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1. Overview
Generalities

I Physical perspective: Systems of Calogero-Moser
type are integrable one-dimensional N-particle
systems that come in various versions:
classical/quantum, nonrelativistic/relativistic, with
special interactions given by
rational/trigonometric/hyperbolic/elliptic functions.

I Harmonic analysis perspective: The quantum
systems amount to commutative algebras of
operators associated with root systems, with the
differential/difference operator case corresponding to
Lie groups/quantum groups; their symbols Poisson
commute and amount to the classical versions.

I This seminar focuses on the quantum elliptic
systems associated with the root systems AN�1 and
BCN .
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1. Overview
The nr/PDO case

I The nonrelativistic/AN�1 quantum Calogero-Moser
(CM) Hamiltonian is given by

H
nr

= � ~2

2m

NX

j=1

@2
xj

+
g(g � ~)

m

X

1j<kN

V (xj � xk ),

where ~ > 0 (Planck’s constant), m > 0 (particle
mass), g 2 R (coupling constant), V (x) pair potential
of four types:

I. 1/x2 (rational)
II. ⇡2/↵2 sinh2(⇡x/↵), ↵ > 0 (hyperbolic)

III. r2/ sin2(rx), r > 0 (trigonometric)
IV. }(x ;⇡/2r , i↵/2), r , ↵ > 0 (elliptic)
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I Associated integrable system (N commuting PDOs):

H1 = �i~
NX

j=1

@xj , H2 = mH
nr

,

Hk =
(�i~)k

k

NX

j=1

@k
xj

+ l. o., k = 3, . . . , N,

where l.o. = lower order in partials.
I Physical picture:

H
nr

, P
nr

= H1, B = �m
NX

j=1

xj ,

represent the Lie algebra of the Galilei group:

[H
nr

, P
nr

] = 0, [H
nr

, B] = i~P
nr

, [P
nr

, B] = i~Nm.
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I The ‘nonrelativistic’/BCN elliptic Hamiltonian is given
by

H
nr

= � ~2

2m

NX

j=1

@2
xj

+
g(g � ~)

m

X

1j<kN
⌧=+,�

}(xj � ⌧xk )

+
NX

j=1

3X

t=0

gt(gt � ~)

2m
}(xj + !t).

I It was introduced by Inozemtsev, who showed
integrability of the classical version. On the quantum
level there also exist N � 1 additional pairwise
commuting PDOs (Oshima/H. Sekiguchi) of orders
4, . . . , 2N.

I The N = 1 Schrödinger equation amounts to the
Heun equation.
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1. Overview
The rel/A�O case

I The relativistic/AN�1 systems yield N commuting
A�Os (analytic difference operators):

Hk (x) =
X

|I|=k

Y

m2I
n 62I

f�(xm�xn)·
Y

m2I

e�i~�@xm ·
Y

m2I
n 62I

f+(xm�xn),

where k = 1, . . . , N, � > 0, and f±(x)2 given by

I. (x ± i�g)/x ,

II. sinh(⇡(x ± i�g)/↵)/ sinh(⇡x/↵),

III. sin(r(x ± i�g))/ sin(rx),

IV. �(x ± i�g;⇡/2r , i↵/2)/�(x ;⇡/2r , i↵/2).

I Physical picture: � = 1/mc and c = light speed;

H
rel

= mc2[H1(x)+H1(�x)], P
rel

= mc[H1(x)�H1(�x)],

and B yield the Lie algebra of the Poincaré group:

[H
rel

, P
rel

] = 0, [H
rel

, B] = i~P
rel

, [P
rel

, B] = i~c�2H
rel

.
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I The nonrelativistic limit c !1 gives

P
rel

! P
nr

, H
rel

� Nmc2 ! H
nr

.

I The hyperbolic and elliptic regimes have two length
scales, namely

a+ ⌘ ↵, (imaginary period/interaction length),

and

a� ⌘ ~/mc, (shift step size/Compton wave length).

I The above family of A�Os Hk with a+ and a�
interchanged yields a second family commuting with
the first one. Hence, eigenfunctions of one family
that are symmetric under interchange of a+ and a�
(modular-invariant) are joint eigenfunctions of both
families. (In the hyperbolic case this can be tied in
with the modular quantum groups introduced by
Faddeev.)
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I To bring out modular symmetry and another Z2
symmetry, it is crucial to reparametrize the
commuting A�Os H1, . . . , HN . To this end (and also
for later purposes) we need the elliptic gamma
function G(z) and allied functions. We have

G(z) :=
1Y

m,n=0

1� q2m+1
+ q2n+1

� e�2irz

1� q2m+1
+ q2n+1

� e2irz
,

where q± := exp(�ra±). It corresponds to two elliptic
curves with real period ⇡/r and imaginary periods
ia+, ia�.

