From Noumi's representation to elliptic K-matrices

Jasper Stokman
University of Amsterdam and Radboud University Nijmegen

March, 4, 2015
(1) M. Noumi, H. Yamada, K. Mimachi, Finite-dimensional representations of the quantum group $\mathrm{GL}_{q}(n, \mathbb{C})$ and the zonal spherical functions on $\mathrm{U}_{q}(n-1) \backslash \mathrm{U}_{q}(n)$, Japanese J. Math. 19 (1993), no. 1, 31-80.
(1) M. Noumi, H. Yamada, K. Mimachi, Finite-dimensional representations of the quantum group $\mathrm{GL}_{q}(n, \mathbb{C})$ and the zonal spherical functions on $\mathrm{U}_{q}(n-1) \backslash \mathrm{U}_{q}(n)$, Japanese J. Math. 19 (1993), no. 1, 31-80.
(2) M. Noumi, Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16-77.
(1) M. Noumi, H. Yamada, K. Mimachi, Finite-dimensional representations of the quantum group $\mathrm{GL}_{q}(n, \mathbb{C})$ and the zonal spherical functions on $\mathrm{U}_{q}(n-1) \backslash \mathrm{U}_{q}(n)$, Japanese J. Math. 19 (1993), no. 1, 31-80.
(2) M. Noumi, Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996), no. 1, 16-77.
(3) M. Noumi, Macdonald-Koornwinder polynomials and affine Hecke rings, Surikaisekikenkyusho Kokyuroku 919 (1995), 44-55.

This talk:

highlight the role of Noumi's representation of the affine Hecke algebra in:
(1) solving the system of basic hypergeometric difference equations (non-polynomial theory).
Main references:
(1) J.V. Stokman, The c-function expansion of a basic hypergeometric function associated to root systems, Ann. of Math. (2) 179 (2014), no. 1, 253-299.
(2) J.V. Stokman, Connection coefficients for basic Harish-Chandra series, Adv. Math. 250 (2014), 351-386.

This talk:

highlight the role of Noumi's representation of the affine Hecke algebra in:
(1) solving the system of basic hypergeometric difference equations (non-polynomial theory).
Main references:
(1) J.V. Stokman, The c-function expansion of a basic hypergeometric function associated to root systems, Ann. of Math. (2) 179 (2014), no. 1, 253-299.
(2 J.V. Stokman, Connection coefficients for basic Harish-Chandra series, Adv. Math. 250 (2014), 351-386.
(2) integrable lattice models with boundaries.

Main references:
(1) J.V. Stokman, B.H.M. Vlaar, Koornwinder polynomials and the XXZ spin chain, arXiv:1310.5545, J. Approx. Th. (to appear).
(2) J.V. Stokman, Connection problems for quantum affine KZ equations and integrable lattice models, arXiv:1410.4383, Comm. Math. Phys. (to appear).

Notations

Coxeter graph

of affine type $C_{n}(n \geq 2)$. Associated:

Notations

Coxeter graph

of affine type $C_{n}(n \geq 2)$. Associated:
i. affine Weyl group $W=\left\langle s_{0}, \ldots, s_{n}\right\rangle$,
ii. affine Hecke algebra $H_{\underline{k}}=H_{k_{0}, k, k_{n}}=\mathbb{C}\left\langle T_{0}, \ldots, T_{n}\right\rangle$.

Notations

Coxeter graph

of affine type $C_{n}(n \geq 2)$. Associated:
i. affine Weyl group $W=\left\langle s_{0}, \ldots, s_{n}\right\rangle$,
ii. affine Hecke algebra $H_{\underline{k}}=H_{k_{0}, k, k_{n}}=\mathbb{C}\left\langle T_{0}, \ldots, T_{n}\right\rangle$.

Braid relations according to the Coxeter graph and quadratic relations:

$$
s_{j}^{2}=1, \quad\left(T_{j}-k_{j}\right)\left(T_{j}+k_{j}^{-1}\right)=0
$$

for $0 \leq j \leq n$, with $k_{i}:=k$ if $1 \leq i<n$.

Difference-reflection operators

W-action on \mathbb{C}^{n} :

$$
\begin{aligned}
s_{0} \underline{z} & :=\left(1-z_{1}, z_{2}, \ldots, z_{n}\right) \\
s_{i} \underline{z} & :=\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, z_{i}, z_{i+2}, \ldots, z_{n}\right), \\
s_{n} \underline{z} & :=\left(z_{1}, \ldots, z_{n-1},-z_{n}\right)
\end{aligned}
$$

for $1 \leq i<n$. Contragredient action $(w \cdot f)(\underline{z}):=f\left(w^{-1} \underline{z}\right)$ on the field \mathcal{M} of meromorphic functions on \mathbb{C}^{n}.

