is a $b \in S$ with a < b and $t \cap \sigma(a) = t_b \cap \sigma(a)$.
- (2) There exists a fine κ -complete $\langle \kappa, f \rangle$ distributive ideal on S for any $f: S \to \kappa$.

Theorem 17. (12) Let σ be any function of S into P (T) such that for a, b in S, $\mu_a = |P(\sigma(a))| < \kappa$ and if $a <_S b$ then $\sigma(a) \subseteq \sigma(b)$. Assume that I is a \leq_S -fine κ -complete $<_{S}$ -normal $\langle 3, f \rangle$ -distributive ideal on S, where f is the function on $H = (\{0\} \times S) \cup (\{1\} \times T)$ defined by $f(0,a) = P(\sigma(a))$ and f(1,t) = T. Moreover, we assume that $R = \{ a \in S \mid cf_{<T}(\sigma(a)) > \aleph_0 \} \text{ has positive } I \text{ -measure,}$ $\{ a \in S \mid t \in \sigma(a) \} \text{ has } I \text{ -measure one for each } t \in T$ and if g is a function on $A \in I^+$ with $g(a) \in \sigma(a)$ then there exists a subset B of A of positive I -measure such that $g \upharpoonright B$ is constant. Then if X is a \leq_T -stationary subset of T, $R - M_{\sigma}(X)$ has I-measure zero.

In the above,
$$M_{\sigma}(X)$$
 is defined by $M_{\sigma}(X) = \{ a \in S \mid cf_{\leq T}(\sigma(a)) > \aleph_0 \}$ and $X \cap \sigma(a)$ is \leq_T -stationary in $\sigma(a) \}$

In Theorem 17, if we put $T = P_{<\mu}(\lambda)$ and $\sigma(a) = P_{<\mu}(a)$, we get the next theorem.

Theorem 18. (12) Let $S = P_{< n}(\lambda)$ and $T = P_{< u}(\lambda)$, where $\aleph_0 < \mu < \eta \le \kappa \le \lambda$ and $2^{(\nu \le \mu)} < \kappa$ for any $\nu < \eta$. Assume that there exists a \leftarrow -fine κ -complete <-normal $\langle \aleph_I, C_{S_T} \rangle$ -distributive ideal I on S, where $\tau = max. \{ \lambda^{<\mu}, 2^{(\eta < \mu)} \}.$ Then, if X is a $<_T$ -stationary subset of T, $M_{\sigma^{I}}(X) = \{ a \in S \mid cf_{<T}(P_{<\mu}(a)) > \aleph_{0} \}$ and $X \cap P_{< \mu}(a)$ is $<_{T}$ -stationary in $P_{< \mu}(a)$ } has I -measure one.

Theorem 19. (Feng and Magidor) Assume that κ is λ -supercompact with $\lambda \geq \kappa$ regular.

Then for every stationary $S \subseteq P_{<\omega^{l}}(\lambda)$ and for every tight and unbounded $A \subseteq P_{<\kappa}(\lambda)$, there is an $X \in A$ such that $S \cap P_{<\omega^{l}}(X)$ is stationary in $P_{<\omega^{l}}(X)$.

Problems

How strong is the condition that there is a κ -complete non-trivial $\langle \kappa, C_{2^{\kappa}, \eta} \rangle$ -distributive ideal on κ with $\kappa \leq \eta$?

Bibliography

- **16** Formal Logic: or, The Calculus of Inference, Necessary and Probable, De Morgan, A., Taylor and Walton, London, 1847.
- **1** Mathematical Analysis of Logic, Boole, G., MacMillan, Barclay & MacMillan, Cambridge, 1847. Reprint Open Court, La Salle, 1952.
- (18) An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole, G., Walton and Maberly, London, 1854.

- Ueber die von drei Moduln erzeugte Dualgruppe, Dedekind, Mathematische Annalen, vol. 53 (1900), pp. 371-403?
- The theory of representations for Boolean algebras, M.H.Stone, Transactions of the American Mathematical Society, vol. 40 (1936), pp. 37-111
- The theory of representations for Boolean algebras, M.H.Stone, Transactions of the American Mathematical Society, vol. 40 (1936), pp. 37-111

- 22 Distributive postulates for systems like Boolean algebras, George D. Birkhoff and Garrett Birkhoff, Transactions of the American Mathematical Society, Vol. 60, No. 3 (1956), pp. 3-11
- **23** A Distributivity Condition for Boolean Algebras, Edgar C. Smith, Jr., Annals of Mathematics, Second Series, Vol. 64, No. 3 (1956), pp. 551-561
- 24 Distributivity in Boolean algebras, R. S. Pierce, Pacific Journal of Mathematics, Vol. 7, No. 1 (1957), pp. 983-992

