Geometry of Interaction and higher order functions

Naohiko Hoshino
Kyoto University
(Mathematical logic and its Application 2016)

My research area

(Functional) programming language

- proving properties of programs
- designing programming languages
- exploring programming techniques
using mathematical models of programming languages
programs \longmapsto mathematical objects
This talk: Geometry of Interaction [Girard '89]

Computable Functions

A partial function $f: \mathbf{N} \rightharpoonup \mathbf{N}$ is computable iff

- f is definable by means of a Turing machine
- f is a recursive function
- f is representable by an untyped lambda term

How about higher order functions?

Programming language for Computatble Functions based on Scott's LCF (Logic of Computable Functions)

- The simply typed lambda calculus

$$
\begin{aligned}
& + \text { Function application }(f, x) \longmapsto f(x) \\
& + \text { Currying } \lambda x \cdot f(x, y)
\end{aligned}
$$

- Natural numbers
$+0,1,2, \ldots$
+ succ, pred, if-then-else
- Recursion on arbitrary types

Parallel Testing

Prop. There is no PCF-term

$$
\text { pconv : Nat } \Rightarrow \text { Nat } \Rightarrow \text { Nat }
$$

such that

- if $M \longrightarrow \longrightarrow^{*} 0$ then $\operatorname{pconv} M N \longrightarrow{ }^{*} 0$
- if $N \longrightarrow{ }^{*} 0$ then $\mathbf{p c o n v} M N \longrightarrow{ }^{*} 0$
- otherwise, pconv $M N \longrightarrow \infty$

Proof Use domain theory.
Remark. PCF + pconv is implementable as follows

$$
\begin{aligned}
& \operatorname{pconv} M N \longrightarrow \operatorname{pconv} N M^{\prime} \longrightarrow \cdots \\
& \longrightarrow \mathbf{p c o n v} M^{\prime} N^{\prime} \longrightarrow \operatorname{pconv} 0 N \longrightarrow 0
\end{aligned}
$$

Checking Strictness

Prop. There is no PCF-term

$$
\text { strict }:(\mathbf{N a t} \Rightarrow \text { Nat }) \Rightarrow \text { Nat }
$$

such that

- if $u(\Omega) \longrightarrow^{*} 0$ then $\operatorname{strict}(u) \longrightarrow^{*} 0$
- if $u(\Omega) \longrightarrow^{\infty}$ and $u(0) \longrightarrow^{*} 0$ then $\operatorname{strict}(u) \longrightarrow^{*} 1$
- otherwise, $\operatorname{strict}(u) \longrightarrow \infty$
where Ω : $\mathbf{N a t} \Rightarrow \mathbf{N a t}$ is defined by $\Omega x=\Omega x$.
Proof Use domain theory.
Remark. PCF+strict is implementable by checking whether evaluation of $u(0)$ touches 0 .

pconv vs strict

PCF + pconv + strict is not implementable
Prop. There is no effective operational semantics for PCF + pconv + strict such that

$$
M \xrightarrow{\text { PCF }} N \text { iff } M \xrightarrow{\text { extended }} N
$$

for any PCF-term M
Proof For any M : Nat, we can check termination of M by evaluating

$\operatorname{strict}(\lambda x: \mathbf{N a t} . \operatorname{pconv}(x$, if M then 0 else 0$))$

Extensions

$\mathrm{PCF}+\mathrm{H}$ [Longley '02] $\quad \mathrm{PCF}+$ por + exists
PCF+strict

Question

How many extensions of PCF are there?

- Given a candidate PCF+foo, it is not easy to directly check that PCF+foo is really a new extension
\Longrightarrow categorical semantics is a powerful tool for checking definability
- Geometry of Interaction provides a recipe to generate mathematical models for (extensions) of PCF

Outline

The aim: explore diversity of Geometry of Interaction

1. Overview of Geometry of Interaction recipe
2. Three concrete SK-algebras based on the recipe
3. Main results: characterization of two categories in domain theory

- Coherence spaces (PCF+strict+gustave)
- Scott domains (PCF+por+exists)
(c.f. characterization of hypercoherence spaces (PCF $+\mathbf{H}$))
[Oosten '99],[Longley '02]

Geometry of Interaction

Recipe for SK-algebras [Abramsky, Haghverdi and Scott '02]

1. Choose a traced symmetric monoidal category \mathcal{C}
2. Apply Int-construction
3. Solve a domain equation in $\operatorname{Int}(\mathcal{C})$