Difference-reflection operators

W-action on \mathbb{C}^{n} :

$$
\begin{aligned}
s_{0} \underline{z} & :=\left(1-z_{1}, z_{2}, \ldots, z_{n}\right) \\
s_{i} \underline{z} & :=\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, z_{i}, z_{i+2}, \ldots, z_{n}\right), \\
s_{n} \underline{z} & :=\left(z_{1}, \ldots, z_{n-1},-z_{n}\right)
\end{aligned}
$$

for $1 \leq i<n$. Contragredient action $(w \cdot f)(\underline{z}):=f\left(w^{-1} \underline{z}\right)$ on the field \mathcal{M} of meromorphic functions on \mathbb{C}^{n}.

Decomposition: $W=W_{0} \ltimes \tau\left(\mathbb{Z}^{n}\right)$ with
i. $W_{0}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ acting on \mathcal{M} by permutations and sign changes of the variables (hyperoctahedral group),
ii. Free rank n Abelian subgroup $\tau\left(\mathbb{Z}^{n}\right)$ of W acting on \mathbb{C}^{n} by

$$
\tau(\lambda) \underline{z}:=\underline{z}+\lambda, \quad \lambda \in \mathbb{Z}^{n} .
$$

Remark: $\tau\left(\epsilon_{i}\right)=s_{i-1} \cdots s_{1} s_{0} s_{1} \cdots s_{n-1} s_{n} s_{n-1} \cdots s_{i}$.

Difference-reflection operators

Definition

The algebra \mathcal{D} of difference-reflection operators is defined as follows:
i. $\mathcal{D}=\mathcal{M} \otimes \mathbb{C}[W]$ as a complex vectorspace;
ii. For $D=\sum_{v \in W} a_{v} v, D^{\prime}=\sum_{w \in W} b_{w} w \in \mathcal{D}\left(a_{v}, b_{w} \in \mathcal{M}\right)$:

$$
D D^{\prime}:=\sum_{u \in W}\left(\sum_{v, w: v w=u} a_{v}\left(v \cdot b_{w}\right)\right) u .
$$

Remark: \mathcal{D} canonically acts on \mathcal{M} as difference-reflection operators:

$$
D f:=\sum_{v \in W} a_{v}(v \cdot f)
$$

for $D=\sum_{v \in W} a_{v} v \in \mathcal{D}$.

Noumi's representation

Fixed pair $\underline{u}=\left(u_{0}, u_{n}\right)$ of nonzero complex numbers and $0<q<1$.
Notation:

$$
\begin{aligned}
& c_{0}(\underline{z}):=k_{0}^{-1} \frac{\left(1-q^{\frac{1}{2}} k_{0} u_{0} q^{-z_{1}}\right)\left(1+q^{\frac{1}{2}} k_{0} u_{0}^{-1} q^{-z_{1}}\right)}{\left(1-q^{1-2 z_{1}}\right)} \\
& c_{i}(\underline{z}):=k^{-1} \frac{\left(1-k^{2} q^{z_{i}-z_{i+1}}\right)}{\left(1-q^{z_{i}-z_{i+1}}\right)}, \quad 1 \leq i<n \\
& c_{n}(\underline{z}):=k_{n}^{-1} \frac{\left(1-k_{n} u_{n} q^{z_{n}}\right)\left(1+k_{n} u_{n}^{-1} q^{z_{n}}\right)}{\left(1-q^{2 z_{n}}\right)}
\end{aligned}
$$

Theorem (Noumi)

There exists a unique monomorphism $\iota_{\underline{k}}^{\underline{\underline{k}}, \boldsymbol{q}}: H_{\underline{k}} \hookrightarrow \mathcal{D}$ such that

$$
\iota_{\underline{k}}^{\underline{u}, q}\left(T_{j}\right)=k_{j}+c_{j}\left(s_{j}-1\right), \quad 0 \leq j \leq n .
$$

Bernstein-Zelevinsky-Lusztig

Structure of the affine Hecke algebra $H_{\underline{k}}$:
i. The Hecke algebraic versions

$$
Y_{i}:=T_{i-1}^{-1} \cdots T_{1}^{-1} T_{0} T_{1} \cdots T_{n-1} T_{n} T_{n-1} \cdots T_{i}
$$

of $\tau\left(\epsilon_{i}\right) \in W$ pairwise commute in $H_{\underline{k}}(1 \leq i \leq n)$;
ii. The multiplication map is a linear isomorphism

$$
H_{\underline{k} ; 0} \otimes \mathcal{A}_{Y} \xrightarrow{\sim} H_{\underline{k}}
$$

where $H_{k ; 0}=\mathbb{C}\left\langle T_{1}, \ldots, T_{n}\right\rangle$ and $\mathcal{A}_{Y}=\mathbb{C}\left\langle Y_{1}^{ \pm 1}, \ldots, Y_{n}^{ \pm 1}\right\rangle$.
iii. $\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]^{W_{0}} \simeq Z\left(H_{\underline{k}}\right)$ by $p \mapsto p\left(Y_{1}, \ldots, Y_{n}\right)$.

