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1. Ideals on Cradinals

Definition 1. Let x be any regular uncountable
cardinal and / a subset of P(x).

I 1s said to be a non-trivial ideal on x 1f 1t satisfies that
1) {¢} el, foreach ¢ <k,

2) X, Y el implies XuYe I,

3) Xel, YeP(k) implies X N Ye .

The dual filter of I 1s denoted by I*.



Definition 2. Let/ be a non-trivial ideal on
a regular uncountable cardinal x.
Let /4 be any cardinal.

(1) 11s said to be A-complete

if for any family { X.e I| ¢ <pu } of cardinality u <4,
UX-1sIn /.

(2) 1 1s said to be normal

if for each family { X.e I| &<k} of ],
VX: ={a<k|forsome f<a,ae Xz} i1sinl.

(3) Moreover, if Xe ITork — X €1 foreach X € x, [1s
said to be a prime ideal and the dual filter said to be
an ultrafiler on k.



Denition 3. Given an ultrafilter U on [ and L-structures
A, i € I, the ultraproduct 11,4 ; 1s the unique L-structure
B such that:

(1) The universe of B 1s the set B=11,4..

(2) For each atomic formula ¢(x,, . . ., x;) which has

at most one symbol from the vocabulary L, and
eachf, ..., f, €ll;c; 4,

B (fy . fuo) ifF 1€ T A, o(fG), . . . /ii))} < U.

The ultrapower of an L-structure 4 modulo U,
denoted by Ult, (4,U), 1s defined as the ultraproduct
11,4 =114, where A, = A for each i € I.



Definition 4. (Solovay @)Suppose that / is an ideal on
k. Then, P(x)/I 1s a Boolean algebra. If we force with
P(x)/I (without the zero element) then we geta V' -
ultrafilter G, C P(x).

With this ultrafilter we can take the ultraproduct

Ult .(V*,G,) using functions fe*¥)” in V. This gives us
a generic elementary embedding

j:V—-Ult.(V,G).

An 1deal [ 1s precipitous 1f this generic ultrapower 1s
always well-founded.



Results

Theorem 1. (7) Let A be any cardinal < x™ and
I a k-complete non-trivial 1deal on .

Then the following are equivalent.

(1) I 1s A-saturated.

(2) Each member of Ult .(V'*,G,) can be represented
by a functional of cardinality less than A.

(3) Each ordinal less than j(sat(/)") in Ult .(}*,G,) can
be represented by a functional of cardinality less than A.

In the above, a functional F'1s a set of functions such that
the set { dom(f) | f< F } 1s I-disjoint.



And, ;j is the canonical elementary embedding of V'~
into Ult .(V7,G,) 1n V[G/], and sat({) 1s the least
cardinal ¢ such that 7 1s not u-saturated.

Recall that x”1s a P-name for x 1n the ground model for
any notion of forcing P.

Since each functional of cardinality < x 1s equal to an
ordinary function in the generic extension V' [G/],

we can have that:

Corollary. (7) A x-complete non-trivial ideal 7 1s x'-
saturated 1f and only if each ordinal in Ult .(}”,G,) can be
represented by an ordinary function in V.
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2. Properties of Ideals

Definition 5. Let / be a non-tricial x-complete 1deal
on k. Then

1) I 1s said to be A-saturated 1f there 1s no /-disjoint
subfamily of P(x) — I (, this family 1s denoted by / ™)
of cardinality A, where I-disjoint means that A(B is in
[ for any pair (4,B) of distinct elements of /.

2) [ 1s said to be completive 1f the quotient algebra
P(x)/I 1s complete.

3) [ 1s said to be A-distributive 1f the quotient algebra
P(x)/I 1s A-distributive.



Here we introduce the special definable ideals.

BD, = { Xe P(x)| |X|<k}
This 1deal 1s the bounded ideal on «.

A subset C of « 1s said to be a closed unbouded set 1f
it satisfies that for any limit ordinal a < x, sup(C N o)
= ¢ and for any ¢ <k, there 1s a € C with £ <a.

NS, = { X e P(k)| for some
closed unbounded set C, Xn(C= 2 }
This 1deal 1s the non-stationary ideal on k.



Definition 6. x 1s said to be a stationary cardinal
if { M(X) | X e NS} generates a proper k-complete
normal filter.

In the above, M is an operation defined by
MX)={c<k| cf[Q)>wand Xn ¢ € NS }

Definition 7. (1) An ideal J on x 1s said to be an
M-ideal if AcJ* 1implies M(A)eJ*.

