Quantum integrable systems of elliptic Calogero-Moser type

Simon Ruijsenaars
School of Mathematics
University of Leeds

Representation Theory, Special Functions and
Painlevé Equations, Kyoto, March 3-6, 2015

RIMS Workshop, in honor of Noumi-sensei

Outline

1. Overview

Generalities
The nr/PDO case
The rel/A $\Delta \mathrm{O}$ case
2. Eigenfunctions and kernel functions

Generalities
Some eigenfunction results
Kernel functions: a survey

Generalities

3. Kernel functions: HS approach

Preamble
The A_{N-1} case
The $B C_{1}$ case

- Physical perspective: Systems of Calogero-Moser type are integrable one-dimensional N-particle systems that come in various versions: classical/quantum, nonrelativistic/relativistic, with special interactions given by rational/trigonometric/hyperbolic/elliptic functions.
- Harmonic analysis perspective: The quantum systems amount to commutative algebras of operators associated with root systems, with the differentia//difference operator case corresponding to Lie groups/quantum groups; their symbols Poisson commute and amount to the classical versions.
- This seminar focuses on the quantum elliptic systems associated with the root systems A_{N-1} and $B C_{N}$.

$$
H_{\mathrm{nr}}=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N} \partial_{x_{j}}^{2}+\frac{g(g-\hbar)}{m} \sum_{1 \leq j<k \leq N} V\left(x_{j}-x_{k}\right)
$$

where $\hbar>0$ (Planck's constant), $m>0$ (particle mass), $g \in \mathbb{R}$ (coupling constant), $V(x)$ pair potential of four types:

$$
\begin{array}{ccl}
\text { I. } & 1 / x^{2} & \text { (rational) } \\
\text { II. } & \pi^{2} / \alpha^{2} \sinh ^{2}(\pi x / \alpha), \quad \alpha>0 & \text { (hyperbolic) } \\
\text { III. } & r^{2} / \sin ^{2}(r x), \quad r>0 & \text { (trigonometric) } \\
\text { IV. } & \wp(x ; \pi / 2 r, i \alpha / 2), \quad r, \alpha>0 & \text { (elliptic) }
\end{array}
$$

- Associated integrable system (N commuting PDOs):

$$
\begin{gathered}
H_{1}=-i \hbar \sum_{j=1}^{N} \partial_{x_{j}}, \quad H_{2}=m H_{\mathrm{nr}} \\
H_{k}=\frac{(-i \hbar)^{k}}{k} \sum_{j=1}^{N} \partial_{x_{j}}^{k}+1 . \text { o., } k=3, \ldots, N
\end{gathered}
$$

where l.o. = lower order in partials.

- Physical picture:

$$
H_{\mathrm{nr}}, \quad P_{\mathrm{nr}}=H_{1}, \quad B=-m \sum_{j=1}^{N} x_{j},
$$

represent the Lie algebra of the Galilei group:

$$
\left[H_{\mathrm{nr}}, P_{\mathrm{nr}}\right]=0,\left[H_{\mathrm{nr}}, B\right]=i \hbar P_{\mathrm{nr}},\left[P_{\mathrm{nr}}, B\right]=i \hbar N m
$$

- The 'nonrelativistic'/BC ${ }_{N}$ elliptic Hamiltonian is given by

$$
\begin{aligned}
H_{\mathrm{nr}}=-\frac{\hbar^{2}}{2 m} & \sum_{j=1}^{N} \partial_{x_{j}}^{2}+\frac{g(g-\hbar)}{m} \sum_{\substack{1 \leq j<k \leq N \\
\tau=+,-}} \wp\left(x_{j}-\tau x_{k}\right) \\
& +\sum_{j=1}^{N} \sum_{t=0}^{3} \frac{g_{t}\left(g_{t}-\hbar\right)}{2 m} \wp\left(x_{j}+\omega_{t}\right)
\end{aligned}
$$

- It was introduced by Inozemtsev, who showed integrability of the classical version. On the quantum level there also exist $N-1$ additional pairwise commuting PDOs (Oshima/H. Sekiguchi) of orders $4, \ldots, 2 N$.
- The $N=1$ Schrödinger equation amounts to the Heun equation.