The commuting difference operators

Notations:

i. DO $:=\mathcal{M} \# \tau\left(\mathbb{Z}^{n}\right) \subset \mathcal{D}$ subalgebra of difference operators.
ii. Restriction map Res : $\mathcal{D} \rightarrow \mathrm{DO}$:

$$
\operatorname{Res}\left(\sum_{u \in W_{0}, \lambda \in \mathbb{Z}^{n}} a_{\lambda, u} \tau(\lambda) u\right):=\sum_{\lambda \in \mathbb{Z}^{n}}\left(\sum_{u \in W_{0}} a_{\lambda, u}\right) \tau(\lambda) .
$$

Theorem (Noumi)

The W_{0}-equivariant difference operators

$$
D_{p}:=\operatorname{Res}\left(\iota \underline{\underline{u}}^{-1}, q\left(p\left(\underline{\underline{k}}_{1}^{-1}, \ldots, Y_{n}\right)\right)\right) \in \mathrm{DO}^{W_{0}} \quad\left(p \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]^{W_{0}}\right)
$$

pairwise commute.
Remark: The Koornwinder second-order difference operator and the Van Diejen higher order difference operators are of the form D_{p} for suitable p.

The basic hypergeometric system of difference equations For $\underline{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$ write $q^{\underline{\xi}}:=\left(q^{\xi_{1}}, \ldots, q^{\xi_{n}}\right)$.

Definition

The basic hypergeometric system of difference equations with spectral parameter $q^{\underline{\xi}}$ is the system of difference equations

$$
D_{p} f=p(q \underline{\xi}) f \quad \forall p \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]^{w_{0}}
$$

for an unknown meromorphic function $f \in \mathcal{M}$. The set of solutions is denoted by $\mathcal{S}\left(q^{\xi}\right)$.

Remarks:

i. $\mathcal{S}\left(q^{\underline{\xi}}\right) \subset \mathcal{M}$ is W_{0}-invariant, and a vector subspace over the field $F:=\mathcal{M}^{\tau\left(\mathbb{Z}^{n}\right)}$ of translation invariant meromorphic functions.
ii. For appropriate discrete values of $\underline{\xi}$ (indexed by partitions of length $\leq n$), the basic hypergeometric system of difference equations has a W_{0}-invariant Laurent polynomial solution in the $q^{z_{i}}$: Koornwinder polynomial.

Solving the spectral problem

Fixed generic parameters $\underline{k}, \underline{u}$ and generic spectral parameters $\underline{\xi}$.
Basic Harish-Chandra series (in joint works with Letzter, van Meer): $\Phi_{\underline{\xi}} \in \mathcal{S}(q \underline{\xi})$, characterized by the requirement that $\Phi_{\underline{\xi}}(\underline{z})$ tends to an appropriate plane wave function $W_{\underline{\xi}}(\underline{z})$ when $\Re(\underline{z}) \rightarrow \infty$ (where $\Re(\underline{z}) \rightarrow \infty$ means $\left.\Re\left(z_{i}-z_{i+1}\right), \Re\left(\bar{z}_{n}\right) \rightarrow \infty\right)$:

Theorem

$$
\mathcal{S}\left(q^{\underline{\xi}}\right)=\bigoplus_{w \in W_{0}} F \Phi_{w \underline{\xi}} .
$$

Solving the spectral problem

Fixed generic parameters $\underline{k}, \underline{u}$ and generic spectral parameters $\underline{\xi}$.
Basic Harish-Chandra series (in joint works with Letzter, van Meer): $\Phi_{\underline{\xi}} \in \mathcal{S}\left(q^{\underline{\xi}}\right)$, characterized by the requirement that $\Phi_{\underline{\xi}}(\underline{z})$ tends to an appropriate plane wave function $W_{\underline{\xi}}(\underline{z})$ when $\Re(\underline{z}) \rightarrow \infty$ (where $\Re(\underline{z}) \rightarrow \infty$ means $\left.\Re\left(z_{i}-z_{i+1}\right), \Re\left(z_{n}\right) \rightarrow \infty\right):$