(2) An extension J of / 1s said to be u-I-closed
generated by a subset S of [7

if J={ Xcx | for some AcS, |A| <u

and [X];= Vye 7], }-



Definition 8. We define a sequence in NS, called

a canonical Mahlo sequence <M, : a < 0(k) > on «,
defined by recursion on a as follows:
My=k;ifa=p+ 1 and M(M,) 1s stationary 1n «,
M, =M(M;) ; and 1t a 1s limit, M, 1s any stationary
subset of x such that [M_]yg. = A s, [Mg]ys,

If such a set does not exist, M 1s left undefined and
set O(x) = a.



Definition 9. A A-closed Mahlo family 1s a sequence
N=<4,:a < 0> of subsets of NS,
satisfying the following conditions.
(1) A4;)=NS *, foralla<o,2 ¢ 4,
A, # A, ,and A, <4, ;.
(2) Foreacha <o,Xed, 1t XeAd,
or for some Yed , M(Y)—- X e NS..
(3) If a 1s a limit ordinal less than 0, XeA it
for some subset B of U ,_, 4, with [B| <
and for some YeNS ",
Y—XeNS, and [Y]yg. = N zep [Z] g
(4) For any set Bc U .4 with |B| <4,
if A\, ez [Z]ns, €Xists and is equal to [X] g,
then XeA , for some a < 0.



0 1s the length of N denoted by /(V), and N 1s
simply called a Mahlo family it 1 = NS "|".

Definition 10.
(1) x1s said to be greatly Mahlo 1f O(k) 2 k.

(2) x1s said to be super Mahlo 1f there 1s a Mahlo family.



Results

Theorem 2. (13) Let A be any cardinal 2 ™.
Then, there 1s a A-closed Mahlo family
if and only 1f x bears a A-NS§ -closed M-ideal.

Corollary. (13) (1) x1s super Mahlo 1f and
only 1f x bears a NS, -closed M-ideal.

(2) x1s greatly Mahlo if and only 1f x bears a
k"-NS§ -closed, 1.e. normal M-ideal.



Lemma 3. (13) LetJ be an ideal on x extending NS..
Then we have:
(1) J1s k-complete if and only if J 1s x-NS§  -closed.
(2) J1s normal and x-complete
if and only 1f J 1s k"-NS -closed

Lemma 4. (Baumgartner, Taylor and Wagon (D or
Kakuda (0) If / is an M-ideal on «, then for any

stationary subset 4 of x, [ 7 NS A.



Theorem 5. (Baumgartner, Taylor and Wagon (0
or Kakuda (0)

(1) 11s x-saturated i1f and only 1f the only non-trivial
k-I-closed 1deals extending I are of the form I'4 for
some A€ [I".

(2) Assume that / is normal. Then [ 1s x"-saturated if
and only if the only non-trivial x™-I-closed 1deals
extending / are of the form /'4 for some AE1".



Theorem 6. (12) Let A > x™ be any cardinal.
I 1s A-completive if and only if whenever J 1s a non-

trivial |D|-I-closed extension of / generated by D C [ *
with [D| </, J=I1TAforsome 4 e[,

Corollary 1. (12) / 1s completive 1f and only 1f the
only non-trivial 7 -closed 1deals extending [ are of the
form /1 A for some 4 € [ ™.

Corollary 2. (12) If x 1s a super Mahlo cardinal, then
the non-stationary ideal VS, is not completive.



Assume that « 1s a stationary cardinal and

H the k-complete normal filter generated by
{M(X)|X<NS,'}.

Let A= 1{ a <k |ais weakly inaccessible }.

Then, we have the following.

Lemma 7. (12) A is stationary in «, in fact, is in H .

Theorem 8. (12) Every stationary cardinal 1s super

Mabhlo.
Corollary. (12) (1) If x 1s a weakly compact cardinal,

then P(x) / NS_1s not complete.
(2)If « carries a k-complete x-saturated 1deal,
then P(x) / NS, 1s not complete.



Theorem 9. (13) Assume that x 1s a strongly compact
cardinal, / 1s a non-trivial normal x-complete 1deal on

x and B 1s an [-regular complete Boolean algebra.
Then if 7 1s completive, it 1s B-valid that for some

Ack”, JI4 1s completive.

Corollary 1. (13) Let M be a transitive model of
ZFC and 1n M, let k be a strongly compact
cardinal and 4 a regular uncountable cardinal less
than x. Then there exists a generic extension M[G]
in which

k = A" and x carries a non-trivial x-complete ideal
I which 1s completive but not x™-saturated.