1. Overview

The rel/A Δ O case

- The relativistic/ A_{N-1} systems yield N commuting $\mathrm{A} \Delta \mathrm{Os}$ (analytic difference operators):

$$
H_{k}(x)=\sum_{|| |=k} \prod_{\substack{m \in I \\ n \notin I}} f_{-}\left(x_{m}-x_{n}\right) \cdot \prod_{m \in I} e^{-i \hbar \beta \partial_{x_{m}}} \prod_{\substack{m \in I \\ n \notin I}} f_{+}\left(x_{m}-x_{n}\right),
$$

where $k=1, \ldots, N, \beta>0$, and $f_{ \pm}(x)^{2}$ given by
I.

$$
(x \pm i \beta g) / x
$$

II. $\sinh (\pi(x \pm i \beta g) / \alpha) / \sinh (\pi x / \alpha)$,
III. $\quad \sin (r(x \pm i \beta g)) / \sin (r x)$,
IV. $\sigma(x \pm i \beta g ; \pi / 2 r, i \alpha / 2) / \sigma(x ; \pi / 2 r, i \alpha / 2)$.

- Physical picture: $\beta=1 / m c$ and $c=$ light speed;

$$
H_{\mathrm{rel}}=m c^{2}\left[H_{1}(x)+H_{1}(-x)\right], \quad P_{\mathrm{rel}}=m c\left[H_{1}(x)-H_{1}(-x)\right],
$$

and B yield the Lie algebra of the Poincaré group:

- The nonrelativistic limit $c \rightarrow \infty$ gives

$$
P_{\mathrm{rel}} \rightarrow P_{\mathrm{nr}}, \quad H_{\mathrm{rel}}-N m c^{2} \rightarrow H_{\mathrm{nr}} .
$$

- The hyperbolic and elliptic regimes have two length scales, namely

$$
\left.a_{+} \equiv \alpha, \quad \text { (imaginary period/interaction length }\right),
$$

and

$$
\left.a_{-} \equiv \hbar / m c, \quad \text { (shift step size/Compton wave length }\right)
$$

- The above family of $\mathrm{A} \Delta \mathrm{Os} H_{k}$ with a_{+}and a_{-} interchanged yields a second family commuting with the first one. Hence, eigenfunctions of one family that are symmetric under interchange of a_{+}and a_{-} (modular-invariant) are joint eigenfunctions of both families. (In the hyperbolic case this can be tied in with the modular quantum groups introduced by Faddeev.)
- To bring out modular symmetry and another \mathbb{Z}_{2} symmetry, it is crucial to reparametrize the commuting A Δ Os H_{1}, \ldots, H_{N}. To this end (and also for later purposes) we need the elliptic gamma function $G(z)$ and allied functions. We have

$$
G(z):=\prod_{m, n=0}^{\infty} \frac{1-q_{+}^{2 m+1} q_{-}^{2 n+1} e^{-2 i r z}}{1-q_{+}^{2 m+1} q_{-}^{2 n+1} e^{2 i r z}}
$$

where $q_{ \pm}:=\exp \left(-r a_{ \pm}\right)$. It corresponds to two elliptic curves with real period π / r and imaginary periods $i a_{+}, i a_{-}$.

- We also need the RHS functions in the A Δ Es to which G is the minimal solution:

$$
\begin{gathered}
\frac{G\left(z+i a_{\delta} / 2\right)}{G\left(z-i a_{\delta} / 2\right)}=R_{-\delta}(z), \quad \delta=+,- \\
R_{\delta}(z)=\prod_{l=0}^{\infty}\left(1-q_{\delta}^{2 /+1} e^{2 i r z}\right)(z \rightarrow-z)
\end{gathered}
$$

(Thus R_{δ} is even and π / r-periodic.)

