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® General elliptic Lax pairs on the lattice!
> ‘“Lattice Landau-Lifschitz" (spin non-zero) type;
> “Krichever-Novikov" (spin zero) type.
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@ Brief overview of integrable lattice systems (partial difference equations)
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Krichever — Novikov equation :
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® General elliptic Lax pairs on the lattice!
> ‘“Lattice Landau-Lifschitz" (spin non-zero) type;
> “Krichever-Novikov" (spin zero) type.

® Analogous general scheme of elliptic discrete isomonodromic deformation

problems?.

IN. Delice, F.W. Nijhoff and S. Yoo-Kong, On Elliptic Lax Systems on the Lattice and a Compound Theorem
for Hyperdeterminants, J.Phys A: Math. Theor. 48 (2015) 035206.
2N. Delice and F.W. Nijhoff, in preparation.
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® A first lattice discretization of the Landau-Lifschitz (LL) equation®; was based on
a discrete Lax pair, yielding the system:

ToS—SxUT)=TeS—(JT) xS, SeT—-Tx(US)=5S—(JS)xT,
SoTo — ToSo = oz (§ U - T (rls)) , S.(JT)=T-(JS)

for two spin vectors S(n, m) and T(n, m), in combination with scalar functions
So(n, m), To(n, m), and (anisotropy) parameters J = (J1, J2, J3).

SFWN & V Papageorgiou, Lattice Equations associated with the Landau-Lifschitz equations, Phys. Lett. 141A
(1989) 269-274.
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Known elliptic lattice systems (PAEs)

® A first lattice discretization of the Landau-Lifschitz (LL) equation®; was based on
a discrete Lax pair, yielding the system:

ToS—SxUT)=TeS—(JT) xS, SeT—-Tx(US)=5S—(JS)xT,
SoTo— ToSo = hhJs (§ () =T (Jfls)) , §-(JT)=T-(JS)
for two spin vectors S(n, m) and T(n, m), in combination with scalar functions
So(n, m), To(n, m), and (anisotropy) parameters J = (Ji, J2, J3). Here: notation
for shifts of functions f = f(n, m) of discrete variables n, m € Z:
f=f(n+1,m), f=Ff(n,m+1).

The spin vector T can be eliminated using the Casimirs S =1 , 502 + (JS)2,
T2and TO2 + (JT)?, leading to a PAE for S only, which in a continuum limit goes
over into the LL equation.

® Adler's discretization of KN equation®, for a function u(n, m) , which reads:

Al(u = b)(@ — b) — (a = b)(c = b)] [(@— b)(@ — b) — (a - b)(c - b)]
+B[(u—a)(T@ — a) — (b— a)(c — a)] [(a —a)(@—a)— (b—a)(c— a)] = ABC(a — b)

where the lattice parameters (a, A), (b, B)and (c, C) are points on a Weierstrass
elliptic curve

(a,A) = (p(), (), (b, B) = (p(B), ¢'(B)), (c,C)=(p(B—0), ¢ (B—a)).

SFWN & V Papageorgiou, Lattice Equations associated with the Landau-Lifschitz equations, Phys. Lett. 141A
(1989) 269-274.

4y, Adler, Bicklund transformation for the Krichever-Novikov equation, Intl:--Math. Res. Not. 1 (1998) 1-4.
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® Adler’s equation (Q4): N-soliton solutions and singular-boundary solutions were
constructed for the Jacobi version of Q4:
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Existing results on solutions of elliptic lattice systems

@ Lattice LL: No explicit solutions exist!
For the continuous LL: N-soliton solutions from bilinear framework [Date, Jimbo,
Kashiwara, 1983]), and periodic solutions in terms of Prym theta functions
[Belokolos, Bobenko, Enolskii, 1986];

® Adler’s equation (Q4): N-soliton solutions and singular-boundary solutions were
constructed for the Jacobi version of Q4:

p(uii + 7) — q(ui + 70) — P9= 9P [(aﬁ + ull) — pq(1 — uaﬁﬁ)] =0

1— p2q2
p=(p,P), g = (g, Q) being points on the Jacobi
curve X2 =x%— (k+ 1/I<)X2 +1, in [Atkinson & FWN, 2010; Atkinson & Joshi,
2013] ; (For the continuous case of KN, no explicit solution existed; a formal
construction for algebro-geometric solutions was given by [D.P. Novikov, 1999]);