Corollary 2. (13) )(2000) If ZFC + "“there 1s a
strongly compact cardinal® 1s consistent, so 1s ZFC +
““there 1s a regular uncountable cardinal x which bears
a non-trivial

k-complete 1deal 7 such that the quotient algebra P(x)//
1s complete but not x"-saturated.

It should be noticed that
if x carries a non-trivial x-complete ideal / which

1s completive but not x™-saturated, then x™ < 2%,



Theorem 10. (Kanamori and Shelah(1995))

If ZFC + "“there 1s a Woodin cardinal" 1s
consistent,
then so 1s ZF'C + "“there 1s a completive 1deal / on &,
2% =R, and 2%1 =R, (hence [ is not R,-saturated)".
Theorem 11. (Gitik and Shelah(1997)) For any
regular cardinal ¥ 2 ®,, NS, 1s not x"-saturated.



Problems

[s 1t true that VS, 1s not completive for any regular
cardinal A 2 &, ?
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3. Distributive Ideals
on Boolean Algebras

Definition 11. Let B be any Boolean algebra and
[ a subset of B.

[ 1s said to be an ideal on B 1f 1t satisfies that
1) 0e/,

2) a, b el 1mphes avbe ],

3) ae[, beB 1mphes anbe ],

where 0 1s the least element, and v (join) and
» (meet) are the Boolean operations.



Definition 12. (Smith & Tarski (1956))

A Boolean algebra A 1s (a,f)-distributive 1f the
following 1s satisfied:

Given any double sequence a € A*»¥

such that all the sums 2, _; a., for <o,

their :ﬂ_DI'OdU.Ct I aZ,ﬁﬂ as,, |
and all the products 11, a; 1 for f € f* exist,
then the sum 2 ga Il a; 4 also exists,

aIld WC haVe H§<a277<,8 Clén — fE,Ba H§<OC Cléf(@ .



Generalized Distributivity

Definition 13. Let B be any Boolean algebra and
fany function into P(B).

B is {A,f )-distributive if B satisfies that

for all b in B, if for each a in dom(F)0<b< V[ (a),
then there is v in I f'such that for any ¢ in [dom(f)]**
(b A lge V(@) >0)).



Quote from my doctoral Dissertation

When we construct and develop a powerful set theory
based on Zermelo-Fraenkel set theory,

it happens quite often to find out one condition, say
h(a),

from each set of conditions, say 4,

whose disjunction is consistent ( i.e., v . 4, = 1

in Boolean terms ) and arrange them into one consistent
condition (1.e., A, f(0) > 01n Boolean terms ).



Results

Lemma 12. (Pierce) Letf be any function and
let I be a A-complete 1deal 1n a u-complete
f-distributive Boolean algebra B, where 4 and u
are cardinals such that |2 f| <A and |[1 ] <.
Then the following are equivalent.

(1) I 1s f~distributive.

(2) 11s |1 f["-complete.

(3) [N f| < 4 holds.



Corollary. Let f be any function on a cardinal n and

let I be a A-complete ideal in a u-complete {v.f )-distributive
Boolean algebra B, where 4 , 1 and v are cardinals such that
v<n,|Z ftX|<Zand) | f1X| <pforall X in P_ (7).
Then if I is {v,f ?-distributive, sup.ye p.,(, [N /TX[" <2 holds.

Theorem 13. (14) The following are
equivalent in ZF' set theory.

(1) The x-Axiom of Choice.
(2) Every power set algebra is {2,x) -distributive.



Theorem 14. (14) The following are
equivalent in ZF' set theory.

(1) The Principle of Dependent Choice.

(2) Every Boolean algebra is {w,w)-distributive.

Theorem 15. (11) Let « be any cardinal and let B be
a k-complete Boolean algebra of cardinality A. Then
the following are equivalent.

() T

here exists a k-complete prime 1deal in B.

) T

here exists a {x,C, ,>-distributive ideal in B.



In the above, C, , indicates the function on A whose
range 1s the singleton {2}.

Corollary. (11) (F.G. Abramson, L.A. Harrington,
E.M. Kleinberg and W.S. Zwicker, C.A. DiPrisco and
W.S. Zwicker @9) Let « be any regular uncountable
cardinal. Then we have:

(1) kis weakly compact if and only if BD« is {x,C,,?-
distributive.

(2) « is measurable if and only if BD« is {x,C,x ,)-
distributive.

(3) «x1s strongly compact if and only if for each regular
A 2k, BDMA is (x,C, ,)-distributive.



Theorem 16. (11) The following are equivalent.