- Next, we need a Harish-Chandra function

$$
c(z):=G(z+i a-i b) / G(z+i a), \quad a:=\left(a_{+}+a_{-}\right) / 2
$$

weight function $w(z):=1 / c(z) c(-z)$ and scattering function

$$
u(z):=c(z) / c(-z)
$$

Their multi-variate versions are

$$
F(x):=\prod_{1 \leq j<k \leq N} f\left(x_{j}-x_{k}\right), \quad f=c, w, u .
$$

- Setting

$$
\rho_{\delta, \pm}(z):=R_{\delta}\left(z \pm\left(i a_{\delta} / 2-i b\right)\right) / R_{\delta}\left(z \pm i a_{\delta} / 2\right)
$$

we introduce 2 N commuting Hamiltonians

$$
\begin{aligned}
H_{k, \delta}(x) & :=\sum_{|| |=k} \prod_{\substack{m \in I \\
n \notin I}}\left(\rho_{\delta,+}\left(x_{m}-x_{n}\right) \rho_{\delta,-}\left(x_{m}-x_{n}-i a_{-\delta}\right)\right)^{1 / 2} \\
& \times \prod_{m \in I} e^{-i a_{-\delta} \partial_{x_{m}}}, \quad k=1, \ldots, N, \quad \delta=+,-
\end{aligned}
$$

- Now $H_{k,+}$ amounts to the previous H_{k} up to a multiplicative constant. The present normalization entails invariance under $b \mapsto 2 a-b$.
- We also need $2 N \mathrm{~A} \Delta \mathrm{Os}$

$$
A_{k, \delta}(x):=W(x)^{-1 / 2} H_{k, \delta}(x) W(x)^{1 / 2}
$$

Using the $G-A \Delta E s$ they can be written as

$$
A_{k, \delta}(x)=\sum_{|I|=k} \prod_{\substack{m \in I \\ n \notin I}} \rho_{\delta,+}\left(x_{m}-x_{n}\right) \cdot \prod_{m \in I} e^{-i a_{-\delta} \partial_{x_{m}}}
$$

They are not invariant under $b \mapsto 2 a-b$, since $W(x)$ is not. But since $U(x)$ is invariant, the $\mathrm{A} \Delta \mathrm{Os}$

$$
\mathcal{A}_{k, \delta}:=U(x)^{-1 / 2} H_{k, \delta} U(x)^{1 / 2}=C(x)^{-1} A_{k, \delta} C(x)
$$

are invariant. Each of these three $\mathrm{A} \Delta \mathrm{O}$-families is crucial for further developments.

- A 'relativistic' Hamiltonian $H_{v D}$ for the $B C_{N}$ case is due to van Diejen; the associated $N-1$ commuting Hamiltonians were shown to exist by Hikami/Komori, and will not be considered here. As in the A_{N-1} case, we need $\mathrm{A} \Delta$ Os $H_{ \pm}, A_{ \pm}$and $\mathcal{A}_{ \pm}$, with H_{+}of the form

$$
H_{+}=C_{1} H_{v D}+C_{2}, \quad C_{1}, C_{2} \in \mathbb{C}^{*} .
$$

As before, these choices reveal non-manifest symmetries.

- In order to detail the $N=1 \mathrm{~A} \Delta \mathrm{Os}$, we again need a Harish-Chandra function

$$
c_{e}(z):=\frac{1}{G(2 z+i a)} \prod_{\mu=0}^{7} G\left(z-i \gamma_{\mu}\right), \quad \gamma_{0}, \ldots, \gamma_{7} \in \mathbb{C}
$$

weight function $w_{e}(z):=1 / c_{e}(z) c_{e}(-z)$ and scattering function $u_{e}(z):=c_{e}(z) / c_{e}(-z)$.

- Once again, we have the relations

$$
A_{\delta}(z)=w_{e}(z)^{-1 / 2} H_{\delta}(z) w_{e}(z)^{1 / 2}
$$

$$
\mathcal{A}_{\delta}(z)=u_{e}(z)^{-1 / 2} H_{\delta}(z) u_{e}(z)^{1 / 2}=c_{e}(z)^{-1} A_{\delta}(z) c_{e}(z)
$$