Then you will get an SK-algebra.
Def. An SK-algebra is a set A with a binary application and $S, K \in A$ such that

$$
S x y z=x z(y z) \quad K x y=x
$$

Partial function

Def $f, g: \mathbf{N} \rightharpoonup \mathbf{N}$
$(f \cdot g)(x)=y$ iff $f(2 x+1)=2 y+1$ or

$$
\begin{gathered}
f(2 x+1)=2 x_{1} \& g\left(x_{1}\right)=y_{1} \& \\
f\left(\left[x, y_{1}\right]\right)=2 x_{2} \& g\left(x_{2}\right)=y_{2} \& \\
\bigvee_{\vec{x}, \vec{y}} f\left(\left[x, y_{1}, y_{2}\right]\right)=2 x_{3} \& g\left(x_{3}\right)=y_{3} \& \\
\vdots \\
f\left(\left[x, y_{1}, \ldots, y_{n}\right]\right)=2 y+1
\end{gathered}
$$

Prop. $\operatorname{Pfn}(\mathbf{N}, \mathbf{N})$ is an SK-algebra.

Partial function

Def $f, g: \mathbf{N} \rightharpoonup \mathbf{N}$
$(f \cdot g)(x)=y$ iff $f(2 x+1)=2 y+1$ or

$$
\begin{aligned}
& f(2 x+1)=2 x_{1} \& g\left(x_{1}\right)=y_{1} \& \\
& f\left(\left[x, y_{1}\right]\right)=2 x_{2} \& g\left(x_{2}\right)=y_{2} \&
\end{aligned}
$$

$$
\mathbf{N}^{*} \cong 2 \mathbf{N} \quad \bigvee_{\vec{x}, \vec{y}} f\left(\left[x, y_{1}, y_{2}\right]\right)=2 x_{3} \& g\left(x_{3}\right)=y_{3} \&
$$

$$
\underset{\longrightarrow}{f\left(\left[x, y_{1}, \ldots, y_{n}\right]\right)}=2 y+1
$$

Prop. $\operatorname{Pfn}(\mathbf{N}, \mathbf{N})$ is an SK-algebra.

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Interaction

- f can remember interaction history while g can not
- both f and g behave deterministically

Relations

Def $f, g: \mathbf{N} \rightarrow 2^{\mathbf{N}}$
$(f \cdot g)(x) \ni y$ iff $f(2 x+1) \ni 2 y+1$ or

$$
\begin{gathered}
f(2 x+1) \ni 2 x_{1} \& g\left(x_{1}\right) \ni y_{1} \& \\
f\left(\left[x, y_{1}\right]\right) \ni 2 x_{2} \& g\left(x_{2}\right) \ni y_{2} \& \\
\bigvee_{\vec{x}, \vec{y}} \quad f\left(\left[x, y_{1}, y_{2}\right]\right) \ni 2 x_{3} \& g\left(x_{3}\right) \ni y_{3} \& \\
\vdots \\
f\left(\left[x, y_{1}, \ldots, y_{n}\right]\right) \ni 2 y+1
\end{gathered}
$$

Prop. $\operatorname{Rel}(\mathbf{N}, \mathbf{N})$ is an SK-algebra.

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically

Weighted Relations

Def $f, g: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N} \cup\{\infty\}$
$(f \cdot g)(x, y)=f(2 x+1,2 y+1)+$

$$
\begin{gathered}
f\left(2 x+1,2 x_{1}\right) \times g\left(x_{1}, y_{1}\right) \times \\
\\
\sum_{\vec{x}, \vec{y}} f\left(\left[x, y_{1}\right], 2 x_{2}\right) \times g\left(x_{2}, y_{2}\right) \times \\
f\left(\left[x, y_{1}, y_{2}\right], 2 x_{3}\right) \times g\left(x_{3}, y_{3}\right) \times \\
\vdots \\
\\
f\left(\left[x, y_{1}, \ldots, y_{n}\right], 2 y+1\right)
\end{gathered}
$$

Prop. $\operatorname{WRel}(\mathbf{N}, \mathbf{N})$ is an SK-algebra.

