From Noumi's representation to elliptic K-matrices

Jasper Stokman

University of Amsterdam and Radboud University Nijmegen

March, 4, 2015

March, 4, 2015

1 M. Noumi, H. Yamada, K. Mimachi, *Finite-dimensional representations of the quantum group* $GL_q(n, \mathbb{C})$ *and the zonal spherical functions on* $U_q(n-1)\setminus U_q(n)$, Japanese J. Math. **19** (1993), no. 1, 31–80.

- **1** M. Noumi, H. Yamada, K. Mimachi, Finite-dimensional representations of the quantum group $GL_q(n,\mathbb{C})$ and the zonal spherical functions on $U_q(n-1)\setminus U_q(n)$, Japanese J. Math. **19** (1993), no. 1, 31–80.
- M. Noumi, Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16–77.

- M. Noumi, H. Yamada, K. Mimachi, Finite-dimensional representations of the quantum group $GL_q(n,\mathbb{C})$ and the zonal spherical functions on $U_q(n-1)\setminus U_q(n)$, Japanese J. Math. **19** (1993), no. 1, 31–80.
- M. Noumi, Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16–77.
- M. Noumi, Macdonald-Koornwinder polynomials and affine Hecke rings, Surikaisekikenkyusho Kokyuroku 919 (1995), 44–55.

This talk:

highlight the role of Noumi's representation of the affine Hecke algebra in:

 solving the system of basic hypergeometric difference equations (non-polynomial theory).

Main references:

- J.V. Stokman, The c-function expansion of a basic hypergeometric function associated to root systems, Ann. of Math. (2) 179 (2014), no. 1, 253–299.
- 2 J.V. Stokman, Connection coefficients for basic Harish-Chandra series, Adv. Math. 250 (2014), 351–386.

3 / 23

This talk:

highlight the role of Noumi's representation of the affine Hecke algebra in:

• solving the system of basic hypergeometric difference equations (non-polynomial theory).

Main references:

- J.V. Stokman, The c-function expansion of a basic hypergeometric function associated to root systems, Ann. of Math. (2) 179 (2014), no. 1, 253–299.
- J.V. Stokman, Connection coefficients for basic Harish-Chandra series, Adv. Math. 250 (2014), 351–386.
- integrable lattice models with boundaries.

Main references:

- J.V. Stokman, B.H.M. Vlaar, *Koornwinder polynomials and the XXZ spin chain*, arXiv:1310.5545, J. Approx. Th. (to appear).
- J.V. Stokman, Connection problems for quantum affine KZ equations and integrable lattice models, arXiv:1410.4383, Comm. Math. Phys. (to appear).

March, 4, 2015

Notations

Coxeter graph

of affine type C_n ($n \ge 2$). Associated:

Notations

Coxeter graph

of affine type C_n ($n \ge 2$). Associated:

- **i.** affine Weyl group $W = \langle s_0, \dots, s_n \rangle$,
- ii. affine Hecke algebra $H_{\underline{k}} = H_{k_0,k,k_n} = \mathbb{C}\langle T_0,\ldots,T_n \rangle$.

4 / 23

Notations

Coxeter graph

of affine type C_n $(n \ge 2)$. Associated:

- **i.** affine Weyl group $W = \langle s_0, \dots, s_n \rangle$,
- ii. affine Hecke algebra $H_{\underline{k}} = H_{k_0,k,k_n} = \mathbb{C}\langle T_0,\ldots,T_n \rangle$.

Braid relations according to the Coxeter graph and quadratic relations:

$$s_j^2 = 1,$$
 $(T_j - k_j)(T_j + k_j^{-1}) = 0$

for $0 \le j \le n$, with $k_i := k$ if $1 \le i < n$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Difference-reflection operators

W-action on \mathbb{C}^n :

$$s_0\underline{z} := (1 - z_1, z_2, \dots, z_n),$$

 $s_i\underline{z} := (z_1, \dots, z_{i-1}, z_{i+1}, z_i, z_{i+2}, \dots, z_n),$
 $s_n\underline{z} := (z_1, \dots, z_{n-1}, -z_n)$

for $1 \le i < n$. Contragredient action $(w \cdot f)(\underline{z}) := f(w^{-1}\underline{z})$ on the field \mathcal{M} of meromorphic functions on \mathbb{C}^n .