Here, A_{δ} is of the form

$$
A_{\delta}=V_{\delta}(z) \exp \left(-i a_{-\delta} \partial_{z}\right)+(z \rightarrow-z)+V_{b, \delta}(z)
$$

with

$$
V_{\delta}(z):=c_{e}(z) / c_{e}\left(z-i a_{-\delta}\right)
$$

- Letting

$$
V_{a, \delta}(z):=V_{\delta}(-z) V_{\delta}\left(z+i a_{-\delta}\right)
$$

it follows that we have

$$
\begin{aligned}
& H_{\delta}=V_{a, \delta}(z)^{1 / 2} \exp \left(i a_{-\delta} \partial_{z}\right)+(z \rightarrow-z)+V_{b, \delta}(z) \\
& \mathcal{A}_{\delta}=\exp \left(-i a_{-\delta} \partial_{z}\right)+V_{a, \delta}(z) \exp \left(i a_{-\delta} \partial_{z}\right)+V_{b, \delta}(z)
\end{aligned}
$$

- Using the $G-\mathrm{A} \Delta \mathrm{Es}$, the functions $V_{\delta}(z)$ and $V_{\mathrm{a}, \delta}(z)$ can be expressed solely in terms of $R_{\delta}(z)$. In particular,

$$
V_{a, \delta}(z)=D_{\delta}(z)^{-1} \prod_{\mu=0}^{7} \prod_{\tau=+,-} R_{\delta}\left(z+\tau i \gamma_{\mu}+i a_{-\delta} / 2\right),
$$

with the denominator $D_{\delta}(z)$ a product of γ-independent R_{δ}-functions. As a result, $V_{a, \delta}(z)$ is elliptic in z and has B_{8}-symmetry in γ. (I. e., invariance under S_{8} and sign flips.)

- The additive potential $V_{b, \delta}(z)$ is also elliptic and can be characterized in terms of its residues at 4 simple poles in a period cell. It admits an explicit formula from which D_{8}-symmetry in γ can be read off. (l. e., S_{8} and even sign flips.)
- As a consequence, the $\mathrm{A} \Delta \mathrm{Os} H_{ \pm}$and $\mathcal{A}_{ \pm}$are D_{8}-invariant. (But $w_{e}(z)$ is not, so $A_{ \pm}$are not.)
- The generators $S_{0}, S_{1}, S_{2}, S_{3}$ of the Sklyanin algebra have representations (labeled by $\nu \in \mathbb{C}^{*}$) as $\mathrm{A} \Delta \mathrm{Os}$ acting on even meromorphic functions. In these representations the quadratic part of the algebra is 9 -dimensional. It can be viewed as the linear combinations of the van Diejen $\mathrm{A} \Delta \mathrm{Os} A_{+}(z)$ (with $\sum_{\mu} \gamma_{\mu}$ fixed), plus the constants. In fact, the generators themselves are represented by $\mathrm{A} \Delta \mathrm{Os}$ that can be regarded as special van Diejen $\mathrm{A} \Delta \mathrm{Os}$. (See E. Rains/S. R., CMP 2013 for these results and other ones.)
- The 4-coupling Heun operator can be tied in with Painlevé VI (via the so-called Painlevé-Calogero correspondence). The conjecture (S. R., 2008) that the 8 -coupling 'relativistic' Heun (i. e., van Diejen) operator has a similar relation to the Sakai elliptic difference Painlevé equation is still open.
- Turning finally to 'relativistic' $B C_{N}$ with $N>1$, the commuting modular pair $H_{ \pm}$of defining Hamiltonians is of the form
$\sum_{j=1}^{N}\left(\mathcal{V}_{j, \pm}(x)^{1 / 2} e^{-i a_{\mp} \partial \partial_{x_{j}}} \mathcal{V}_{j, \pm}(-x)^{1 / 2}+(x \rightarrow-x)\right)+\mathcal{V}_{ \pm}(x)$
Here, we have

$$
\mathcal{V}_{j, \delta}(x):=V_{\delta}\left(x_{j}\right) \prod_{\substack{k \neq j \\ \tau=+,-}} \frac{R_{\delta}\left(x_{j}-\tau x_{k}-i b+i \mathrm{a}_{\delta} / 2\right)}{R_{\delta}\left(x_{j}-\tau x_{k}+i \mathrm{a}_{\delta} / 2\right)}
$$

with $V_{\delta}(z)$ the previous $B C_{1}$ coefficient, and with $\mathcal{V}_{\delta}(x)$ an elliptic function whose definition we skip.

