
Geometry of Interaction
and

higher order functions

Naohiko Hoshino
Kyoto University

(Mathematical logic and its Application 2016)



My research area
(Functional) programming language

• proving properties of programs

• designing programming languages

• exploring programming techniques

using mathematical models of programming languages

programs 7−→ mathematical objects

This talk: Geometry of Interaction [Girard ’89]



Computable Functions

A partial function f : N ⇀ N is computable iff

• f is definable by means of a Turing machine

• f is a recursive function

• f is representable by an untyped lambda term

How about higher order functions?



PCF
Programming language for Computatble Functions based
on Scott’s LCF (Logic of Computable Functions)

• The simply typed lambda calculus

+ Function application (f, x) 7−→ f(x)

+ Currying λx.f(x, y)

• Natural numbers

+ 0, 1, 2, . . .

+ succ, pred, if-then-else

• Recursion on arbitrary types

[Plotkin ’77]



Parallel Testing
Prop. There is no PCF-term

pconv : Nat ⇒ Nat ⇒ Nat

such that

• if M −→∗ 0 then pconvM N −→∗ 0

• if N −→∗ 0 then pconvM N −→∗ 0

• otherwise, pconvM N −→∞

Proof Use domain theory.

Remark. PCF+pconv is implementable as follows

pconvM N −→ pconvN M ′ −→ · · ·

−→ pconvM ′ N ′ −→ pconv 0N −→ 0



Checking Strictness
Prop. There is no PCF-term

strict : (Nat ⇒ Nat) ⇒ Nat

such that

• if u(Ω) −→∗ 0 then strict(u) −→∗ 0

• if u(Ω) −→∞ and u(0) −→∗ 0 then strict(u) −→∗ 1

• otherwise, strict(u) −→∞

where Ω: Nat ⇒ Nat is defined by Ω x = Ω x.

Proof Use domain theory.

Remark. PCF+strict is implementable by checking
whether evaluation of u(0) touches 0.



pconv vs strict
PCF+pconv+strict is not implementable

Prop. There is no effective operational semantics for
PCF+pconv+strict such that

M
PCF
−−−→ N iff M

extended
−−−−−→ N

for any PCF-term M

Proof For any M : Nat, we can check termination of M
by evaluating

strict(λx : Nat.pconv(x, if M then 0 else0))



Extensions

PCF

PCF+strict PCF+pconv

PCF+H

PCF+strict+gustave

PCF+por+exists
[Plotkin ’77]

[Paolini ’06]

[Longley ’02]



Question

How many extensions of PCF are there?

• Given a candidate PCF+foo, it is not easy to directly
check that PCF+foo is really a new extension

=⇒ categorical semantics is a powerful tool for
checking definability

• Geometry of Interaction provides a recipe to generate
mathematical models for (extensions) of PCF



Outline
The aim: explore diversity of Geometry of Interaction

1. Overview of Geometry of Interaction recipe

2. Three concrete SK-algebras based on the recipe

3. Main results: characterization of two categories in
domain theory

• Coherence spaces (PCF+strict+gustave)

• Scott domains (PCF+por+exists)

(c.f. characterization of hypercoherence spaces (PCF+H))
[Oosten ’99],[Longley ’02]



Geometry of Interaction
Recipe for SK-algebras [Abramsky, Haghverdi and Scott ’02]

1. Choose a traced symmetric monoidal category C

2. Apply Int-construction

3. Solve a domain equation in Int(C)

Then you will get an SK-algebra.

Def. An SK-algebra is a set A with a binary application

and S,K ∈ A such that

Sxyz = xz(yz) Kxy = x



Partial function
Def f, g : N ⇀ N

(f · g)(x) = y iff f(2x+ 1) = 2y + 1 or

∨
~x,~y

f(2x+ 1) = 2x1 & g(x1) = y1 &

f([x, y1]) = 2x2 & g(x2) = y2 &

f([x, y1, y2]) = 2x3 & g(x3) = y3 &

...

f([x, y1, . . . , yn]) = 2y + 1

Prop. Pfn(N,N) is an SK-algebra.



Partial function
Def f, g : N ⇀ N

(f · g)(x) = y iff f(2x+ 1) = 2y + 1 or

∨
~x,~y

f(2x+ 1) = 2x1 & g(x1) = y1 &

f([x, y1]) = 2x2 & g(x2) = y2 &

f([x, y1, y2]) = 2x3 & g(x3) = y3 &

...

f([x, y1, . . . , yn]) = 2y + 1

Prop. Pfn(N,N) is an SK-algebra.