Difference-reflection operators

W-action on \mathbb{C}^n :

$$s_{0\underline{z}} := (1 - z_1, z_2, \dots, z_n),$$

 $s_{i\underline{z}} := (z_1, \dots, z_{i-1}, z_{i+1}, z_i, z_{i+2}, \dots, z_n),$
 $s_{n\underline{z}} := (z_1, \dots, z_{n-1}, -z_n)$

for $1 \le i < n$. Contragredient action $(w \cdot f)(\underline{z}) := f(w^{-1}\underline{z})$ on the field \mathcal{M} of meromorphic functions on \mathbb{C}^n .

Decomposition: $W = W_0 \ltimes \tau(\mathbb{Z}^n)$ with

- i. $W_0 = \langle s_1, \dots, s_n \rangle$ acting on \mathcal{M} by permutations and sign changes of the variables (hyperoctahedral group),
- ii. Free rank n Abelian subgroup $au(\mathbb{Z}^n)$ of W acting on \mathbb{C}^n by

$$\tau(\lambda)\underline{z} := \underline{z} + \lambda, \qquad \lambda \in \mathbb{Z}^n.$$

Remark:
$$\tau(\epsilon_i) = s_{i-1} \cdots s_1 s_0 s_1 \cdots s_{n-1} s_n s_{n-1} \cdots s_i$$
.

Difference-reflection operators

Definition

The algebra $\mathcal D$ of difference-reflection operators is defined as follows:

- i. $\mathcal{D} = \mathcal{M} \otimes \mathbb{C}[W]$ as a complex vectorspace;
- ii. For $D = \sum_{v \in W} a_v v, D' = \sum_{w \in W} b_w w \in \mathcal{D}$ $(a_v, b_w \in \mathcal{M})$:

$$DD' := \sum_{u \in W} \left(\sum_{v,w:vw=u} a_v(v \cdot b_w) \right) u.$$

Remark: \mathcal{D} canonically acts on \mathcal{M} as difference-reflection operators:

$$Df:=\sum_{v\in W}a_v(v\cdot f)$$

for $D = \sum_{v \in W} a_v v \in \mathcal{D}$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Noumi's representation

Fixed pair $\underline{u} = (u_0, u_n)$ of nonzero complex numbers and 0 < q < 1.

Notation:

$$\begin{split} c_0(\underline{z}) &:= k_0^{-1} \frac{(1 - q^{\frac{1}{2}} k_0 u_0 q^{-z_1}) (1 + q^{\frac{1}{2}} k_0 u_0^{-1} q^{-z_1})}{(1 - q^{1 - 2z_1})}, \\ c_i(\underline{z}) &:= k^{-1} \frac{(1 - k^2 q^{z_i - z_{i+1}})}{(1 - q^{z_i - z_{i+1}})}, \qquad 1 \leq i < n, \\ c_n(\underline{z}) &:= k_n^{-1} \frac{(1 - k_n u_n q^{z_n}) (1 + k_n u_n^{-1} q^{z_n})}{(1 - q^{2z_n})} \end{split}$$

Theorem (Noumi)

There exists a unique monomorphism $\iota^{\underline{u},q}_{\underline{k}}: H_{\underline{k}} \hookrightarrow \mathcal{D}$ such that

$$\iota_k^{\underline{u},q}(T_j)=k_j+c_j(s_j-1), \qquad 0\leq j\leq n.$$

Bernstein-Zelevinsky-Lusztig

Structure of the affine Hecke algebra H_k :

i. The Hecke algebraic versions

$$Y_i := T_{i-1}^{-1} \cdots T_1^{-1} T_0 T_1 \cdots T_{n-1} T_n T_{n-1} \cdots T_i$$

of $\tau(\epsilon_i) \in W$ pairwise commute in $H_{\underline{k}}$ $(1 \le i \le n)$;

ii. The multiplication map is a linear isomorphism

$$H_{\underline{k};0} \otimes \mathcal{A}_Y \stackrel{\sim}{\longrightarrow} H_{\underline{k}}$$

where $H_{\underline{k};0} = \mathbb{C}\langle T_1, \dots, T_n \rangle$ and $A_Y = \mathbb{C}\langle Y_1^{\pm 1}, \dots, Y_n^{\pm 1} \rangle$.