- Next, we introduce the Harish-Chandra function

$$
C(x):=\prod_{j=1}^{N} c_{e}\left(x_{j}\right) \cdot \prod_{\substack{1 \leq j<k \leq N \\ \tau=+,-}} \frac{G\left(x_{j}-\tau x_{k}-i b+i a\right)}{G\left(x_{j}-\tau x_{k}+i a\right)}
$$

weight function $W(x):=1 / C(x) C(-x)$ and scattering function $U(x):=C(x) / C(-x)$.

- Then we get again the two H_{δ}-avatars

$$
A_{\delta}(x):=W(x)^{-1 / 2} H_{\delta}(x) W(x)^{1 / 2}
$$

and

$$
\mathcal{A}_{\delta}(x):=U(x)^{-1 / 2} H_{\delta}(x) U(x)^{1 / 2}=C(x)^{-1} A_{\delta}(x) C(x) .
$$

- The $\mathrm{A} \triangle \mathrm{Os} A_{ \pm}$and $H_{ \pm}$are $B C_{N}$-invariant, whereas $\mathcal{A}_{ \pm}$are not invariant under sign changes of x_{j} (since $C(x)$ is not). The $\mathrm{A} \Delta \mathrm{Os} \mathcal{A}_{ \pm}$and $H_{ \pm}$are D_{8}-invariant, whereas $A_{ \pm}$are not invariant under even sign changes of γ_{μ} (since $\boldsymbol{C}(\boldsymbol{x})$ is not).
- This 9 -coupling family admits a great many degenerations and limits. In particular, the trigonometric specialization of A_{+}is the 5-coupling Koornwinder $\mathrm{A} \Delta \mathrm{O}$, which has Koornwinder-Macdonald polynomials as eigenfunctions, and the 'nonrelativistic' limit of H_{+} yields the previous 5-coupling Inozemtsev PDO.

2. Eigenfunctions and kernel functions

Generalities

- Given a set of commuting operators, the obvious first problem is to show or rule out the existence of joint eigenfunctions. In case joint eigenfunctions exist, the next problem is to obtain explicit information about them. Finally, with sufficient information available, the problem of finding a Hilbert space reinterpretation of the commuting operators can be addressed.
- For the Hilbert space joint eigenfunction problem, the spectral theorem is of little use, since it assumes the existence of commuting self-adjoint operators. The PDOs/A Δ Os are only formally self-adjoint, however.
- Especially in the A Δ O case, there are hardly any 'useful' existence results available. In fact, already for the 1 -variable case there are simple examples of commuting $\mathrm{A} \Delta \mathrm{Os}$ without joint eigenfunctions.

2. Eigenfunctions and kernel functions

Some eigenfunction results

- Abundant results on eigenfunctions exist for the Lamé/Heun cases (equivalently, the nonrelativistic $A_{1} / B C_{1}$ cases). Far less is known about their relativistic counterparts.
- For A_{N-1} with $N>2$ there are results of 'Bethe Ansatz' type. They are restricted to certain discrete couplings and to the defining Hamiltonian (Felder/Varchenko for the PDO case, Billey for the $\mathrm{A} \Delta \mathrm{O}$ case).
- Results by Komori/Takemura on the nr/PDO case yield existence of joint Hilbert space eigenfunctions reducing to (basically) the Jack-Sutherland polynomials in the trigonometric limit. Since perturbation theory is used, restrictions on the imaginary period and the coupling are present.

2. Eigenfunctions and kernel functions

 Kernel functions: a survey- Given a pair of operators $H_{1}(x)$ and $H_{2}(y)$, a kernel function is a function $\Psi(x, y)$ satisfying

$$
H_{1}(x) \Psi(x, y)=H_{2}(y) \Psi(x, y)
$$

Here, x and y may vary over spaces of different dimension. Used as kernels of integral operators, the latter can be used to connect eigenfunctions of H_{2} to those of H_{1}.