Theorem

$$
\mathcal{S}\left(q^{\underline{\xi}}\right)=\bigoplus_{w \in W_{0}} F \Phi_{w \underline{\xi}} .
$$

Basic hypergeometric function: q-analogue $\phi_{\underline{\xi}} \in \mathcal{S}\left(q^{\underline{\xi}}\right)^{W_{0}}$ of the Heckman-Opdam hypergeometric function, defined as an explicit series in Koornwinder polynomials.
c-function expansion: explicit expression for $c_{\underline{\xi}} \in F$ as product of theta functions such that

$$
\phi_{\underline{\xi}}=\sum_{w \in W_{0}} c_{w \underline{\xi}} \Phi_{w \underline{\xi}} .
$$

Baxterization of affine Hecke algebra modules

Theorem

Let $\pi: H_{\underline{k}} \rightarrow \operatorname{End}(V)$ be a representation of $H_{\underline{k}}$. The affine Weyl group W acts on the space $\mathcal{M} \otimes V$ of V-valued meromorphic functions on V by

$$
\left(\nabla\left(s_{j}\right) f\right)(\underline{z}):=C_{j}(\underline{z}) f\left(s_{j} \underline{z}\right), \quad C_{j}(\underline{z}):=\frac{\pi\left(T_{j}\right)+c_{j}(\underline{z})-k_{j}}{c_{j}(\underline{z})} .
$$

Baxterization of affine Hecke algebra modules

Theorem
Let $\pi: H_{\underline{k}} \rightarrow \operatorname{End}(V)$ be a representation of $H_{\underline{k}}$. The affine Weyl group W acts on the space $\mathcal{M} \otimes V$ of V-valued meromorphic functions on V by

$$
\left(\nabla\left(s_{j}\right) f\right)(\underline{z}):=C_{j}(\underline{z}) f\left(s_{j} \underline{z}\right), \quad C_{j}(\underline{z}):=\frac{\pi\left(T_{j}\right)+c_{j}(\underline{z})-k_{j}}{c_{j}(\underline{z})} .
$$

Proof (sketch): Write $H=\iota_{\underline{k}}^{\underline{\underline{k}}, \boldsymbol{q}}\left(H_{\underline{k}}\right) \subset \mathcal{D}$ and view V as H-module.

Baxterization of affine Hecke algebra modules

Theorem

Let $\pi: H_{\underline{k}} \rightarrow \operatorname{End}(V)$ be a representation of $H_{\underline{k}}$. The affine Weyl group W acts on the space $\mathcal{M} \otimes V$ of V-valued meromorphic functions on V by

$$
\left(\nabla\left(s_{j}\right) f\right)(\underline{z}):=C_{j}(\underline{z}) f\left(s_{j} \underline{z}\right), \quad C_{j}(\underline{z}):=\frac{\pi\left(T_{j}\right)+c_{j}(\underline{z})-k_{j}}{c_{j}(\underline{z})} .
$$

Proof (sketch): Write $H=\iota_{\underline{k}}^{\underline{\underline{k}}, q}\left(H_{\underline{k}}\right) \subset \mathcal{D}$ and view V as H-module. We have:
(1) $s_{j}=c_{j}^{-1}\left(\iota_{\underline{k}}^{\underline{\underline{k}}, q}\left(T_{j}\right)+c_{j}-k_{j}\right)$ in \mathcal{D},
(2) $\mathcal{D} \simeq \mathcal{M} \otimes H$ as vector spaces by the multiplication map.

The \mathcal{D}-action on

$$
\operatorname{Ind}_{H}^{\mathcal{D}}(V)=\mathcal{D} \otimes_{H} V \simeq \mathcal{M} \otimes V
$$

gives the desired W-action.

The boundary quantum KZ equations

Definition (Cherednik)

Let $\pi: H_{k} \rightarrow \operatorname{End}(V)$ be a representation. The boundary quantum Knizhnik-Zamolodchikov (bqKZ) equations are the equations

$$
\nabla(\tau(\lambda)) f=f \quad \forall \lambda \in \mathbb{Z}^{n}
$$

for an unknown meromorphic V-valued function $f \in \mathcal{M} \otimes V$. We write Sol $_{V}$ for the space $(\mathcal{M} \otimes V)^{\nabla\left(\tau\left(\mathbb{Z}^{n}\right)\right)}$ of solutions of the bqKZ equations.

Remark:

i. BqKZ equations form a compatible system of difference equations:

$$
(\nabla(\tau(\lambda)) f)(\underline{z})=C_{\tau(\lambda)}(\underline{z}) f(\underline{z}-\lambda), \quad \lambda \in \mathbb{Z}^{n}
$$

for suitable $C_{\tau(\lambda)}(\underline{z}) \in \operatorname{End}(V)$ (called transport operators).
ii. Sol V_{V} is $\nabla\left(W_{0}\right)$-invariant, and a F-vector subspace of $\mathcal{M} \otimes V$.