I We also need the RHS functions in the A�Es to
which G is the minimal solution:

G(z + ia�/2)

G(z � ia�/2)
= R��(z), � = +,�,

R�(z) =
1Y

l=0

(1� q2l+1
� e2irz)(z ! �z).

(Thus R� is even and ⇡/r -periodic.)
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I Next, we need a Harish-Chandra function

c(z) := G(z + ia� ib)/G(z + ia), a := (a+ + a�)/2,

weight function w(z) := 1/c(z)c(�z) and scattering
function

u(z) := c(z)/c(�z).

Their multi-variate versions are

F (x) :=
Y

1j<kN

f (xj � xk ), f = c, w , u.

I Setting

⇢�,±(z) := R�(z ± (ia�/2� ib))/R�(z ± ia�/2),

we introduce 2N commuting Hamiltonians

Hk ,�(x) :=
X

|I|=k

Y

m2I
n 62I

⇣
⇢�,+(xm�xn)⇢�,�(xm�xn�ia��)

⌘1/2

⇥
Y

m2I

e�ia��@xm , k = 1, . . . , N, � = +,�.
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I Now Hk ,+ amounts to the previous Hk up to a
multiplicative constant. The present normalization
entails invariance under b 7! 2a� b.

I We also need 2N A�Os

Ak ,�(x) := W (x)�1/2Hk ,�(x)W (x)1/2.

Using the G-A�Es they can be written as

Ak ,�(x) =
X

|I|=k

Y

m2I
n 62I

⇢�,+(xm � xn) ·
Y

m2I

e�ia��@xm .

They are not invariant under b 7! 2a� b, since W (x)
is not. But since U(x) is invariant, the A�Os

Ak ,� := U(x)�1/2Hk ,�U(x)1/2 = C(x)�1Ak ,�C(x),

are invariant. Each of these three A�O-families is
crucial for further developments.
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I A ‘relativistic’ Hamiltonian HvD for the BCN case is
due to van Diejen; the associated N � 1 commuting
Hamiltonians were shown to exist by Hikami/Komori,
and will not be considered here. As in the AN�1 case,
we need A�Os H±, A± and A±, with H+ of the form

H+ = C1HvD + C2, C1, C2 2 C⇤.

As before, these choices reveal non-manifest
symmetries.

I In order to detail the N = 1 A�Os, we again need a
Harish-Chandra function

ce(z) :=
1

G(2z + ia)

7Y

µ=0

G(z � i�µ), �0, . . . , �7 2 C,

weight function we(z) := 1/ce(z)ce(�z) and
scattering function ue(z) := ce(z)/ce(�z).
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I Once again, we have the relations

A�(z) = we(z)�1/2H�(z)we(z)1/2,

A�(z) = ue(z)�1/2H�(z)ue(z)1/2 = ce(z)�1A�(z)ce(z).

Here, A� is of the form

A� = V�(z) exp(�ia��@z) + (z ! �z) + Vb,�(z),

with
V�(z) := ce(z)/ce(z � ia��).

I Letting

Va,�(z) := V�(�z)V�(z + ia��),

it follows that we have

H� = Va,�(z)1/2 exp(ia��@z) + (z ! �z) + Vb,�(z),

A� = exp(�ia��@z) + Va,�(z) exp(ia��@z) + Vb,�(z).



Elliptic N-particle
systems

Simon Ruijsenaars

1. Overview
Generalities

The nr/PDO case

The rel/A�O case

2. Eigenfunctions
and kernel
functions
Generalities

Some eigenfunction results

Kernel functions: a survey

3. Kernel
functions: HS
approach
Preamble

The AN�1 case

The BC1 case

I Using the G-A�Es, the functions V�(z) and Va,�(z)
can be expressed solely in terms of R�(z). In
particular,

Va,�(z) = D�(z)�1
7Y

µ=0

Y

⌧=+,�
R�(z + ⌧ i�µ + ia��/2),

with the denominator D�(z) a product of
�-independent R�-functions. As a result, Va,�(z) is
elliptic in z and has B8-symmetry in �. (I. e.,
invariance under S8 and sign flips.)