- For the above elliptic N-variable Hamiltonians, kernel functions with both x and y varying over \mathbb{C}^{N} are known, imposing one coupling constraint for the $B C_{N}$ case with $N>1$. Probably the earliest result (with H_{1}, H_{2} Lamé operators) is due to Whittaker (1915).
- The first multi-variate result has been obtained by Langmann (2000). It pertains to the defining A_{N-1} PDO. Specifically, H_{1} and H_{2} equal (with $m=\hbar=1$)

$$
H_{n r}=-\frac{1}{2} \sum_{j=1}^{N} \partial_{x_{j}}^{2}+g(g-1) \sum_{1 \leq j<k \leq N} \wp\left(x_{j}-x_{k}\right)
$$

and his kernel function amounts to

$$
\begin{gathered}
W_{n r}(x)^{1 / 2} W_{n r}(y)^{1 / 2} \prod_{j, k=1}^{N} R\left(x_{j}-y_{k}+\xi\right)^{-g}, \\
W_{n r}(x):=\left(\prod_{1 \leq j<k \leq N} R\left(x_{j}-x_{k}+i \alpha / 2\right) R\left(x_{j}-x_{k}-i \alpha / 2\right)\right)^{g} .
\end{gathered}
$$

He has used this as a starting point to derive perturbative formulas for $H_{n r}$-eigenfunctions.

- In later work (partly joint with Takemura), he obtains so-called source identities. They can be specialized to obtain various kernel identities for more general elliptic PDOs (more than one mass, e. g.).
- Kernel functions for the $2 N$ commuting $A_{N-1} \mathrm{~A} \Delta \mathrm{Os}$ were first presented at the Kyoto EIS Workshop (S. R., 2004). For $A_{k, \delta}$ one can take in particular

$$
\mathcal{S}_{\xi}(x, y)=\prod_{j, k=1}^{N} \frac{G\left(x_{j}-y_{k}-i b / 2+\xi\right)}{G\left(x_{j}-y_{k}+i b / 2+\xi\right)}, \quad \xi \in \mathbb{C} .
$$

- Taking the nonrelativistic limit of the $H_{k, \delta}$-kernel function

$$
W(x)^{1 / 2} W(y)^{1 / 2} \mathcal{S}_{\xi}(x, y)
$$

we get Langmann's kernel function, together with the kernel function property for the higher-order commuting PDOs.

- Similar kernel functions for the defining $B C_{N} \mathrm{~A} \Delta \mathrm{O}$ and PDO also date back to the Kyoto EIS Workshop. (For $N>1$ one balancing condition is needed.)

Preamble

- A long-standing goal is to reinterpret the 2 N commuting $A_{N-1} \mathrm{~A} \Delta \mathrm{Os} \mathcal{A}_{k, \delta}(x)$ as commuting self-adjoint operators on the Hilbert space

$$
\begin{gathered}
\mathcal{H}_{A}:=L^{2}\left(F_{A}, d x\right) \\
F_{A}:=\left\{-\pi / 2 r<x_{N}<\cdots<x_{1} \leq \pi / 2 r\right\}
\end{gathered}
$$

- Likewise, the 2 commuting $B C_{N} \mathrm{~A} \Delta \mathrm{Os} \mathcal{A}_{\delta}(x)$ ought to be promoted to commuting self-adjoint operators on the Hilbert space

$$
\begin{gathered}
\mathcal{H}_{B}:=L^{2}\left(F_{B}, d x\right) \\
F_{B}:=\left\{0<x_{N}<\cdots<x_{1} \leq \pi / 2 r\right\}
\end{gathered}
$$

- To this end, we need 'only' show existence of an ONB of joint eigenfunctions with real eigenvalues.
- Under suitable restrictions on the parameters, the kernel functions give rise to Hilbert-Schmidt (HS) integral operators \mathcal{I}_{ξ} and \mathcal{I} on \mathcal{H}_{A} and \mathcal{H}_{B}, resp. Then the operators

$$
\mathcal{T}_{\xi}:=\mathcal{I}_{\xi} \mathcal{I}_{\xi}^{*}, \quad \mathcal{T}:=\mathcal{I I}^{*},
$$

are self-adjoint trace class operators.