Relation to spectral problem

Definition (Minimal principal series)
Let $\underline{\xi} \in \mathbb{C}^{n}$. The minimal principal series with central character $W_{0} q^{\underline{\xi}}$ is

Notation. Standard basis $\left\{v_{w}\left(q^{\underline{\xi}}\right)\right\}_{w \in W_{0}}$ of $V\left(q^{\underline{\xi}}\right)$:

$$
v_{w}\left(q^{\xi}\right):=\left(T_{i_{1}} \cdots T_{i_{r}}\right) \otimes_{\mathcal{A}_{Y}} 1
$$

with $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ a reduced expression.

Relation to spectral problem

Definition (Minimal principal series)
Let $\underline{\xi} \in \mathbb{C}^{n}$. The minimal principal series with central character $W_{0} q^{\underline{\xi}}$ is

$$
V\left(q^{\underline{\xi}}\right):=\operatorname{Ind}_{\mathcal{A}_{Y}}^{H_{\underline{K}}}\left(Y_{i} \mapsto q^{\xi_{i}}\right)
$$

Notation. Standard basis $\left\{v_{w}\left(q^{\underline{\xi}}\right)\right\}_{w \in W_{0}}$ of $V\left(q^{\underline{\xi}}\right)$:

$$
v_{w}\left(q^{\underline{\xi}}\right):=\left(T_{i_{1}} \cdots T_{i_{r}}\right) \otimes_{\mathcal{A}_{Y}} 1
$$

with $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ a reduced expression.

Theorem (Difference Cherednik-Matsuo correspondence)

For generic parameters $\underline{k}, \underline{u}$ and generic central character $\underline{\xi}$, the linear map $\chi: \mathcal{M} \otimes V\left(q^{\underline{\xi}}\right) \rightarrow \mathcal{M}$, given by $\sum_{w \in W_{0}} \psi_{w} \otimes v_{w}\left(q^{\underline{\xi}}\right) \mapsto \sum_{w \in W_{0}} k_{w} \psi_{w}$ with $k_{w}=k_{i_{1}} k_{i_{2}} \cdots k_{i_{r}}$, restricts to a F-linear W_{0}-equivariant isomorphism

$$
\chi: \text { Sol }_{V\left(q^{\underline{\xi}}\right)} \xrightarrow{\sim} \mathcal{S}\left(q^{\underline{\xi}}\right) .
$$

Spin representation

Definition

There exists a unique representation $\pi_{\alpha}: H_{\underline{k}} \rightarrow \operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$ satisfying

$$
\begin{aligned}
& \pi_{\alpha}\left(T_{i}\right)=\left(\begin{array}{cccc}
k & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & k-k^{-1} & 0 \\
0 & 0 & 0 & k
\end{array}\right)_{i, i+1}, \\
& \pi_{\alpha}\left(T_{0}\right)=\left(\begin{array}{cc}
k_{0}-k_{0}^{-1} & 1 \\
1 & 0
\end{array}\right)_{1}, \quad \pi_{\alpha}\left(T_{n}\right)=\left(\begin{array}{cc}
0 & q^{-\alpha} \\
q^{\alpha} & k_{n}-k_{n}^{-1}
\end{array}\right)_{n}
\end{aligned}
$$

for $1 \leq i<n$.

Relation to spin chains with boundaries

Baxterization of the spin representation takes on the following form: $f \in \mathcal{M} \otimes\left(\mathbb{C}^{2}\right)^{\otimes n}$,

$$
\begin{aligned}
\left(\nabla\left(s_{0}\right) f\right)(\underline{z}) & =K^{\prime}\left(\frac{1}{2}-z_{1}\right)_{1} f\left(s_{0} \underline{z}\right) \\
\left(\nabla\left(s_{i}\right) f\right)(\underline{z}) & =P_{i, i+1} R\left(z_{i}-z_{i+1}\right)_{i, i+1} f\left(s_{i} \underline{z}\right), \\
\left(\nabla\left(s_{n}\right) f\right)(\underline{z}) & =K^{r}\left(z_{n}\right)_{n} f\left(s_{n} \underline{z}\right)
\end{aligned}
$$

with
i. $P \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ the permutation operator,
ii. $R(x) \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ an explicit solution of the quantum Yang-Baxter equation,
iii. $K^{\prime}(x), K^{r}(x) \in \operatorname{End}\left(\mathbb{C}^{2}\right)$ an explicit solution of the corresponding left and right reflection equations.