N∗ ∼= 2N



Interaction

f

g

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g

0

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g3

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g 4

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g
4

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g9

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g 3

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g
3

• f can remember interaction history while g can not

• both f and g behave deterministically



Interaction

f

g

7

• f can remember interaction history while g can not

• both f and g behave deterministically



Relations
Def f, g : N → 2N

(f · g)(x) ∋ y iff f(2x+ 1) ∋ 2y + 1 or

∨
~x,~y

f(2x+ 1) ∋ 2x1 & g(x1) ∋ y1 &

f([x, y1]) ∋ 2x2 & g(x2) ∋ y2 &

f([x, y1, y2]) ∋ 2x3 & g(x3) ∋ y3 &

...

f([x, y1, . . . , yn]) ∋ 2y + 1

Prop. Rel(N,N) is an SK-algebra.



Interaction

f

g

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Interaction

f

g

0

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Interaction

f

g

3

10

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Interaction

f

g 4 17

3

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Interaction

f

g
4 17

3

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Interaction

f

g

3 7

9

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Interaction

f

g

3 7

• f can remember interaction history while g can not

• f and g may behave nondeterministically



Weighted Relations
Def f, g : N×N → N ∪ {∞}

(f · g)(x, y) = f(2x+ 1, 2y + 1) +

∑

~x,~y

f(2x+ 1, 2x1) × g(x1, y1) ×

f([x, y1], 2x2) × g(x2, y2) ×

f([x, y1, y2], 2x3) × g(x3, y3) ×

...

f([x, y1, . . . , yn], 2y + 1)

Prop. WRel(N,N) is an SK-algebra.



Interaction

f

g

• f can remember interaction history while g can not

• f and g may behave nondeterministically

• f(x, y) = 2 ⇐⇒ f outputs two y



Interaction

f

g

0

• f can remember interaction history while g can not

• f and g may behave nondeterministically

• f(x, y) = 2 ⇐⇒ f outputs two y



Interaction

f

g

3 3

10

• f can remember interaction history while g can not

• f and g may behave nondeterministically

• f(x, y) = 2 ⇐⇒ f outputs two y



Interaction

f

g 4 5

3 3

• f can remember interaction history while g can not

• f and g may behave nondeterministically

• f(x, y) = 2 ⇐⇒ f outputs two y



Interaction

f

g
4 5

3 3

• f can remember interaction history while g can not

• f and g may behave nondeterministically

• f(x, y) = 2 ⇐⇒ f outputs two y



Interaction

f

g

3 3 5 7

• f can remember interaction history while g can not

• f and g may behave nondeterministically

• f(x, y) = 2 ⇐⇒ f outputs two y



PER
Def. Let X and Y be partial equivalence relations on
an SK-algebra A. A realizable function from X to Y
is a function

f : A/X → A/Y

such that there is a realizer r ∈ A of f , i.e.,

f [a]X = [ra]Y

for any [a]X ∈ A/X .

Prop Per(A) is a cartesian closed category with a natural
number object



Main Results
Thm The full subCCC of Cpo generated by N⊥ is a full
subcategory of Per(Rel(N,N))

Thm The full subCCC of Coh generated by N⊥ is a full
subcategory of Per(WRel(N,N))

Thm [Oosten ’99] The full subCCC of HCoh generated by N⊥

is a full subcategory of Per(Pfn(N,N))

Remark

Cpo is a fully abstract model of PCF+por+exists [Plotkin ’77]

Coh is a fully abstract model of PCF+strict+gustave
[Paolini ’06]

Per(Pfn(N,N)) is a fully abstract model of PCF+H [Longley ’02]



Outline of Proof

1. We define a category rCoh of coherence spaces
“realized by WRel(N,N)”

2. Show that U : rCoh → Coh is an embedding

3. Show that U ′ : rCoh → Per(WRel(N,N)) is an
embedding

4. Show that rCoh is cartesian closed and has N⊥



Notations:

ARel = Rel(N,N)

AWRel = WRel(N,N)

APfn = Pfn(N,N)