(1) Whenever o is a function on S satisfying the
conditions (*) and <z¢,:a € § >1s a sequence with
t Co(a)foreacha S, there exists a set ¢ such that
foranya € Sthereisab e Switha < b and

t No(a) = t, Na(a).

(2) There exists a fine k-complete
(x.,f )- distributive ideal on S for any /:S —k.



Theorem 17. (12) Let o be any function of S into P (7)
such that fora, b n S, u,=|P (c(a))<kxandif a<¢b

then o(a) Co(b). Assume that [ 1s a <¢-fine

x-complete <g-normal 3,/ )-distributive ideal on S,

where f1s the function on H = ({ 0 } S8 )u({ 1 }xT)

defined by f/ (0,a) = P(o(a)) and f (1,t ) =T.

Moreover, we assume that

R={aeS|cf.;(c(a))> X, } has positive ] -measure,
{aeS|teoc(a)} has I-measure one foreachte T
and 1f g 1s a function on A4 € I " with g(a) € c(a)

then there exists a subset B of 4 of positive
I -measure such that g ' B 1s constant.

Then if X 1s a <, -stationary subset of T,
R - M _(X) has [ -measure zero.



In the above, M_(X) 1s defined by
M, (X)=1a&S|cfq(o(a)) >R
and X N o(a) 1s <,-stationary in o(a) }

In Theorem 17, if we put ' = P_ (4) and a(a) = P_ (),
we get the next theorem.



Theorem 18. (12) Let S=P_ (1) and T = P_ (4),

where X, <u<n< k<A and2(" M) <k for any v < 7.
Assume that there exists a <-fine x-complete
<-normal (X ;,Cj >-distributive ideal / on S,

where 7= max.{ A 20

Then, if X 1s a <,-stationary subset of 7,
M, (X)={a<S|cfq(P(@)> R,
and XN P_(a)1s < rstatlonary n P_(a) }
has [ -measure one.



Theorem 19. (Feng and Magidor) Assume that
is A-supercompact with 4 2 k regular.

Then for every stationary S< P__,(4) and for every
tight and unbounded A< P_ (1), there 1s an Xe A such

that S n P__,(X) 1s stationary in P__ (X).



Problems

How strong is the condition that there is a «-
complete non-trivial x,C,«,?-distributive ideal on
kwithx <n?
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4. Cardinal Arithmetic

Definition 14. (1983?) Let x be a measurable cardinal.
If /', and F', are non-trivial k-complete normal
ultrafilters on x and define a relation < by :

F,< F,1f and only 1f F/,eUlt (V,F},).
This relation well-founded, and can give the rank of a
non-trivial k-complete normal ultrafilter U on x 1n <.
This rank 1s called the order of U, and the hight of < 1s
called the order of x, denoted by o(x).



Results (1)

Theorem 20.(Cantor (1891))
For every set X, |X| < |P(X)|

Theorem 21.(Cantor, Bernstein(1))
If|X] < [Y] and |X] 2 [Y], then |X] = |].

Theorem 22.(Bernstein(1901))
For every ordinal o and ,
Rﬂ&a =2 %'&H.
But this 1s incorrect when oo = 0 and u =
.



Theorem 23. (Hausdorff (1904))
For any ordinals o and 8, 8 ¥ =R ¥R ...

Theorem 24.(Konig(1905))
2 % cannot equal 8 ..

Theorem 25. (Konig {y < ®)(1905),
Jourdain{y 2 ®)(1908), Zermelo
(v any set )(1908) )

Forany a<y m,<n, 2 ,.m, <M __m,
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Theorem 26. (Godel (1938))
If ZF 1s consistent, so 1s ZFC + GCH.

Theorem 27. (P. Cohen (1963))
If ZF 1s consistent, so are ZF + 74AC and ZFC + 7 CH.

Theorem 28. (W. Easton (1964))

Assume GCH and F is a class function from the class
of regular cardinals to cardinals such that for regular
crdinals x and A with k £ A, F(x) £ F(4) and k < cf(F(k)).
Then there is a forcing extension preserving cofinalities
in which 2¥ = F(x) for every regular cardinal .



The simplest possibility is when 29%) < g
implies k9 = x*, This is known as the
Singular Cardinal Hypothesis (SCH).

Theorem 29. (J.Silver (1975)) If x 1s a singular
cardinal of uncountable cofinality, and if 2+ = A*

forall A <k, 2¥=K".