I The additive potential Vb,�(z) is also elliptic and can
be characterized in terms of its residues at 4 simple
poles in a period cell. It admits an explicit formula
from which D8-symmetry in � can be read off. (I. e.,
S8 and even sign flips.)

I As a consequence, the A�Os H± and A± are
D8-invariant. (But we(z) is not, so A± are not.)
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I The generators S0, S1, S2, S3 of the Sklyanin algebra
have representations (labeled by ⌫ 2 C⇤) as A�Os
acting on even meromorphic functions. In these
representations the quadratic part of the algebra is
9-dimensional. It can be viewed as the linear
combinations of the van Diejen A�Os A+(z) (withP

µ �µ fixed), plus the constants. In fact, the
generators themselves are represented by A�Os
that can be regarded as special van Diejen A�Os.
(See E. Rains/S. R., CMP 2013 for these results and
other ones.)

I The 4-coupling Heun operator can be tied in with
Painlevé VI (via the so-called Painlevé-Calogero
correspondence). The conjecture (S. R., 2008) that
the 8-coupling ‘relativistic’ Heun (i. e., van Diejen)
operator has a similar relation to the Sakai elliptic
difference Painlevé equation is still open.
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I Turning finally to ‘relativistic’ BCN with N > 1, the
commuting modular pair H± of defining Hamiltonians
is of the form

NX

j=1

⇣
Vj,±(x)1/2e�ia⌥@xj Vj,±(�x)1/2+(x ! �x)

⌘
+V±(x).

Here, we have

Vj,�(x) := V�(xj)
Y

k 6=j
⌧=+,�

R�(xj � ⌧xk � ib + ia�/2)

R�(xj � ⌧xk + ia�/2)
,

with V�(z) the previous BC1 coefficient, and with
V�(x) an elliptic function whose definition we skip.

I Next, we introduce the Harish-Chandra function

C(x) :=
NY

j=1

ce(xj) ·
Y

1j<kN
⌧=+,�

G(xj � ⌧xk � ib + ia)

G(xj � ⌧xk + ia)
,

weight function W (x) := 1/C(x)C(�x) and
scattering function U(x) := C(x)/C(�x).
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I Then we get again the two H�-avatars

A�(x) := W (x)�1/2H�(x)W (x)1/2,

and

A�(x) := U(x)�1/2H�(x)U(x)1/2 = C(x)�1A�(x)C(x).

I The A�Os A± and H± are BCN -invariant, whereas
A± are not invariant under sign changes of xj (since
C(x) is not). The A�Os A± and H± are D8-invariant,
whereas A± are not invariant under even sign
changes of �µ (since C(x) is not).

I This 9-coupling family admits a great many
degenerations and limits. In particular, the
trigonometric specialization of A+ is the 5-coupling
Koornwinder A�O, which has
Koornwinder-Macdonald polynomials as
eigenfunctions, and the ‘nonrelativistic’ limit of H+

yields the previous 5-coupling Inozemtsev PDO.
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2. Eigenfunctions and kernel functions
Generalities

I Given a set of commuting operators, the obvious first
problem is to show or rule out the existence of joint
eigenfunctions. In case joint eigenfunctions exist, the
next problem is to obtain explicit information about
them. Finally, with sufficient information available, the
problem of finding a Hilbert space reinterpretation of
the commuting operators can be addressed.

I For the Hilbert space joint eigenfunction problem, the
spectral theorem is of little use, since it assumes the
existence of commuting self-adjoint operators. The
PDOs/A�Os are only formally self-adjoint, however.

I Especially in the A�O case, there are hardly any
‘useful’ existence results available. In fact, already for
the 1-variable case there are simple examples of
commuting A�Os without joint eigenfunctions.



Elliptic N-particle
systems

Simon Ruijsenaars

1. Overview
Generalities

The nr/PDO case

The rel/A�O case

2. Eigenfunctions
and kernel
functions
Generalities

Some eigenfunction results

Kernel functions: a survey

3. Kernel
functions: HS
approach
Preamble

The AN�1 case

The BC1 case

2. Eigenfunctions and kernel functions
Some eigenfunction results

I Abundant results on eigenfunctions exist for the
Lamé/Heun cases (equivalently, the nonrelativistic
A1/BC1 cases). Far less is known about their
relativistic counterparts.

I For AN�1 with N > 2 there are results of ‘Bethe
Ansatz’ type. They are restricted to certain discrete
couplings and to the defining Hamiltonian
(Felder/Varchenko for the PDO case, Billey for the
A�O case).