Relation to spin chains with boundaries

Baxterization of the spin representation takes on the following form: $f \in \mathcal{M} \otimes\left(\mathbb{C}^{2}\right)^{\otimes n}$,

$$
\begin{aligned}
& \left(\nabla\left(s_{0}\right) f\right)(\underline{z})=K^{\prime}\left(\frac{1}{2}-z_{1}\right)_{1} f\left(s_{0} \underline{z}\right) \\
& \left(\nabla\left(s_{i}\right) f\right)(\underline{z})=P_{i, i+1} R\left(z_{i}-z_{i+1}\right)_{i, i+1} f\left(s_{i} \underline{z}\right) \\
& \left(\nabla\left(s_{n}\right) f\right)(\underline{z})=K^{r}\left(z_{n}\right)_{n} f\left(s_{n} \underline{z}\right)
\end{aligned}
$$

with
i. $P \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ the permutation operator,
ii. $R(x) \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ an explicit solution of the quantum Yang-Baxter equation,
iii. $K^{\prime}(x), K^{r}(x) \in \operatorname{End}\left(\mathbb{C}^{2}\right)$ an explicit solution of the corresponding left and right reflection equations.
Remark: such triples (K^{\prime}, R, K^{r}) define an integrable one-dimensional quantum spin chain with boundaries on both ends (Sklyanin). In the present case: Heisenberg XXZ spin- $\frac{1}{2}$ chain with boundaries.

Solutions of bqKZ equations

BqKZ equations

$$
C_{\tau(\lambda)}(\underline{z}) f(\underline{z}-\lambda)=f(\underline{z}) \quad \forall \lambda \in \mathbb{Z}^{n}
$$

associated to the spin representation $\left(\pi_{\alpha},\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$.

Asymptotic version:

(1) Asymptotic transport operators $C_{\tau(\lambda)}^{\infty} \in \operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$:

$$
C_{\tau(\lambda)}^{\infty}:=\lim _{\underline{z} \rightarrow \infty} C_{\tau(\lambda)}(\underline{z})
$$

with $\underline{z} \rightarrow \infty$ meaning $\Re\left(z_{i}-z_{i+1}\right), \Re\left(z_{n}\right) \rightarrow \infty$ as before.
(2) Asymptotic bqKZ equations:

$$
C_{\tau(\lambda)}^{\infty} f(\underline{z}-\lambda)=f(\underline{z}) \quad \forall \lambda \in \mathbb{Z}^{n} .
$$

Solutions of bqKZ equations

(1) There exists a basis $\left\{b_{\underline{\epsilon}}\right\}_{\underline{\epsilon} \in\{ \pm\} \times n}$ of $\left(\mathbb{C}^{2}\right)^{\otimes n}$ consisting of common eigenvectors of the asymptotic transport operators $C_{\tau(\lambda)}^{\infty}\left(\lambda \in \mathbb{Z}^{n}\right)$.
(2) F-basis $\left\{\mathcal{W}_{\underline{\epsilon}}(\underline{z}) b_{\underline{\epsilon}}\right\}_{\underline{\epsilon}}$ of asymptotic bqKZ equations for suitable scalar plane wave functions $\mathcal{W}_{\underline{\epsilon}}$ (compensating for the eigenvalues of $b_{\underline{\epsilon}}$).
(3) "Asymptotically free" basis of solutions of bqKZ equations:

$$
\text { Sol }_{\left(\mathbb{C}^{2}\right)^{\otimes n}}=\bigoplus_{\underline{\epsilon}} F \Psi_{\underline{\epsilon}}
$$

with $\Psi_{\underline{\epsilon}}(\underline{z}) \sim \mathcal{W}_{\underline{\epsilon}}(\underline{z}) b_{\underline{\epsilon}}$ if $\underline{z} \rightarrow \infty$.
Remark: In special cases: construction of solutions of bqKZ equations as quantum correlation functions of semi-infinite Heisenberg XXZ spin- $\frac{1}{2}$ chain (Jimbo, Kedem, Konno, Miwa, Weston).

Connection problem

For $w \in W_{0}$,

$$
\left(\nabla(w) \Psi_{\underline{\epsilon}^{\prime}}\right)(\underline{z})=\sum_{\underline{\epsilon}} M_{\underline{\epsilon}, \underline{\underline{\epsilon}}^{\prime}}^{w}(\underline{z} ; \alpha) \Psi_{\underline{\epsilon}}(\underline{z})
$$

for unique $M_{\epsilon, \epsilon^{\prime}}^{w}(. ; \alpha) \in F$.