® There are alternative forms of lattice LL (notably by Adler & Yamilov, 1998) but
for none of these versions any explicit solutions exist to date.
NB: There also exist an elliptic lattice KdV system and an elliptic lattice KP
system: for those elliptic N-soliton solutions were constructed in explicit (elliptic
Cauchy matrix) form [FWN & Puttock, 2003; Jennings & FWN, 2014].
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General Elliptic Lax scheme

Consider a lattice Lax pair of the form:
%n:Lﬁxnv Qn:Mfﬂx.‘cv

defining horizontal and vertical shits of the vector function x,., according to:

X L X
—

M . M
V. P.Q
X oL T X
X L

with compatibility condition: /I:HM,{ = l\7|,<L,.C
with vectors x located at the vertices of the quadrilateral and Lax matrices L and M
attached to the edges. We assume these to be of the form:

(Le)ij = One(& — & — a)hj

(MH)I,J:(bNH(gl_gj_ﬂ)kj (1:177,\[)

where @, (x) = % , and in which & = &, m are the main dependent variables,

while the coefficients hj, k; remain to be determined.
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Working out the compatibility condition:
EK,MN - l\A}IKLN )

using the addition formula
Pr(x)Pr(y) = (x4 y) [C(r) +¢(x) +C(y) — ¢l +x+¥)]
the consistency gives rise to
N
> ik [ @ —&—a)+CE —&— B)+C(Nk) — (N + & — ¢ —a—/ﬁ)} -

)+§(gl_fj—Ol)‘i-C(NH)—C(Nn-i—?i—gj_a_ﬁ)]

N ~
= > kb [C(fi -
=1
LN

Due to the dependence on the spectral parameter s these equations separate into two

parts:

I
N = ~ ~
}kj:ZE [C(ii—él—ﬁ)ﬁ-C(é/—fj—a) hj

N,\ N _
(Zh,) ki = <Zk,> o, (=1,...,N),

=1 =1

1

N o~ —~ ~
S h [C(fi—il—a)‘f‘ﬁ(f/—
1=

(ij=1,...,N).
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discrete-time Ruijsenaars system®
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the variables hj, k; are proportional to each other, k; = ph; , and after
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There are two nontrivial scenarios which we refer to as “Landau-Lifschitz type” and
“Krichever-Novikov type” respectively:

@ Discrete Landau-Lifschitz (LL) type case: >, h) # 0, in which case we have that
the variables hj, k; are proportional to each other, k; = ph; , and after
summation we obtain the conservation law:

Z;\I:l /HI _ Z;\Izl ‘El
Z;V:I hy Z;V:I ki

The Lax eqs. then reduce to:

N —~ ~
S (¢ - G- o — & - & - )| = [e(~ & + B — c(& ~ & + )i

I=1 =1

(i,j=1,...,N). Note that the period-1 reduction (i.e., X = Ax ) reduces the
corresponding PAEs to a finite-dimensional system of OAEs which constitute the
discrete-time Ruijsenaars system®

@ Krichever-Novikov (KN) type case: >, hj =, k; = 0, in which case the first of
the separated Lax relations becomes vacuous. In this case we will reduce the
system further by setting >, & = 0 (modulo the period lattice of the elliptic
fuctions), and we will look at this scenario in more detail for the cases N = 2 and
N = 3.

5FWN,O Ragnisco & V Kuznetsov,Integrable Time-Discretization of the Ruijsenaars Model, Commun. Math.
Phys. 176 (1996) 681-700.
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Under the assumption for the Centre of Mass (CoM) motion:

we can analyse the Lax eqs. by considering the following elliptic function:
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which holds as an identity for any four sets of variables &, E, E, E, s.t. the above

equality for the sum holds. Here 7 is any one of the zeroes (i.e., E, or & + a+ fB).
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we can analyse the Lax eqs. by considering the following elliptic function:

N -~
a(§ —§)o(§—& —a—p)
F = | | = =
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I=1

N N
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=1 =1
which holds as an identity for any four sets of variables &, E, E, E, s.t. the above
equality for the sum holds. Here 7 is any one of the zeroes (i.e., E, or & + a+ fB).
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Resolution of the compatibility conditions
Under the assumption for the Centre of Mass (CoM) motion:

we can analyse the Lax eqs. by considering the following elliptic function:

o(6 —E)ole —& —a—B)
F = = =
© H o =& —a)o(§ —& —B)