iii. $\mathbb{C}[t_1^{\pm 1},\ldots,t_n^{\pm 1}]^{W_0} \simeq Z(H_{\underline{k}})$ by $p \mapsto p(Y_1,\ldots,Y_n)$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

The commuting difference operators

Notations:

- i. DO := $\mathcal{M}\#\tau(\mathbb{Z}^n)\subset\mathcal{D}$ subalgebra of difference operators.
- ii. Restriction map Res : $\mathcal{D} \rightarrow \mathsf{DO}$:

$$\mathsf{Res}\Bigl(\sum_{u\in W_0,\lambda\in\mathbb{Z}^n} \mathsf{a}_{\lambda,u} au(\lambda)u\Bigr) := \sum_{\lambda\in\mathbb{Z}^n} \Bigl(\sum_{u\in W_0} \mathsf{a}_{\lambda,u}\Bigr) au(\lambda).$$

Theorem (Noumi)

The W₀-equivariant difference operators

$$D_p := \mathsf{Res}\Big(\iota^{\underline{u}^{-1},q}_{\underline{k}^{-1}}(p(Y_1,\ldots,Y_n))\Big) \in \mathsf{DO}^{W_0} \qquad (p \in \mathbb{C}[t_1^{\pm 1},\ldots,t_n^{\pm 1}]^{W_0})$$

pairwise commute.

Remark: The Koornwinder second-order difference operator and the Van Diejen higher order difference operators are of the form D_p for suitable p.

The basic hypergeometric system of difference equations

For
$$\underline{\xi}=(\xi_1,\ldots,\xi_n)\in\mathbb{C}^n$$
 write $q^{\underline{\xi}}:=(q^{\xi_1},\ldots,q^{\xi_n})$.

Definition

The basic hypergeometric system of difference equations with spectral parameter q^{ξ} is the system of difference equations

$$D_p f = p(q^{\underline{\xi}}) f$$
 $\forall p \in \mathbb{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]^{W_0}$

for an unknown meromorphic function $f \in \mathcal{M}$. The set of solutions is denoted by $\mathcal{S}(q^{\underline{\xi}})$.

Remarks:

- i. $S(q^{\underline{\xi}}) \subset \mathcal{M}$ is W_0 -invariant, and a vector subspace over the field $F := \mathcal{M}^{\tau(\mathbb{Z}^n)}$ of translation invariant meromorphic functions.
- ii. For appropriate discrete values of $\underline{\xi}$ (indexed by partitions of length $\leq n$), the basic hypergeometric system of difference equations has a W_0 -invariant Laurent polynomial solution in the q^{z_i} : Koornwinder polynomial.

Solving the spectral problem

Fixed generic parameters $\underline{k},\underline{u}$ and generic spectral parameters $\underline{\xi}$.

Basic Harish-Chandra series (in joint works with Letzter, van Meer): $\Phi_{\underline{\xi}} \in \mathcal{S}(q^{\underline{\xi}})$, characterized by the requirement that $\Phi_{\underline{\xi}}(\underline{z})$ tends to an appropriate plane wave function $W_{\underline{\xi}}(\underline{z})$ when $\Re(\underline{z}) \to \infty$ (where $\Re(\underline{z}) \to \infty$ means $\Re(z_i - z_{i+1}), \Re(z_n) \to \infty$):

Theorem

$$\mathcal{S}(q^{\underline{\xi}}) = \bigoplus_{w \in W_0} F \Phi_{w\underline{\xi}}.$$

Solving the spectral problem

Fixed generic parameters $\underline{k},\underline{u}$ and generic spectral parameters $\xi.$

Basic Harish-Chandra series (in joint works with Letzter, van Meer): $\Phi_{\underline{\xi}} \in \mathcal{S}(q^{\underline{\xi}})$, characterized by the requirement that $\Phi_{\underline{\xi}}(\underline{z})$ tends to an appropriate plane wave function $W_{\underline{\xi}}(\underline{z})$ when $\Re(\underline{z}) \to \infty$ (where $\Re(\underline{z}) \to \infty$ means $\Re(z_i - z_{i+1}), \Re(z_n) \to \infty$):