I Results by Komori/Takemura on the nr/PDO case
yield existence of joint Hilbert space eigenfunctions
reducing to (basically) the Jack-Sutherland
polynomials in the trigonometric limit. Since
perturbation theory is used, restrictions on the
imaginary period and the coupling are present.
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2. Eigenfunctions and kernel functions
Kernel functions: a survey

I Given a pair of operators H1(x) and H2(y), a kernel
function is a function  (x , y) satisfying

H1(x) (x , y) = H2(y) (x , y).

Here, x and y may vary over spaces of different
dimension. Used as kernels of integral operators, the
latter can be used to connect eigenfunctions of H2 to
those of H1.

I For the above elliptic N-variable Hamiltonians, kernel
functions with both x and y varying over CN are
known, imposing one coupling constraint for the BCN
case with N > 1. Probably the earliest result (with
H1, H2 Lamé operators) is due to Whittaker (1915).
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I The first multi-variate result has been obtained by
Langmann (2000). It pertains to the defining AN�1
PDO. Specifically, H1 and H2 equal (with m = ~ = 1)

Hnr = �1
2

NX

j=1

@2
xj

+ g(g � 1)
X

1j<kN

}(xj � xk ),

and his kernel function amounts to

Wnr (x)1/2Wnr (y)1/2
NY

j,k=1

R(xj � yk + ⇠)�g ,

Wnr (x) :=
⇣ Y

1j<kN

R(xj�xk+i↵/2)R(xj�xk�i↵/2)
⌘g

.

He has used this as a starting point to derive
perturbative formulas for Hnr -eigenfunctions.

I In later work (partly joint with Takemura), he obtains
so-called source identities. They can be specialized
to obtain various kernel identities for more general
elliptic PDOs (more than one mass, e. g.).
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I Kernel functions for the 2N commuting AN�1 A�Os
were first presented at the Kyoto EIS Workshop
(S. R., 2004). For Ak ,� one can take in particular

S⇠(x , y) =
NY

j,k=1

G(xj � yk � ib/2 + ⇠)

G(xj � yk + ib/2 + ⇠)
, ⇠ 2 C.

I Taking the nonrelativistic limit of the Hk ,�-kernel
function

W (x)1/2W (y)1/2S⇠(x , y),

we get Langmann’s kernel function, together with the
kernel function property for the higher-order
commuting PDOs.

I Similar kernel functions for the defining BCN A�O
and PDO also date back to the Kyoto EIS Workshop.
(For N > 1 one balancing condition is needed.)
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3. Kernel functions: HS approach
Preamble

I A long-standing goal is to reinterpret the 2N
commuting AN�1 A�Os Ak ,�(x) as commuting
self-adjoint operators on the Hilbert space

HA := L2(FA, dx),

FA := {�⇡/2r < xN < · · · < x1  ⇡/2r}.
I Likewise, the 2 commuting BCN A�Os A�(x) ought

to be promoted to commuting self-adjoint operators
on the Hilbert space

HB := L2(FB, dx),

FB := {0 < xN < · · · < x1  ⇡/2r}.
I To this end, we need ‘only’ show existence of an

ONB of joint eigenfunctions with real eigenvalues.
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I Under suitable restrictions on the parameters, the
kernel functions give rise to Hilbert-Schmidt (HS)
integral operators I⇠ and I on HA and HB, resp.
Then the operators

T⇠ := I⇠I⇤⇠ , T := II⇤,
are self-adjoint trace class operators.

I The spectral theorem now guarantees the existence
of an ONB of eigenvectors for these operators, but it
yields no further information. In particular, the
operators can a priori have an infinite-dimensional
zero-eigenvalue eigenspace.

I It follows from recent results (S. R., 2012) that the
relevant operators actually have trivial null space and
dense range.

I Crux: it can be expected that the T⇠- and
T -eigenvectors extend to meromorphic
eigenfunctions of the A�Os Ak ,� and A� with real
eigenvalues.
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I Reason: the A�Os are formally self-adjoint and
formally satisfy

[Ak ,�, T⇠] = 0, [A�, T ] = 0,

due to the kernel identities. Thus the eigenvector
ONB of the trace class operators ‘should’ yield an
ONB of joint eigenfunctions of the commuting A�Os.