- The spectral theorem now guarantees the existence of an ONB of eigenvectors for these operators, but it yields no further information. In particular, the operators can a priori have an infinite-dimensional zero-eigenvalue eigenspace.
- It follows from recent results (S. R., 2012) that the relevant operators actually have trivial null space and dense range.
- Crux: it can be expected that the \mathcal{T}_{ξ} - and \mathcal{T}-eigenvectors extend to meromorphic eigenfunctions of the $\mathrm{A} \Delta \mathrm{Os} \mathcal{A}_{k, \delta}$ and \mathcal{A}_{δ} with real eigenvalues.
- Reason: the $\mathrm{A} \Delta \mathrm{Os}$ are formally self-adjoint and formally satisfy

$$
\left[\mathcal{A}_{k, \delta}, \mathcal{I}_{\xi}\right]=0, \quad\left[\mathcal{A}_{\delta}, \mathcal{T}\right]=0
$$

due to the kernel identities. Thus the eigenvector ONB of the trace class operators 'should' yield an ONB of joint eigenfunctions of the commuting $\mathrm{A} \Delta \mathrm{Os}$.

- This approach is easily understood and formally convincing, but a lot of analysis is needed to make it work. This involves in particular complex analysis to prove the meromorphy of the \mathcal{T}-eigenfunctions, and functional analysis to control dense domains for the A Δ Os. (No general Hilbert space theory for $\mathrm{A} \Delta \mathrm{Os}$ exists to date.)

3. Kernel functions: HS approach

The A_{N-1} case

- Work in progress (need $b \in\left(0, a_{+}+a_{-}\right)$); There is circumstantial evidence for the conjecture that the ONB can be labelled by

$$
n \in \mathbb{Z}_{\geq}^{N} \equiv\left\{n \in \mathbb{Z}^{N} \mid n_{1} \geq \cdots \geq n_{N}\right\}
$$

in such a way that when the minimum of the gaps $n_{j}-n_{j+1}, j=1, \ldots, N-1$, tends to ∞ one has asymptotics proportional to

$$
\sum_{\sigma \in S_{N}} \frac{C\left(x_{\sigma}\right)}{C(x)} \exp \left(2 i r n \cdot x_{\sigma}\right)
$$

(If so, the dual dynamics yield a factorized S-matrix.)

- For the cases $b=a_{+}$and $b=a_{-}$the joint eigenvector ONB amounts to 'free fermions' (\sim Schur polynomials), the $\mathrm{A} \Delta$ O-eigenvalues are obvious, and the eigenvalues for a modified HS family are explicitly known too (S. R., 2009).

The $B C_{1}$ case

- Here the 'initial' kernel identity reads
$A_{\delta}(\gamma ; x) \mathcal{S}(\sigma(\gamma) ; x, y)=A_{\delta}\left(\gamma^{\prime} ; y\right) \mathcal{S}(\sigma(\gamma) ; x, y), \delta=+,-$, where

$$
\begin{gathered}
\gamma^{\prime} \equiv-\boldsymbol{J} \gamma \\
\sigma(\gamma) \equiv-\frac{1}{4} \sum_{\mu=0}^{7} \gamma_{\mu}=-\frac{1}{4}\langle\zeta, \gamma\rangle, \quad \zeta \equiv(1, \ldots, 1)
\end{gathered}
$$

and J can be viewed as the reflection associated with the highest E_{8} root $\zeta / 2$, i. e.,

$$
J \equiv \mathbf{1}_{8}-\frac{1}{4} \zeta \otimes \zeta .
$$

- The kernel function is given by

$$
\mathcal{S}(t ; x, y) \equiv \prod_{\delta_{1}, \delta_{2}=+,-} G\left(\delta_{1} x+\delta_{2} y-i a+i t\right)
$$

with $G(z)$ the elliptic gamma function.

- For the $\mathrm{A} \Delta \mathrm{Os} \boldsymbol{A}_{ \pm}(\gamma ; x)$ the relevant Hilbert space is the weighted L^{2} space

$$
\mathcal{H}_{w} \equiv L^{2}\left([0, \pi / 2 r], w_{e}(\gamma ; x) d x\right)
$$

- It is crucial to switch from this $\mathrm{A} \Delta \mathrm{O}$ pair to the D_{8}-invariant $\mathrm{A} \Delta \mathrm{Os}$

$$
\mathcal{A}_{\delta}(\gamma ; x)=c_{e}(\gamma ; x)^{-1} \boldsymbol{A}_{\delta}(\gamma ; x) c_{e}(\gamma ; x)
$$

which are formally self-adjoint on

$$
\mathcal{H}=L^{2}([0, \pi / 2 r], d x)
$$

for suitable γ (in particular for $\gamma \in \mathbb{R}^{8}$).