Definition

Fix $\left\{v_{+}, v_{-}\right\}$basis of \mathbb{C}^{2} and write $v_{\underline{\epsilon}}:=v_{\epsilon_{1}} \otimes \cdots \otimes v_{\epsilon_{n}}$. The connection matrix $M^{w}(\cdot ; \alpha)$ is the F-linear operator on $F \otimes\left(\mathbb{C}^{2}\right)^{\otimes n}$ defined by

$$
M^{w}(\underline{z} ; \alpha) v_{\underline{\epsilon}^{\prime}}:=\sum_{\underline{\epsilon}} M_{\underline{\epsilon}, \underline{\epsilon}^{\prime}}^{w}(\underline{z} ; \alpha) v_{\underline{\epsilon}} .
$$

Connection problem: compute the matrix coefficients of $M^{w}(\underline{z} ; \alpha)$ explicitly in terms of theta functions (by cocycle property $M^{v w}(\underline{z} ; \alpha)=M^{v}(\underline{z} ; \alpha) M^{w}\left(v^{-1} \underline{z} ; \alpha\right)$ it suffices to compute $M^{s_{j}}(\underline{z} ; \alpha)$ $(0 \leq j \leq n)$).

The bulk connection matrices $M^{S_{i}}(x ; \alpha)$

Notations:

(1) $h: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ linear: $h v_{\epsilon}=\epsilon v_{\epsilon}$.
(2) $\theta\left(x_{1}, \ldots, x_{r}\right):=\prod_{i=1}^{r} \theta\left(x_{i}\right)$ with $\theta(x)=(x, q / x ; q)_{\infty}$.

The bulk connection matrices $M^{S_{i}}(x ; \alpha)$

Notations:

(1) $h: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ linear: $h v_{\epsilon}=\epsilon v_{\epsilon}$.
(2) $\theta\left(x_{1}, \ldots, x_{r}\right):=\prod_{i=1}^{r} \theta\left(x_{i}\right)$ with $\theta(x)=(x, q / x ; q)_{\infty}$.

Frenkel, Reshetikhin: For $1 \leq i<n$ the connection matrix $M^{s_{i}}(\underline{z} ; \alpha)$ is essentially Baxter's dynamical elliptic R-matrix for the 8 -vertex face model acting on the $i^{\text {th }}$ and $(i+1)^{\text {st }}$ tensor leg:

$$
M^{s_{i}}(\underline{z} ; \alpha)=P_{i, i+1} R\left(z_{i}-z_{i+1} ; 2 \alpha-2 \kappa\left(h_{1}+\cdots+h_{i-1}\right)\right)_{i, i+1}
$$

with $\kappa=-\log _{q}(k)$ and

$$
R(x ; \alpha):=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & A(x ; \alpha) & B(x ; \alpha) & 0 \\
0 & B(x ;-\alpha) & A(x ;-\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
A(x ; \alpha):=\frac{\theta\left(q^{2 \kappa-\alpha}, q^{-x}\right)}{\theta\left(q^{2 \kappa-x}, q^{-\alpha}\right)} q^{2 \kappa(x-\alpha)}, \quad B(x ; \alpha):=\frac{\theta\left(q^{2 \kappa}, q^{-x-\alpha}\right)}{\theta\left(q^{-\alpha}, q^{2 \kappa-x}\right)} q^{(2 \kappa+\alpha) x}
$$

Boundary connection matrix $M^{s_{n}}(x, \alpha)$

Askey-Wilson parameters

$$
\{a, b, c, d\}:=\left\{k_{n}^{-1} u_{n}^{-1},-k_{n}^{-1} u_{n}, q^{\frac{1}{2}} k_{0}^{-1} u_{0}^{-1},-q^{\frac{1}{2}} k_{0}^{-1} u_{0}\right\}
$$

and dual Askey-Wilson parameters

$$
\{\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}\}:=\left\{k_{n}^{-1} k_{0}^{-1},-k_{n}^{-1} k_{0}, q^{\frac{1}{2}} u_{n}^{-1} u_{0}^{-1},-q^{\frac{1}{2}} u_{n}^{-1} u_{0}\right\} .
$$

Boundary connection matrix $M^{s_{n}}(x, \alpha)$

Askey-Wilson parameters

$$
\{a, b, c, d\}:=\left\{k_{n}^{-1} u_{n}^{-1},-k_{n}^{-1} u_{n}, q^{\frac{1}{2}} k_{0}^{-1} u_{0}^{-1},-q^{\frac{1}{2}} k_{0}^{-1} u_{0}\right\}
$$

and dual Askey-Wilson parameters

$$
\{\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}\}:=\left\{k_{n}^{-1} k_{0}^{-1},-k_{n}^{-1} k_{0}, q^{\frac{1}{2}} u_{n}^{-1} u_{0}^{-1},-q^{\frac{1}{2}} u_{n}^{-1} u_{0}\right\} .
$$