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically
- $f(x, y)=2 \Longleftrightarrow f$ outputs two y

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically
- $f(x, y)=2 \Longleftrightarrow f$ outputs two y

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically
- $f(x, y)=2 \Longleftrightarrow f$ outputs two y

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically
- $f(x, y)=2 \Longleftrightarrow f$ outputs two y

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically
- $f(x, y)=2 \Longleftrightarrow f$ outputs two y

Interaction

- f can remember interaction history while g can not
- f and g may behave nondeterministically
- $f(x, y)=2 \Longleftrightarrow f$ outputs two y

PER

Def. Let X and Y be partial equivalence relations on an SK-algebra A. A realizable function from X to Y is a function

$$
f: A / X \rightarrow A / Y
$$

such that there is a realizer $r \in A$ of f, i.e.,

$$
f[a]_{X}=[r a]_{Y}
$$

for any $[a]_{X} \in A / X$.
$\operatorname{Prop} \operatorname{Per}(A)$ is a cartesian closed category with a natural number object

Main Results

Thm The full subCCC of Cpo generated by \mathbf{N}_{\perp} is a full subcategory of $\operatorname{Per}(\operatorname{Rel}(\mathbf{N}, \mathbf{N}))$

Thm The full subCCC of Coh generated by \mathbf{N}_{\perp} is a full subcategory of $\operatorname{Per}(\mathbf{W R e l}(\mathbf{N}, \mathbf{N}))$

Thm [0osten'99] The full subCCC of $\mathbf{H C o h}$ generated by \mathbf{N}_{\perp} is a full subcategory of $\operatorname{Per}(\operatorname{Pfn}(\mathbf{N}, \mathbf{N}))$

Remark

Cpo is a fully abstract model of PCF+ por+exists [Plotkin '77] Coh is a fully abstract model of PCF+strict+gustave
[Paolini '06] $\operatorname{Per}(\mathbf{P f n}(\mathbf{N}, \mathbf{N}))$ is a fully abstract model of PCF $+\mathbf{H}_{\left[\text {Longley }{ }^{\prime} 02\right]}$

Outline of Proof

1. We define a category $\mathbf{r C o h}$ of coherence spaces "realized by $\mathbf{W R e l}(\mathbf{N}, \mathbf{N})$ "
2. Show that U : $\mathbf{r C o h} \rightarrow \mathbf{C o h}$ is an embedding
3. Show that $U^{\prime}: \mathbf{r C o h} \rightarrow \operatorname{Per}(\mathbf{W R e l}(\mathbf{N}, \mathbf{N}))$ is an embedding
4. Show that $\mathbf{r C o h}$ is cartesian closed and has \mathbf{N}_{\perp}

Notations:

$$
\begin{aligned}
A_{\text {Rel }} & =\operatorname{Rel}(\mathbf{N}, \mathbf{N}) \\
A_{\mathrm{WRel}} & =\mathbf{W R e l}(\mathbf{N}, \mathbf{N}) \\
A_{\mathbf{P f n}} & =\operatorname{Pfn}(\mathbf{N}, \mathbf{N})
\end{aligned}
$$

Example

A program

$$
\text { pconv : Nat } \Rightarrow \text { Nat } \Rightarrow \text { Nat }
$$

such that

- if $M \longrightarrow{ }^{*} 0$ then $\operatorname{pconv} M N \longrightarrow{ }^{*} 0$
- if $N \longrightarrow{ }^{*} 0$ then pconv $M N \longrightarrow{ }^{*} 0$
- otherwise, pconv $M N \longrightarrow{ }^{\infty}$
can be modeled in $\operatorname{Per}\left(A_{\text {Rel }}\right)$
can not be modeled in $\operatorname{Per}\left(A_{\mathbf{P f n}}\right)$
can not be modeled in $\operatorname{Per}\left(A_{\text {WRel }}\right)$

pconv $\in \operatorname{Per}\left(A_{\text {Rel }}\right)$

SITUATION:

You want to drink beer. There are two people: one exchanges a coin for a bottle of beer one exchanges a coin for a bottle of beer or eats your coin

GOAL:
Get a bottle of beer
SOLUTION:
Try both

$\operatorname{pconv} \notin \operatorname{Per}\left(A_{\mathbf{P f n}}\right)$

SITUATION:

You want to drink beer. There are two people: one exchanges a coin for a bottle of beer one exchanges a coin for a bottle of beer or eat your coin

GOAL:
Get a bottle of beer
CONDITION:
You only have one coin

pconv $\notin \operatorname{Per}\left(A_{\text {WRel }}\right)$

SITUATION:

You want to drink beer. There are two people: one exchanges a coin for a bottle of beer one exchanges a coin for a bottle of beer or eat your coin