I This approach is easily understood and formally
convincing, but a lot of analysis is needed to make it
work. This involves in particular complex analysis to
prove the meromorphy of the T -eigenfunctions, and
functional analysis to control dense domains for the
A�Os. (No general Hilbert space theory for A�Os
exists to date.)
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I Work in progress (need b 2 (0, a+ + a�)); There is
circumstantial evidence for the conjecture that the
ONB can be labelled by

n 2 ZN
� ⌘ {n 2 ZN | n1 � · · · � nN},

in such a way that when the minimum of the gaps
nj � nj+1, j = 1, . . . , N � 1, tends to 1 one has
asymptotics proportional to

X

�2SN

C(x�)

C(x)
exp(2irn · x�).

(If so, the dual dynamics yield a factorized S-matrix.)
I For the cases b = a+ and b = a� the joint

eigenvector ONB amounts to ‘free fermions’ (⇠
Schur polynomials), the A�O-eigenvalues are
obvious, and the eigenvalues for a modified HS
family are explicitly known too (S. R., 2009).
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I Here the ‘initial’ kernel identity reads

A�(�; x)S(�(�); x , y) = A�(�
0; y)S(�(�); x , y), � = +,�,

where
�0 ⌘ �J�,

�(�) ⌘ �1
4

7X

µ=0

�µ = �1
4
h⇣, �i, ⇣ ⌘ (1, . . . , 1),

and J can be viewed as the reflection associated
with the highest E8 root ⇣/2, i. e.,

J ⌘ 18 � 1
4
⇣ ⌦ ⇣.

I The kernel function is given by

S(t ; x , y) ⌘
Y

�1,�2=+,�
G(�1x + �2y � ia + it),

with G(z) the elliptic gamma function.
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I For the A�Os A±(�; x) the relevant Hilbert space is
the weighted L2 space

Hw ⌘ L2([0, ⇡/2r ], we(�; x)dx).

I It is crucial to switch from this A�O pair to the
D8-invariant A�Os

A�(�; x) = ce(�; x)�1A�(�; x)ce(�; x),

which are formally self-adjoint on

H = L2([0, ⇡/2r ], dx),

for suitable � (in particular for � 2 R8).
I They satisfy the kernel identity

A�(�; x)K(�; x , y) = A�(�
0;�y)K(�; x , y),

with
K(�; x , y) ⌘ S(�(�); x , y)

ce(�; x)ce(�0;�y)
.
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I With further restrictions on �, the kernel function
K(�; x , y) yields a HS integral operator I(�) on H
with a trivial null space and dense range. Requiring
� 2 R8 from now on, the restriction

�µ, �0µ 2 (�a, a), �(�) 2 (0, a),

suffices.
I With this restriction, we can show that the resulting

eigenvector H-ONB fn(�), n = 0, 1, 2, . . ., for the
self-adjoint trace class operator I(�)I(�)⇤ has the
following features:
• fn(�) is the restriction to [0, ⇡/2r ] of a meromorphic
function fn(�; x) with known pole locations depending
only on �;
• Setting

as ⌘ min(a+, a�), al ⌘ max(a+, a�),

and assuming al is not a multiple of as, the functions
fn(�; x) are joint eigenfunctions of A±(�; x) with real
eigenvalues.
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I Consequence: With the above restrictions on a± and
� understood, the A�Os give rise to commuting
self-adjoint operators Â±(�) on H with discrete
spectra.

I Further results include:
• The definition of Â±(�) implies that the operators
are invariant under D8-transformations of �.
• For � in the ball k�k2 < a (with the origin deleted),
the operators are isospectral under
E8-transformations. Generically, this yields 135
(=|W (E8)/W (D8)|) distinct isospectral operators.
• For generic �, we also get 64 distinct commuting
HS operators.
• The asymptotic behavior as n !1 of the
eigenfunctions fn(�; x) is the same as that of an
H-ONB of functions Pn(�; x)/cP(�; x), with Pn(�; x)
orthonormal polynomials; this relation also leads to
detailed information on eigenvalue asymptotics.
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I Recent references re HS approach:
I Hilbert-Schmidt-operators vs. integrable systems of

elliptic Calogero-Moser type. II. The AN�1 case: First
steps, Comm. Math. Phys. 286 (2009), 659–680

I Hilbert-Schmidt-operators vs. integrable systems of
elliptic Calogero-Moser type. III. The Heun case,
SIGMA 5 (2009), 049, 21 pages

I On positive Hilbert-Schmidt operators, Integr. Equ.
Oper. Theory, 75 (2013), 393–407

I Hilbert-Schmidt-operators vs. integrable systems of
elliptic Calogero-Moser type. IV. The relativistic Heun
(van Diejen) case, SIGMA 11 (2015), 004, 78 pages
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