Notations:

$$
\mathcal{C}(x ; \alpha):=\frac{\theta\left(\widetilde{a} q^{\alpha}, \widetilde{b} q^{\alpha}, \widetilde{c} q^{\alpha}, d q^{\alpha-x} / \widetilde{a}\right)}{\theta\left(q^{2 \alpha}, d q^{-x}\right)} q^{-\left(\log _{q}(a)-x\right)\left(\log _{q}(\widetilde{a})-\alpha\right)}
$$

and

$$
\widetilde{\mathcal{C}}(x ; \alpha):=\frac{\theta\left(a q^{\alpha}, b q^{\alpha}, c q^{\alpha}, \widetilde{d} q^{\alpha-x} / a\right)}{\theta\left(q^{2 \alpha}, \widetilde{d} q^{-x}\right)} q^{-\left(\log _{q}(\widetilde{a})-z\right)\left(\log _{q}(a)-\alpha\right)}
$$

Boundary connection matrix

Theorem

$$
M^{s_{n}}(\underline{z} ; \alpha)=K\left(z_{n} ; \alpha-\kappa\left(h_{1}+h_{2}+\cdots+h_{n-1}\right)\right)_{n}
$$

with

$$
\begin{gathered}
K(x ; \alpha):=\left(\begin{array}{cc}
A_{b}(x ; \alpha) & B_{b}(x ; \alpha) \\
B_{b}(x ;-\alpha) & A_{b}(x ;-\alpha)
\end{array}\right) \\
A_{b}(x ; \alpha):=\frac{\mathcal{C}(x ; \alpha)-\widetilde{\mathcal{C}}(\alpha ; x)}{\widetilde{\mathcal{C}}(\alpha ;-x)}, \quad B_{b}(x ; \alpha):=\frac{\mathcal{C}(x ; \alpha)}{\widetilde{\mathcal{C}}(-\alpha ;-x)} .
\end{gathered}
$$

Boundary connection matrix

Theorem

$$
M^{S_{n}}(\underline{Z} ; \alpha)=K\left(z_{n} ; \alpha-\kappa\left(h_{1}+h_{2}+\cdots+h_{n-1}\right)\right)_{n}
$$

with

$$
\begin{gathered}
K(x ; \alpha):=\left(\begin{array}{cc}
A_{b}(x ; \alpha) & B_{b}(x ; \alpha) \\
B_{b}(x ;-\alpha) & A_{b}(x ;-\alpha)
\end{array}\right), \\
A_{b}(x ; \alpha):=\frac{\mathcal{C}(x ; \alpha)-\widetilde{\mathcal{C}}(\alpha ; x)}{\widetilde{\mathcal{C}}(\alpha ;-x)}, \quad B_{b}(x ; \alpha):=\frac{\mathcal{C}(x ; \alpha)}{\widetilde{\mathcal{C}}(-\alpha ;-x)} .
\end{gathered}
$$

Corollary

$K(x ; \alpha)$ is a 4-parameter family of solutions of the dynamical reflection equation

$$
\begin{aligned}
& R_{21}\left(z_{1}-z_{2} ; 2 \alpha\right) K_{1}\left(z_{1} ; \alpha-\kappa h_{2}\right) R_{12}\left(z_{1}+z_{2} ; 2 \alpha\right) K_{2}\left(z_{2} ; \alpha-\kappa h_{1}\right)= \\
& \quad=K_{2}\left(z_{2} ; \alpha-\kappa h_{1}\right) R_{21}\left(z_{1}+z_{2} ; 2 \alpha\right) K_{1}\left(z_{1} ; \alpha-\kappa h_{2}\right) R_{12}\left(z_{1}-z_{2} ; 2 \alpha\right)
\end{aligned}
$$

Remark:

(1) Solutions of the dynamical reflection equation have been computed by direct means by many people: Inami, Konno, de Vega, Gonzalez-Ruiz, Hou, Shi, Fan, Zhang, Behrend, Pearce, Komori, Hikami, Delius, MacKay,....
(2) Upshot present approach: representation theoretic interpretation of the dynamical parameter and of the 4 degrees of freedom for the solutions of the dynamical reflection equation:
i. two boundary parameters k_{0}, k_{n} of the affine Hecke algebra;
ii. two boundary parameters u_{0}, u_{n} arising from Noumi's representation;
iii. dynamical parameter α arising as the representation parameter of the spin representation.