Theorem

$$\mathcal{S}(q^{\underline{\xi}}) = \bigoplus_{w \in W_0} F \Phi_{w\underline{\xi}}.$$

Basic hypergeometric function: q-analogue $\phi_{\underline{\xi}} \in \mathcal{S}(q^{\underline{\xi}})^{W_0}$ of the Heckman-Opdam hypergeometric function, defined as an explicit series in Koornwinder polynomials.

c-function expansion: explicit expression for $c_{\underline{\xi}} \in F$ as product of theta functions such that

$$\phi_{\underline{\xi}} = \sum_{w \in W_0} c_{w\underline{\xi}} \Phi_{w\underline{\xi}}.$$

Baxterization of affine Hecke algebra modules

Theorem

Let $\pi: H_{\underline{k}} \to \operatorname{End}(V)$ be a representation of $H_{\underline{k}}$. The affine Weyl group W acts on the space $\mathcal{M} \otimes V$ of V-valued meromorphic functions on V by

$$(\nabla(s_j)f)(\underline{z}) := C_j(\underline{z})f(s_j\underline{z}), \qquad C_j(\underline{z}) := \frac{\pi(T_j) + c_j(\underline{z}) - k_j}{c_j(\underline{z})}.$$

Baxterization of affine Hecke algebra modules

Theorem

Let $\pi: H_{\underline{k}} \to \operatorname{End}(V)$ be a representation of $H_{\underline{k}}$. The affine Weyl group W acts on the space $\mathcal{M} \otimes V$ of V-valued meromorphic functions on V by

$$(\nabla(s_j)f)(\underline{z}) := C_j(\underline{z})f(s_j\underline{z}), \qquad C_j(\underline{z}) := \frac{\pi(T_j) + c_j(\underline{z}) - k_j}{c_j(\underline{z})}.$$

Proof (sketch): Write $H = \iota_{\underline{k}}^{\underline{u},q}(H_{\underline{k}}) \subset \mathcal{D}$ and view V as H-module.

Baxterization of affine Hecke algebra modules

Theorem

Let $\pi: H_{\underline{k}} \to \operatorname{End}(V)$ be a representation of $H_{\underline{k}}$. The affine Weyl group W acts on the space $\mathcal{M} \otimes V$ of V-valued meromorphic functions on V by

$$(\nabla(s_j)f)(\underline{z}) := C_j(\underline{z})f(s_j\underline{z}), \qquad C_j(\underline{z}) := \frac{\pi(T_j) + c_j(\underline{z}) - k_j}{c_j(\underline{z})}.$$

Proof (sketch): Write $H = \iota_{\underline{k}}^{\underline{u},q}(H_{\underline{k}}) \subset \mathcal{D}$ and view V as H-module. We have:

- ② $\mathcal{D} \simeq \mathcal{M} \otimes H$ as vector spaces by the multiplication map.

The \mathcal{D} -action on

$$\operatorname{Ind}_H^{\mathcal{D}}(V) = \mathcal{D} \otimes_H V \simeq \mathcal{M} \otimes V$$

gives the desired W-action.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

The boundary quantum KZ equations

Definition (Cherednik)

Let $\pi: H_{\underline{K}} \to \operatorname{End}(V)$ be a representation. The boundary quantum Knizhnik-Zamolodchikov (bqKZ) equations are the equations

$$\nabla(\tau(\lambda))f = f \qquad \forall \, \lambda \in \mathbb{Z}^n$$

for an unknown meromorphic V-valued function $f \in \mathcal{M} \otimes V$. We write Sol_V for the space $(\mathcal{M} \otimes V)^{\nabla(\tau(\mathbb{Z}^n))}$ of solutions of the bqKZ equations.