Example

A program

pconv : Nat ⇒ Nat ⇒ Nat

such that

• if M −→∗ 0 then pconvM N −→∗ 0

• if N −→∗ 0 then pconvM N −→∗ 0

• otherwise, pconvM N −→∞

can be modeled in Per(ARel)

can not be modeled in Per(APfn)

can not be modeled in Per(AWRel)



pconv ∈ Per(ARel)

SITUATION:

You want to drink beer. There are two people:

one exchanges a coin for a bottle of beer

one exchanges a coin for a bottle of beer or eats your coin

GOAL:

Get a bottle of beer

SOLUTION:

Try both



pconv /∈ Per(APfn)

SITUATION:

You want to drink beer. There are two people:

one exchanges a coin for a bottle of beer

one exchanges a coin for a bottle of beer or eat your coin

GOAL:

Get a bottle of beer

CONDITION:

You only have one coin



pconv /∈ Per(AWRel)

SITUATION:

You want to drink beer. There are two people:
one exchanges a coin for a bottle of beer

one exchanges a coin for a bottle of beer or eat your coin

GOAL:

Get a bottle of beer

CONDITION:

You should get exactly one bottle of beer



Example
A program

gustave : Nat ⇒ Nat ⇒ Nat ⇒ Nat

such that

• if M −→∗ 0 and N −→∗ 1 then gustaveM N L −→∗ 0

• if N −→∗ 0 and L −→∗ 1 then gustaveM N L −→∗ 1

• if L −→∗ 0 and M −→∗ 1 then gustaveM N L −→∗ 2

• otherwise, gustaveM N L −→∞

can be modeled in Per(ARel)

can not be modeled in Per(APfn)

can be modeled in Per(AWRel)



gustave ∈ Per(ARel)
SITUATION:

You want to drink beer. There are three people:
Alice exchanges a coin for a ticket
Bob exchanges a ticket for a bottle of beer
Carol eats metal and paper

But you don’t know who is Carol.

GOAL: Get a bottle of beer, and report who is Carol

SOLUTION: Try all patterns



gustave ∈ Per(AWRel)
SITUATION:

You want to drink beer. There are three people:
Alice exchanges a coin for a ticket
Bob exchanges a ticket for a bottle of beer
Carol eats metal and paper

But you don’t know who is Carol.

GOAL: Get a bottle of beer, and report who is Carol

CONDITION: You should get exactly one bottle of beer

SOLUTION: Try all patterns



gustave /∈ Per(APfn)
SITUATION:

You want to drink beer. There are three people:
Alice exchanges a coin for a ticket
Bob exchanges a ticket for a bottle of beer
Carol eats metal and paper

But you don’t know who is Carol.

GOAL: Get a bottle of beer, and report who is Carol

CONDITION: You only have one coin



Example
A function

strict : (Nat ⇒ Nat) ⇒ Nat

such that

• if u(Ω) −→∗ 0 then strict(u) −→∗ 0

• if u(Ω) −→∞ and u(0) −→∗ 0 then strict(u) −→∗ 1

• otherwise, strict(u) −→∞

where Ω: Nat ⇒ Nat is defined by Ω x = Ω x.

can be modeled in Per(ARel)

can not be modeled in Per(APfn)

can be modeled in Per(AWRel)



strict ∈ Per(APfn)

SITUATION: A vending machine behaves as follows

1: button → coin → a bottle of beer

2: button → a bottle of beer

Goal: Check the vending machine works correctly

ASSUMPTION: the vending machine is deterministic

SOLUTION: Try!



strict /∈ Per(ARel)

SITUATION: A vending machine behaves as follows

1: button → coin → a bottle of beer

2: button → a bottle of beer

Goal: Check that the vending machine works correctly

ASSUMPTION: the vending machine is nondeterministic



strict ∈ Per(AWRel)
SITUATION: A vending machine behaves as follows

1: button → coin → a bottle of beer

2: button → a bottle of beer

Goal: Check that the vending machine works correctly

ASSUMPTION1: the vending machine is nondeterministic

ASSUMPTION2: one bottle of beer for at most one coin

SOLUTION: Try!



There are many SK-algebra to be explored

• N → (R+ ∪ {∞})N

• {d : N → [0, 1]N |
∑

n d(n) ≤ 1}

• Mealy(N,N)

• nMealy(N,N)

• pMealy(N,N)

Thank you.