GOAL:
Get a bottle of beer
CONDITION:
You should get exactly one bottle of beer

Example

A program

$$
\text { gustave : Nat } \Rightarrow \text { Nat } \Rightarrow \text { Nat } \Rightarrow \text { Nat }
$$

such that

- if $M \longrightarrow \longrightarrow^{*} 0$ and $N \longrightarrow{ }^{*} 1$ then gustave $M N L \longrightarrow{ }^{*} 0$
- if $N \longrightarrow \longrightarrow^{*} 0$ and $L \longrightarrow * 1$ then gustave $M N L \longrightarrow{ }^{*} 1$
\bullet if $L \longrightarrow{ }^{*} 0$ and $M \longrightarrow{ }^{*} 1$ then gustave $M N L \longrightarrow{ }^{*} 2$
- otherwise, gustave $M N L \longrightarrow \infty$
can be modeled in $\operatorname{Per}\left(A_{\text {Rel }}\right)$
can not be modeled in $\operatorname{Per}\left(A_{\text {Pfn }}\right)$
can be modeled in $\operatorname{Per}\left(A_{\text {WRel }}\right)$

gustave $\in \operatorname{Per}\left(A_{\text {Rel }}\right)$

SITUATION:
You want to drink beer. There are three people: Alice exchanges a coin for a ticket Bob exchanges a ticket for a bottle of beer Carol eats metal and paper

But you don't know who is Carol.
GOAL: Get a bottle of beer, and report who is Carol
SOLUTION: Try all patterns

gustave $\in \operatorname{Per}\left(A_{\text {WRel }}\right)$

SITUATION:

You want to drink beer. There are three people: Alice exchanges a coin for a ticket
Bob exchanges a ticket for a bottle of beer
Carol eats metal and paper
But you don't know who is Carol.
GOAL: Get a bottle of beer, and report who is Carol
CONDITION: You should get exactly one bottle of beer
SOLUTION: Try all patterns

gustave $\notin \operatorname{Per}\left(A_{\mathbf{P f n}}\right)$

SITUATION:
You want to drink beer. There are three people:
Alice exchanges a coin for a ticket Bob exchanges a ticket for a bottle of beer Carol eats metal and paper

But you don't know who is Carol.
GOAL: Get a bottle of beer, and report who is Carol
CONDITION: You only have one coin

Example

A function

$$
\text { strict }:(\text { Nat } \Rightarrow \text { Nat }) \Rightarrow \text { Nat }
$$

such that

- if $u(\Omega) \longrightarrow^{*} 0$ then $\operatorname{strict}(u) \longrightarrow{ }^{*} 0$
- if $u(\Omega) \longrightarrow^{\infty}$ and $u(0) \longrightarrow^{*} 0$ then $\operatorname{strict}(u) \longrightarrow{ }^{*} 1$
- otherwise, $\boldsymbol{\operatorname { s t r i c t }}(u) \longrightarrow \infty$
where Ω : $\mathbf{N a t} \Rightarrow \mathbf{N a t}$ is defined by $\Omega x=\Omega x$.
can be modeled in $\operatorname{Per}\left(A_{\text {Rel }}\right)$
can not be modeled in $\operatorname{Per}\left(A_{\text {Pfn }}\right)$
can be modeled in $\operatorname{Per}\left(A_{\text {WRel }}\right)$

strict $\in \operatorname{Per}\left(A_{\mathbf{P f n}}\right)$

SITUATION: A vending machine behaves as follows
1: button \rightarrow coin \rightarrow a bottle of beer
2: button \rightarrow a bottle of beer
Goal: Check the vending machine works correctly
ASSUMPTION: the vending machine is deterministic
SOLUTION: Try!

strict $\notin \operatorname{Per}\left(A_{\text {Rel }}\right)$

SITUATION: A vending machine behaves as follows
1: button \rightarrow coin \rightarrow a bottle of beer
2: button \rightarrow a bottle of beer
Goal: Check that the vending machine works correctly
ASSUMPTION: the vending machine is nondeterministic

strict $\in \operatorname{Per}\left(A_{\mathbf{W R e l}}\right)$

SITUATION: A vending machine behaves as follows
1: button \rightarrow coin \rightarrow a bottle of beer
2: button \rightarrow a bottle of beer
Goal: Check that the vending machine works correctly
ASSUMPTION1: the vending machine is nondeterministic
ASSUMPTION2: one bottle of beer for at most one coin
SOLUTION: Try!

There are many SK-algebra to be explored

- $\mathbf{N} \rightarrow\left(\mathbf{R}_{+} \cup\{\infty\}\right)^{\mathbf{N}}$
- $\left\{d: \mathbf{N} \rightarrow[0,1]^{\mathbf{N}} \mid \sum_{n} d(n) \leq 1\right\}$
- Mealy (N, N)
- nMealy (\mathbf{N}, \mathbf{N})
- pMealy ($\mathbf{N}, \mathbf{N})$

Thank you.