Remark:

i. BqKZ equations form a compatible system of difference equations:

$$(\nabla(\tau(\lambda))f)(\underline{z}) = C_{\tau(\lambda)}(\underline{z})f(\underline{z}-\lambda), \qquad \lambda \in \mathbb{Z}^n$$

for suitable $C_{\tau(\lambda)}(\underline{z}) \in \operatorname{End}(V)$ (called transport operators).

ii. Sol_V is $\nabla(W_0)$ -invariant, and a F-vector subspace of $\mathcal{M} \otimes V$.

Relation to spectral problem

Definition (Minimal principal series)

Let $\underline{\xi} \in \mathbb{C}^n$. The minimal principal series with central character $W_0q^{\underline{\xi}}$ is

$$V(q^{\underline{\xi}}) := \operatorname{Ind}_{\mathcal{A}_Y}^{H_{\underline{k}}} (Y_i \mapsto q^{\xi_i}).$$

Notation. Standard basis $\{v_w(q^{\underline{\xi}})\}_{w\in W_0}$ of $V(q^{\underline{\xi}})$:

$$v_w(q^{\underline{\xi}}) := (T_{i_1} \cdots T_{i_r}) \otimes_{\mathcal{A}_Y} 1$$

with $w = s_{i_1} s_{i_2} \cdots s_{i_r}$ a reduced expression.

Relation to spectral problem

Definition (Minimal principal series)

Let $\underline{\xi} \in \mathbb{C}^n$. The minimal principal series with central character $W_0q^{\underline{\xi}}$ is

$$V(q^{\underline{\xi}}) := \operatorname{Ind}_{\mathcal{A}_Y}^{H_{\underline{k}}} (Y_i \mapsto q^{\xi_i}).$$

Notation. Standard basis $\{v_w(q^{\underline{\xi}})\}_{w\in W_0}$ of $V(q^{\underline{\xi}})$:

$$v_w(q^{\underline{\xi}}) := (T_{i_1} \cdots T_{i_r}) \otimes_{\mathcal{A}_Y} 1$$

with $w = s_{i_1} s_{i_2} \cdots s_{i_r}$ a reduced expression.

Theorem (Difference Cherednik-Matsuo correspondence)

For generic parameters $\underline{k}, \underline{u}$ and generic central character $\underline{\xi}$, the linear map $\chi: \mathcal{M} \otimes V(q^{\underline{\xi}}) \to \mathcal{M}$, given by $\sum_{w \in W_0} \psi_w \otimes v_w(q^{\underline{\xi}}) \mapsto \sum_{w \in W_0} k_w \psi_w$ with $k_w = k_{i_1} k_{i_2} \cdots k_{i_r}$, restricts to a F-linear W_0 -equivariant isomorphism

$$\chi: \mathsf{Sol}_{V(q^{\underline{\xi}})} \stackrel{\sim}{\longrightarrow} \mathcal{S}(q^{\underline{\xi}}).$$

Spin representation

Definition

There exists a unique representation $\pi_{\alpha}: H_{\underline{k}} \to \operatorname{End}\left((\mathbb{C}^2)^{\otimes n}\right)$ satisfying

$$\pi_{\alpha}(T_{i}) = \begin{pmatrix} k & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & k - k^{-1} & 0 \\ 0 & 0 & 0 & k \end{pmatrix}_{i,i+1},$$

$$\pi_{\alpha}(T_{0}) = \begin{pmatrix} k_{0} - k_{0}^{-1} & 1 \\ 1 & 0 \end{pmatrix}_{1}, \qquad \pi_{\alpha}(T_{n}) = \begin{pmatrix} 0 & q^{-\alpha} \\ q^{\alpha} & k_{n} - k_{n}^{-1} \end{pmatrix}_{n}$$

for $1 \le i < n$.

Relation to spin chains with boundaries

Baxterization of the spin representation takes on the following form: $f \in \mathcal{M} \otimes (\mathbb{C}^2)^{\otimes n}$,

$$(\nabla(s_0)f)(\underline{z}) = K^I(\frac{1}{2} - z_1)_1 f(s_0 \underline{z}),$$

$$(\nabla(s_i)f)(\underline{z}) = P_{i,i+1} R(z_i - z_{i+1})_{i,i+1} f(s_i \underline{z}),$$

$$(\nabla(s_n)f)(\underline{z}) = K^r(z_n)_n f(s_n \underline{z})$$

with

- i. $P \in \operatorname{End}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ the permutation operator,
- ii. $R(x) \in \operatorname{End}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ an explicit solution of the quantum Yang-Baxter equation,
- iii. $K^{I}(x), K^{r}(x) \in \operatorname{End}(\mathbb{C}^{2})$ an explicit solution of the corresponding left and right reflection equations.