- 25 Higher Degrees of Distributivity and Completeness in Boolean Algebras, E. C. Smith, Jr. and Alfred Tarski, Transactions of the American Mathematical Society, Vol. 84, No. 1 (1957), pp. 230-257
- **26** The independence of certain distributive laws in Boolean algebras,
- D. Scott, Trans. Amer. Math. Soc. vol. 84 (1957),pp.258-261
- ② Distributivity and representability, R. Sikorski, Fund. Math., Vol. 48 (1957), pp. 105-117

4. Cardinal Arithmetic

Definition 14. (1983?) Let κ be a measurable cardinal. If F_1 and F_2 are non-trivial κ -complete normal ultrafilters on κ and define a relation < by : $F_1 < F_2$ if and only if $F_1 \in \text{Ult}_{\kappa}(V, F_2)$. This relation well-founded, and can give the rank of a non-trivial κ -complete normal ultrafilter U on κ in <. This rank is called the order of U, and the hight of < is called the order of κ , denoted by $o(\kappa)$.

Results (1)

Theorem 20.(Cantor (1891))

For every set X, |X| < |P(X)|

Theorem 21.(Cantor, Bernstein(1))

If $|X| \le |Y|$ and $|X| \ge |Y|$, then |X| = |Y|.

Theorem 22.(Bernstein(1901))

For every ordinal α and μ ,

$$\aleph_{\mu}^{\aleph}{}_{\alpha} = 2 \aleph_{\alpha} \cdot \aleph_{\mu}.$$

But this is incorrect when $\alpha = 0$ and $\mu = \omega$.

Theorem 23. (Hausdorff (1904))

For any ordinals α and β , $\aleph_{\alpha+1}^{\aleph\beta} = \aleph_{\alpha}^{\aleph\beta} \cdot \aleph_{\alpha+1}$.

Theorem 24.(Konig(1905))

 $2 \aleph_0$ cannot equal $\aleph_{\alpha+\omega}$.

Theorem 25. (Konig $\langle \gamma < \omega \rangle$ (1905), Jourdain $\langle \gamma \geq \omega \rangle$ (1908), Zermelo $\langle \gamma$ any set \rangle (1908))

For any $\alpha < \gamma$ $m_{\alpha} < n_{\alpha}$, $\sum_{\alpha < \gamma} m_{\alpha} < \prod_{\alpha < \gamma} m_{\alpha}$.

Theorem 26. (Gödel (1938))

If ZF is consistent, so is ZFC + GCH.

Theorem 27. (P. Cohen (1963))

If ZF is consistent, so are $ZF + \neg AC$ and $ZFC + \neg CH$.

Theorem 28. (W. Easton (1964))

Assume *GCH* and *F* is a class function from the class of regular cardinals to cardinals such that for regular crdinals κ and λ with $\kappa \leq \lambda$, $F(\kappa) \leq F(\lambda)$ and $\kappa < cf(F(\kappa))$. Then there is a forcing extension preserving cofinalities in which $2^{\kappa} = F(\kappa)$ for every regular cardinal κ .

The simplest possibility is when $2^{cf(\kappa)} < \kappa$ implies $\kappa^{cf(\kappa)} = \kappa^+$. This is known as the **Singular Cardinal Hypothesis** (*SCH*).

Theorem 29. (J.Silver (1975)) If κ is a singular cardinal of uncountable cofinality, and if $2^{\lambda} = \lambda^{+}$ for all $\lambda < \kappa$, $2^{\kappa} = \kappa^{+}$.

Theorem 30. (Galvin and Hajnal (1975)) If \aleph_{λ} is a strong limit cardinal of uncountable cofinality then $2^{\aleph_{\lambda}} < \aleph^{(2\lambda)+}$

Theorem 31. (Jensen (1974)) If $0^{\#}$ does not exist then every uncountable set of ordinals can be covered by a constructible set of the same cardinality

Theorem 32. (T. Jech and K. Prikry (1976))

Let κ be a regular uncountable cardinal which bears a κ -complete non-trivial κ +-saturated ideal. If $2^{\lambda} = \lambda^+$ for all $\lambda < \kappa$, then $2^{\kappa} = \kappa^+$.

Theorem 33. The Covering Theorem shows that unless $0^{\#}$ exists, $2^{cf \kappa} < \kappa$ implies $\kappa^{cf \kappa} = \kappa^{+}$, i.e. **SCH** holds.

Thus in order to violate *SCH* we need large cardinals.

Theorem 34. (Solovay (1974)) If κ is a strongly compact cardinal and $\lambda > \kappa$ is singular then $\lambda^{cf\lambda} = \lambda^+$. This means that the *SCH* holds above the least strongly compact cardinal.