Theorem 30. (Galvin and Hajnal (1975))
If 8, 1s a strong limit cardinal of uncountable

cofinality then 2% <R A+



Theorem 31. (Jensen (1974)) If 0% does
not exist then every uncountable set of
ordinals can be covered by

a constructible set of the same
cardinality

Theorem 32. (T. Jech and K. Prikry (1976))
Let x be a regular uncountable cardinal which bears

a kx-complete non-trivial k+-saturated 1deal.
If 24 = 1% for all 1 < k, then 2¢ = k.

Theorem 33. The Covering Theorem shows that
unless 0% exists, 29% < k implies k9* = «", i.e. SCH
holds.



Thus 1n order to violate SCH we need large
cardinals.

Theorem 34. (Solovay (1974)) If x is a strongly
compact cardinal and 1 > « is singular then A9+ =

A*. This means that the SCH holds above the least
strongly compact cardinal.

Theorem 35. (J.Silver) If there 1s a supercompact
cardinal, there 1s a transitive model ZFC in which «
is a strong limit cardinal, ¢f k = w, and 2% > k™.



Theorem 36. (Magidor)
If there 1s a supercompact cardinal, there 1s a transitive

model ZFC in which & | 1s a strong limit cardinal and
Bo>R L.

Theorem 37. (Magidor)
If there 1s a 2-huge cardinal, there 1s a

transitive model ZFC in which
GCH holds below 8 and 2% =R .



Theorem 38. (Magidor(1977),Shelah(1983))
Assume that there exists a supercompact cardinal.

(1) There 1s a generic extension in which GCH holds
below X and 2% =X _. .,, where a is any countable
ordinal.

(2) There 1s a generic extension in which X, 1s strong
limit and 2%« = X . .., where a is any ordinal < ®,.

Theorem 39. (Woodin,Gitik(1989))
If there 1s a measurable cardinal x of
Mitchell order ™", then there exists
a generic extension in which GCH

holds below X and 2%e=X .



Theorem 40. (S. Shelah(1987))
MM(Marutin’s Maximum) implies RP.

Theorem 41. (S. Shelah(1989))
l. If X is strong limit,

2. For any limit ordinal &, R <& jq,+ .
3.1fois limit and 0 = a + S5, 57 O,

Theorem 42. (S. Shelah(2008))
RP implies that A% = A, for any regular cardinal A > R,.



=EXER = s Lo BeHESR B

A b—ILD (£ 4 (perfect set, derived set)
8 PR JIE R £ v
Z SaN L O— BRI
INDRARILDD HDOERIE
EMEHE \

> LSy STLEVRE
INDARILD DS EIZE o e = .
7 5 %01 906) ) E R 5 D T2
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YA— BEHAN)E FEFEEEMEES S TILEUR
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Results

Theorem 43. Letf and g be any functions on

a non empty set § so that |2f|> X,, F(x ) # ¢ and
lg(x)|>2 forall x € S.

Assume that for each x € §, there exists y € § such

that |f'(x)| <|g(»)[S!holds.
Then we have that: |Xf | <|IIg].

(In K6nig’s Lemma, the assumption that |f'(x)| < |g(y)|"°!
is replaced by, simply, |f (x)| < |g(x)| for x€S.)



Theorem 44. (10) If there is a sequence <f; : ¢ < w,
>

of functions of w, nto itself such that

f <BD 1 f <NS colf(,oz for any é and é’ln %
Wlth ¢ < C then there 1s a sequence

<h: ¢ < w, > of functions of w, mto itself such that
h: <ppe; he tor any ¢ and ¢ with ¢ << w,.

Theorem 45 (10) Assume that X, 1s strong limit.

Then 1f there 1s no sequence < f; : 5 <w,> of
functions of w, 1nto itself such that Je <gp o Je

for £ <{<w, then 2¥®1 < X  holds.



Theorem 46. (12) Assume that x 1s inaccessible and
there exists a <-fine x-complete <-normal
(R,,Cy,»-distributive ideal on S = P_ (4).

Then 1t holds that A~ = A.

Corollary.(Solovay) If x is a supercompact cardinal
(strongly compact cardinal),

then for every regular cardinal 4 > x, A~ = A.



Problems

(H.Woodin) If « 1s a strongly compact cardinal and
2% = o for every cardinal a < x, then must be GCH

hold ?

Theorem 47. (A.W. Apter) Let V="ZFC + k is
supercompact . There is then a partial ordering PcV
and a symmetric inner model N, VcNc V7,

so that N="ZF + V0 <k DC; + k is a strong

limit cardinal + V0 <k (2° = 0%) + k is supercompact
+ there is a sequence < A, : a <x"" > of distinct
subsets of .
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