Relation to spin chains with boundaries

Baxterization of the spin representation takes on the following form: $f \in \mathcal{M} \otimes (\mathbb{C}^2)^{\otimes n}$,

$$(\nabla(s_0)f)(\underline{z}) = K^I(\frac{1}{2} - z_1)_1 f(s_0 \underline{z}),$$

$$(\nabla(s_i)f)(\underline{z}) = P_{i,i+1}R(z_i - z_{i+1})_{i,i+1} f(s_i \underline{z}),$$

$$(\nabla(s_n)f)(\underline{z}) = K^r(z_n)_n f(s_n \underline{z})$$

with

- i. $P \in \operatorname{End}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ the permutation operator,
- ii. $R(x) \in \operatorname{End}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ an explicit solution of the quantum Yang-Baxter equation,
- iii. $K^{I}(x), K^{r}(x) \in \text{End}(\mathbb{C}^{2})$ an explicit solution of the corresponding left and right reflection equations.

Remark: such triples (K^I, R, K^r) define an integrable one-dimensional quantum spin chain with boundaries on both ends (Sklyanin). In the present case: Heisenberg XXZ spin- $\frac{1}{2}$ chain with boundaries.

Solutions of bqKZ equations

BqKZ equations

$$C_{\tau(\lambda)}(\underline{z})f(\underline{z}-\lambda)=f(\underline{z}) \qquad \forall \, \lambda \in \mathbb{Z}^n$$

associated to the spin representation $(\pi_{\alpha}, (\mathbb{C}^2)^{\otimes n})$.

Asymptotic version:

• Asymptotic transport operators $C_{\tau(\lambda)}^{\infty} \in \operatorname{End}((\mathbb{C}^2)^{\otimes n})$:

$$C_{\tau(\lambda)}^{\infty} := \lim_{\underline{z} \to \infty} C_{\tau(\lambda)}(\underline{z}),$$

with $\underline{z} \to \infty$ meaning $\Re(z_i - z_{i+1}), \Re(z_n) \to \infty$ as before.

Asymptotic bqKZ equations:

$$C_{\tau(\lambda)}^{\infty}f(\underline{z}-\lambda)=f(\underline{z}) \qquad \forall \lambda \in \mathbb{Z}^n.$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Solutions of bqKZ equations

- There exists a basis $\{b_{\underline{\epsilon}}\}_{\underline{\epsilon}\in\{\pm\}^{\times n}}$ of $(\mathbb{C}^2)^{\otimes n}$ consisting of common eigenvectors of the asymptotic transport operators $C^{\infty}_{\tau(\lambda)}$ $(\lambda \in \mathbb{Z}^n)$.
- ② F-basis $\{\mathcal{W}_{\underline{\epsilon}}(\underline{z})b_{\underline{\epsilon}}\}_{\underline{\epsilon}}$ of asymptotic bqKZ equations for suitable scalar plane wave functions $\mathcal{W}_{\underline{\epsilon}}$ (compensating for the eigenvalues of $b_{\underline{\epsilon}}$).
- "Asymptotically free" basis of solutions of bqKZ equations:

$$\mathsf{Sol}_{(\mathbb{C}^2)^{\otimes n}} = \bigoplus_{\underline{\epsilon}} F\Psi_{\underline{\epsilon}}$$

with $\Psi_{\underline{\epsilon}}(\underline{z}) \sim \mathcal{W}_{\underline{\epsilon}}(\underline{z})b_{\underline{\epsilon}}$ if $\underline{z} \to \infty$.

Remark: In special cases: construction of solutions of bqKZ equations as quantum correlation functions of semi-infinite Heisenberg XXZ spin- $\frac{1}{2}$ chain (Jimbo, Kedem, Konno, Miwa, Weston).