Theorem 35. (J.Silver) If there is a supercompact cardinal, there is a transitive model **ZFC** in which κ is a strong limit cardinal, $cf \kappa = \omega$, and $2^{\kappa} > \kappa^+$.

Theorem 36. (Magidor)

If there is a supercompact cardinal, there is a transitive model ZFC in which \aleph_{ω} is a strong limit cardinal and $2^{\aleph\omega} > \aleph_{\omega+1}$.

Theorem 37. (Magidor)

If there is a 2-huge cardinal, there is a transitive model **ZFC** in which **GCH** holds below \aleph_{ω} and $2^{\aleph\omega} = \aleph_{\omega+2}$.

Theorem 38. (Magidor(1977), Shelah(1983))

Assume that there exists a supercompact cardinal.

- (1) There is a generic extension in which *GCH* holds below \aleph_{ω} and $2^{\aleph_{\omega}} = \aleph_{\omega+\alpha+1}$, where α is any countable ordinal.
- (2) There is a generic extension in which \aleph_{ω^1} is strong limit and $2^{\aleph_{\omega_1}} = \aleph_{\omega^{1+\alpha+1}}$, where α is any ordinal $< \omega_2$.

Theorem 39. (Woodin, Gitik (1989))

If there is a measurable cardinal κ of Mitchell order κ^{++} , then there exists a generic extension in which *GCH* holds below \aleph_{ω} and $2^{\aleph_{\omega}} = \aleph_{\omega+2}$.

Theorem 40. (S. Shelah(1987)) MM(Marutin's Maximum) implies RP.

Theorem 41. (S. Shelah(1989))

- 1. If \aleph_{ω} is strong limit, then $2^{\aleph_{\omega}} < \aleph_{(2} \aleph_{\theta_1} + ...$
- 2. For any limit ordinal ξ , $\aleph^{|\xi|}_{\xi} < \aleph_{(2|\xi|)} + .$
- 3. If δ is limit and $\delta = \alpha + \beta$, $\beta \neq 0$, then $\aleph^{cf(\delta)}_{\delta} < \aleph_{\alpha + (|\beta|^{cf(\beta)})}^+$.

Theorem 42. (S. Shelah(2008))

RP implies that $\lambda^{\aleph_0} = \lambda$, for any regular cardinal $\lambda \geq \aleph_2$.

=巨大基数 =

カントールの超限順序数

4

ハウスドルフの 基数計算

> ハウスドルフの弱到達 不能基数(1906)

カントールの 連続体仮説, 記述 集合 (perfect set, derived set)

ジョルダンの一般連続体仮 説の定式化

ルジン,シェルピンスキーの連続体仮説の研究

➤ ハウスドルフの特異基数(1907)

マロー 基数(1911)_巨 大基数の公理の初め

> ツェルメロの累積階 層の集合論モデル

到達不能基数(概念:シェルピンス キー,タルスキー),(言葉:クラト ウスキー)

ウラムの結果

カントールの超限順序数

可測基数

可測基数は到達不可能基数

(ウラム:1929)

ウラム ω上の超フィ ルター (1929)

到達不可能基数はウラムの意味 で可測か? •

可測基数の存在性は?

実数値可測基数(real-valued mesurable cardinal) はどの程度大きいか?

タルスキー (1943)

強コンパクト基数 ⇒ 可測基数 ⇒ 弱コンパクト基数の証明(現代的用語)

強コンパクト基数、弱コンパクト基数の定義(1962)

Results

Theorem 43. Let f and g be any functions on a non empty set S so that $|\Sigma f| \ge \aleph_0$, $F(x) \ne \emptyset$ and $|g(x)| \ge 2$ for all $x \in S$.

Assume that for each $x \in S$, there exists $y \in S$ such that $|f(x)| < |g(y)|^{|S|}$ holds.

Then we have that: $|\Sigma f| < |\Pi g|$.

(In König's Lemma, the assumption that $|f(x)| < |g(y)|^{|S|}$ is replaced by, simply, |f(x)| < |g(x)| for $x \in S$.)

Theorem 44. (10) If there is a sequence $< f_{\xi} : \xi \le \omega_2$ of functions of ω_1 into itself such that $f_{\xi} <_{BD\omega^1} f_{\zeta} <_{NS\omega^1} f_{\omega^2}$ for any ξ and ζ in ω_2 with $\xi < \zeta$, then there is a sequence $< h_{\xi} : \xi \le \omega_2 >$ of functions of ω_1 into itself such that $h_{\xi} <_{BD\omega^1} h_{\zeta}$ for any ξ and ζ with $\xi < \zeta \le \omega_2$.