- They satisfy the kernel identity

$$
\mathcal{A}_{\delta}(\gamma ; x) \mathcal{K}(\gamma ; x, y)=\mathcal{A}_{\delta}\left(\gamma^{\prime} ;-y\right) \mathcal{K}(\gamma ; x, y)
$$

with

$$
\mathcal{K}(\gamma ; x, y) \equiv \frac{\mathcal{S}(\sigma(\gamma) ; x, y)}{c_{e}(\gamma ; x) c_{e}\left(\gamma^{\prime} ;-y\right)}
$$

- With further restrictions on γ, the kernel function $\mathcal{K}(\gamma ; x, y)$ yields a HS integral operator $\mathcal{I}(\gamma)$ on \mathcal{H} with a trivial null space and dense range. Requiring $\gamma \in \mathbb{R}^{8}$ from now on, the restriction

$$
\gamma_{\mu}, \gamma_{\mu}^{\prime} \in(-a, a), \quad \sigma(\gamma) \in(0, a)
$$

suffices.

- With this restriction, we can show that the resulting eigenvector \mathcal{H}-ONB $f_{n}(\gamma), n=0,1,2, \ldots$, for the self-adjoint trace class operator $\mathcal{I}(\gamma) \mathcal{I}(\gamma)^{*}$ has the following features:
- $f_{n}(\gamma)$ is the restriction to $[0, \pi / 2 r]$ of a meromorphic function $f_{n}(\gamma ; x)$ with known pole locations depending only on γ;
- Setting

$$
a_{s} \equiv \min \left(a_{+}, a_{-}\right), a_{l} \equiv \max \left(a_{+}, a_{-}\right)
$$

and assuming a_{l} is not a multiple of a_{s}, the functions $f_{n}(\gamma ; x)$ are joint eigenfunctions of $\mathcal{A}_{ \pm}(\gamma ; x)$ with real eigenvalues.

- Consequence: With the above restrictions on $a_{ \pm}$and γ understood, the $\mathrm{A} \Delta \mathrm{O}$ sive rise to commuting self-adjoint operators $\hat{\mathcal{A}}_{ \pm}(\gamma)$ on \mathcal{H} with discrete spectra.
- Further results include:
- The definition of $\hat{\mathcal{A}}_{ \pm}(\gamma)$ implies that the operators are invariant under D_{8}-transformations of γ.
- For γ in the ball $\|\gamma\|_{2}<a$ (with the origin deleted), the operators are isospectral under
E_{8}-transformations. Generically, this yields 135
$\left(=\left|W\left(E_{8}\right) / W\left(D_{8}\right)\right|\right)$ distinct isospectral operators.
- For generic γ, we also get 64 distinct commuting HS operators.
- The asymptotic behavior as $n \rightarrow \infty$ of the eigenfunctions $f_{n}(\gamma ; x)$ is the same as that of an \mathcal{H}-ONB of functions $P_{n}(\gamma ; x) / C_{P}(\gamma ; x)$, with $P_{n}(\gamma ; x)$ orthonormal polynomials; this relation also leads to detailed information on eigenvalue asymptotics.
- Recent references re HS approach:
- Hilbert-Schmidt-operators vs. integrable systems of elliptic Calogero-Moser type. II. The A_{N-1} case: First steps, Comm. Math. Phys. 286 (2009), 659-680
- Hilbert-Schmidt-operators vs. integrable systems of elliptic Calogero-Moser type. III. The Heun case, SIGMA 5 (2009), 049, 21 pages
- On positive Hilbert-Schmidt operators, Integr. Equ. Oper. Theory, 75 (2013), 393-407
- Hilbert-Schmidt-operators vs. integrable systems of elliptic Calogero-Moser type. IV. The relativistic Heun (van Diejen) case, SIGMA 11 (2015), 004, 78 pages