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Connection problem

For $w \in W_0$,

$$(\nabla(w)\Psi_{\underline{\epsilon}'})(\underline{z}) = \sum_{\underline{\epsilon}} M_{\underline{\epsilon},\underline{\epsilon}'}^w(\underline{z};\alpha)\Psi_{\underline{\epsilon}}(\underline{z})$$

for unique $M_{\underline{\epsilon},\underline{\epsilon}'}^w(.;\alpha) \in F$.

Definition

Fix $\{v_+, v_-\}$ basis of \mathbb{C}^2 and write $v_{\underline{\epsilon}} := v_{\epsilon_1} \otimes \cdots \otimes v_{\epsilon_n}$. The connection matrix $M^w(\cdot; \alpha)$ is the F-linear operator on $F \otimes (\mathbb{C}^2)^{\otimes n}$ defined by

$$M^w(\underline{z};\alpha)v_{\underline{\epsilon}'} := \sum_{\underline{\epsilon}} M^w_{\underline{\epsilon},\underline{\epsilon}'}(\underline{z};\alpha)v_{\underline{\epsilon}}.$$

Connection problem: compute the matrix coefficients of $M^w(\underline{z}; \alpha)$ explicitly in terms of theta functions (by *cocycle property* $M^{vw}(\underline{z}; \alpha) = M^v(\underline{z}; \alpha)M^w(v^{-1}\underline{z}; \alpha)$ it suffices to compute $M^{s_j}(\underline{z}; \alpha)$ $(0 \le j \le n)$).

The bulk connection matrices $M^{s_i}(x; \alpha)$

Notations:

- $\theta(x_1,\ldots,x_r):=\prod_{i=1}^r\theta(x_i) \text{ with } \theta(x)=\big(x,q/x;q\big)_\infty.$

The bulk connection matrices $M^{s_i}(x;\alpha)$

Notations:

- **1** $h: \mathbb{C}^2 \to \mathbb{C}^2$ linear: $hv_{\epsilon} = \epsilon v_{\epsilon}$.
- $\theta(x_1,\ldots,x_r):=\prod_{i=1}^r\theta(x_i)$ with $\theta(x)=(x,q/x;q)_{\infty}$.

Frenkel, Reshetikhin: For $1 \le i \le n$ the connection matrix $M^{s_i}(z;\alpha)$ is essentially Baxter's dynamical elliptic R-matrix for the 8-vertex face model acting on the i^{th} and $(i+1)^{st}$ tensor leg:

$$M^{s_i}(\underline{z};\alpha) = P_{i,i+1}R(z_i - z_{i+1}; 2\alpha - 2\kappa(h_1 + \cdots + h_{i-1}))_{i,i+1}$$

with $\kappa = -\log_a(k)$ and

$$R(x;\alpha) := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & A(x;\alpha) & B(x;\alpha) & 0 \\ 0 & B(x;-\alpha) & A(x;-\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and

$$A(x;\alpha) := \frac{\theta(q^{2\kappa-\alpha}, q^{-x})}{\theta(q^{2\kappa-x}, q^{-\alpha})} q^{2\kappa(x-\alpha)}, \quad B(x;\alpha) := \frac{\theta(q^{2\kappa}, q^{-x-\alpha})}{\theta(q^{-\alpha}, q^{2\kappa-x})} q^{(2\kappa+\alpha)x}.$$

Boundary connection matrix $M^{s_n}(x, \alpha)$

Askey-Wilson parameters

$${a,b,c,d} := {k_n^{-1}u_n^{-1}, -k_n^{-1}u_n, q^{\frac{1}{2}}k_0^{-1}u_0^{-1}, -q^{\frac{1}{2}}k_0^{-1}u_0}$$

and dual Askey-Wilson parameters

$$\{\widetilde{a},\widetilde{b},\widetilde{c},\widetilde{d}\} := \{k_n^{-1}k_0^{-1}, -k_n^{-1}k_0, q^{\frac{1}{2}}u_n^{-1}u_0^{-1}, -q^{\frac{1}{2}}u_n^{-1}u_0\}.$$