Theorem 45. (10) Assume that \aleph_{ω^I} is strong limit.

Then if there is no sequence $< f_{\xi} : \xi \le \omega_2 >$ of functions of ω_I into itself such that $f_{\xi} <_{BD \omega^I} f_{\zeta}$ for $\xi < \zeta \le \omega_2$ then $2^{\aleph \omega_I} < \aleph_{\omega^2}$ holds.

Theorem 46. (12) Assume that κ is inaccessible and there exists a <-fine κ -complete <-normal $\langle \aleph_I, C_{S,\lambda} \rangle$ -distributive ideal on $S = P_{<\kappa}(\lambda)$. Then it holds that $\lambda^{<\kappa} = \lambda$.

Corollary.(Solovay) If κ is a supercompact cardinal (strongly compact cardinal), then for every regular cardinal $\lambda > \kappa$, $\lambda^{<\kappa} = \lambda$.

Problems

(H.Woodin) If κ is a strongly compact cardinal and $2^{\alpha} = \alpha^{+}$ for every cardinal $\alpha < \kappa$, then must be *GCH* hold?

Theorem 47. (A.W. Apter) Let $V \models "ZFC + \kappa$ is supercompact". There is then a partial ordering $P \in V$ and a symmetric inner model N, $V \subseteq N \subseteq V^P$, so that $N \models "ZF + \forall \delta < \kappa \ DC_{\delta} + \kappa \ is \ a \ strong$ limit cardinal $+ \forall \delta < \kappa \ (2^{\delta} = \delta^+) + \kappa \ is \ supercompact + there is a sequence <math>< A_{\alpha} : \alpha < \kappa^{++} > of \ distinct$ subsets of κ ".

5. References

- (1) Joan Bagaria, 'Natural Axioms of Set Theory and the Continuum Problem' draft?, (2013)
- (2) Janet Heine Barnett, 'Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce' draft?, (2013)
- (3) Kurt Gödel, 'What is Cantor's Continuum Problem?', American Mathematical Monthly, USA, vol.54 (1947), pp515–525.

- (4) 飯田隆 編, 'リーディングス 数学の哲学 ゲーデル以降' 勁草書房, (1995)
- (5) 角田 譲, '最近の集合論', 科学基礎論研究, vol.17, (1984) pp21-30
- (6) Y. Kanai, 'Separative Ideals and Precipitous Ideals', *Masters Thesis*, Kobe University (1981)
- (7) Y. Kanai, 'About κ^+ -saturated ideals', Mathematics Seminar Notes, Kobe University, vol.9(1), (1981) pp65-74

- (8) Y. Kanai, 'On a result of S.Shelah' (japanese), 京都大学数理解析研究所 講究録 441, (1981) pp. 27-42
- (9) Y. Kanai, 'On quotient algebras in generic extensions', Commentarii Mathematici Universitatis Sancti Pauli, vol.33(1), (1984) pp71-77
 - (10) Y. Kanai, 'On a variant of weak Chang's Conjecture', Zeitschrift math.Logik und Grundlagen d. Math.vol.37, (1991)

- (11) On a generalization of distributivity Kanai, Yasuo, Journal of Symbolic Logic, 59(3) 1055-1067 1994
- (12) Distributivity and Stationary Reflections Kanai, Yasuo, Proceedings of American Mathematical Society, 127(10) 3073-3080 1999
- (13) Y. Kanai, 'On Completeness of the Quotient Algebras $P(\kappa)/I$ ', Archive for Mathematical Logic, vol.39(2), (2000) pp75-87

- (14) On the Deductive Strength of Distributivity Axioms for Boolean Algebras in Set Theory, Kanai, Yasuo, Mathematical Logic Quarterly, 48(3) 413-426 2002
- (15) A. Kanamori, 'The Mathematical Development of Set Theory from Cantor to Cohen', The Bulletin of Symbolic Logic, vol.2 (1996), pp1–71.
- (16) A. Kanamori, 'Introduction', in *Handbook* of Set Theory Vol. 1, (2010), pp1–92.
- (17) 功力金二郎, 村田 全 訳・解説, '現代数学の系譜8 G.CANTOR著 カントル 超限集合論', 共立出版株式会社, (1979).

- (18) G.H. Moore, 'Early History of Generalized Continuum Hypothesis', The Bulletin of Symbolic Logic, vol.17 (2011), pp489–532.
- (19) 田中一之編, 'ゲーデルと20世紀の論理学'東京大学出版会,(2007)
- (20) 吉田耕作, 松原 稔 訳·解説, '現代数学の系譜 3 H.LEBESGU著 ルベーグ 積分・長さおよび面 積', 共立出版株式会社, (1969).

ご清聴

ありがとうございました!