Boundary connection matrix $M^{s_n}(x,\alpha)$

Askey-Wilson parameters

$${a,b,c,d} := {k_n^{-1}u_n^{-1}, -k_n^{-1}u_n, q^{\frac{1}{2}}k_0^{-1}u_0^{-1}, -q^{\frac{1}{2}}k_0^{-1}u_0}$$

and dual Askey-Wilson parameters

$$\{\widetilde{a},\widetilde{b},\widetilde{c},\widetilde{d}\}:=\{k_n^{-1}k_0^{-1},-k_n^{-1}k_0,q^{\frac{1}{2}}u_n^{-1}u_0^{-1},-q^{\frac{1}{2}}u_n^{-1}u_0\}.$$

Notations:

$$\mathcal{C}(x;\alpha) := \frac{\theta(\widetilde{a}q^{\alpha}, \widetilde{b}q^{\alpha}, \widetilde{c}q^{\alpha}, dq^{\alpha-x}/\widetilde{a})}{\theta(q^{2\alpha}, dq^{-x})} q^{-(\log_q(a)-x)(\log_q(\widetilde{a})-\alpha)}$$

and

$$\widetilde{\mathcal{C}}(x;\alpha) := \frac{\theta(aq^{\alpha},bq^{\alpha},cq^{\alpha},\widetilde{d}q^{\alpha-x}/a)}{\theta(q^{2\alpha},\widetilde{d}q^{-x})}q^{-(\log_q(\widetilde{a})-z)(\log_q(a)-\alpha)}.$$

Boundary connection matrix

Theorem

$$M^{s_n}(\underline{z};\alpha) = K(z_n;\alpha - \kappa(h_1 + h_2 + \cdots + h_{n-1}))_n$$

with

$$K(x;\alpha) := \begin{pmatrix} A_b(x;\alpha) & B_b(x;\alpha) \\ B_b(x;-\alpha) & A_b(x;-\alpha) \end{pmatrix},$$

$$A_b(x;\alpha) := \frac{\mathcal{C}(x;\alpha) - \mathcal{C}(\alpha;x)}{\widetilde{\mathcal{C}}(\alpha;-x)}, \qquad B_b(x;\alpha) := \frac{\mathcal{C}(x;\alpha)}{\widetilde{\mathcal{C}}(-\alpha;-x)}.$$

Boundary connection matrix

Theorem

$$M^{s_n}(\underline{z};\alpha) = K(z_n;\alpha - \kappa(h_1 + h_2 + \cdots + h_{n-1}))_n$$

with

$$K(x;\alpha) := \begin{pmatrix} A_b(x;\alpha) & B_b(x;\alpha) \\ B_b(x;-\alpha) & A_b(x;-\alpha) \end{pmatrix},$$

$$A_b(x;\alpha) := \frac{\mathcal{C}(x;\alpha) - \widetilde{\mathcal{C}}(\alpha;x)}{\widetilde{\mathcal{C}}(\alpha;-x)}, \qquad B_b(x;\alpha) := \frac{\mathcal{C}(x;\alpha)}{\widetilde{\mathcal{C}}(-\alpha;-x)}.$$

Corollary

 $K(x; \alpha)$ is a 4-parameter family of solutions of the dynamical reflection equation

$$R_{21}(z_1 - z_2; 2\alpha) K_1(z_1; \alpha - \kappa h_2) R_{12}(z_1 + z_2; 2\alpha) K_2(z_2; \alpha - \kappa h_1) = K_2(z_2; \alpha - \kappa h_1) R_{21}(z_1 + z_2; 2\alpha) K_1(z_1; \alpha - \kappa h_2) R_{12}(z_1 - z_2; 2\alpha).$$

Remark:

- Solutions of the dynamical reflection equation have been computed by direct means by many people: Inami, Konno, de Vega, Gonzalez-Ruiz, Hou, Shi, Fan, Zhang, Behrend, Pearce, Komori, Hikami, Delius, MacKay,....
- Upshot present approach: representation theoretic interpretation of the dynamical parameter and of the 4 degrees of freedom for the solutions of the dynamical reflection equation:
 - i. two boundary parameters k_0 , k_n of the affine Hecke algebra;
 - ii. two boundary parameters u_0, u_n arising from Noumi's representation;
 - iii. dynamical parameter α arising as the representation parameter of the spin representation.