I=1

=i[<(£—§/—a)—6(n—5—a)] H,+§N;[<(f—5—ﬁ)—<(n—a—ﬁ)] K,

I=1

I=1
which holds as an identity for any four sets of variables &, E, E, E, s.t. the above

equality for the sum holds. Here 7 is any one of the zeroes (i.e., E, or & + a+ fB).
The coefficients H;, K; are explicitly given by:

P o AL G TR L Gt )
[T 0@ — &+ a = B)] Tiu o(@ — &)
PR o AT G TR L Gt )

[HL o(& — &+ 8- Ol)] [Tkus o(& — &) '

The coefficients obey the identity: Z;\’ZI(H/ + K))=0.



The generalized LL Class

Using the identities above, taking £ = E, n=§ +a+p8 in F(§), and comparing with
the Lax equations, we can identify:
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with t an arbitrary proportionality factor. Thus, inserting the explicit expressions for
H; and K, we obtain a system of N + 2 equations for the N + 2 unknowns: &1,...,&pN,

p, t.
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Using the identities above, taking £ = E, n=§ +a+p8 in F(§), and comparing with
the Lax equations, we can identify:
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with t an arbitrary proportionality factor. Thus, inserting the explicit expressions for
H; and K, we obtain a system of N + 2 equations for the N + 2 unknowns: &1,...,&pN,

p, t. This comprises the set of equations

1R
1
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+ +
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—H + =K =0, (I:177N)7
P P

This yields the system of N 7-point equations:
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for N 41 variables & (i =1,...,N) and p=—1t p/(t p), supplemented with the

relation = +

—= =0 which fixes the CoM dynamics.
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The generalized LL Class

Using the identities above, taking £ = {,, =& +a+ in F(&), and comparing with
the Lax equations, we can identify:
tH/:P/BI ) _tKI:fi('I:ﬁfi;/ ) l:17"'7N7

with t an arbitrary proportionality factor. Thus, inserting the explicit expressions for
H; and K, we obtain a system of N + 2 equations for the N + 2 unknowns: &1,...,&pN,
p, t. This comprises the set of equations

1R
1
11

+

T~ o
—H + =K =0, (I:177N)7 +
F =

o
This yields the system of N 7-point equations:

(& — &+ a)o(& — & — B) (& — & +7)

H:Z

1 o0& — &+ B)o(& — &k —a)o(& — & — )

for N 41 variables & (i =1,...,N) and p=—1t p/(t p), supplemented with the

relation = +=—

—= =0 which fixes the CoM dynamics. The under-accents - and
- denote reverse lattice shifts: £;(n, m) = &i(n — 1, m), &i(n, m) = &(n,m—1).
The implicit system of PAEs arises from the following Lagrangian:

2= [f6-G+0) G- G+8) ~ FE -+ a—p)] —mlpl =

in which the function f is the elliptic dilogarithm f(x) = [ In o(€) d€ -



The Adler class of lattice equation; case N = 2



The Adler class of lattice equation; case N = 2
For the case N = 2 the Lax pair in this class has the form:

< Sl —E—a) —Ou(l+E-a)
=Lk = A ~ .
X= e ( G(—E—E—a) —B(—E+E—0) )X
o E-€=8)  —eu(E+e-p) )
Go(—E—E—B) —Pa(-E+E6-8) )

X = Mgx



The Adler class of lattice equation; case N = 2
For the case N = 2 the Lax pair in this class has the form:

= Sl —E—a) —Ou(l+E-a)

=Lex = A = ~
X=X ( Ope(—E—E—a) —bp(—E+E—a) )
o _ G2 (E—€-0)  —Pu(E+E-B)
X=Mex = “( Ooe(—€—€6—B) —Po(—E+E—B) )X’

in which the coefficients A and 1 are functions A = A(€, & ) and = u(€, & B),
respectively. The Lax equations are of the form:

A [C(?—&A—a)+<(§—§—ﬁ)—C(§+§—a)+C(§+§+ﬁ)]

- [céf@,@)w(@afa)f<(§+€fﬁ)+<(5+s+a)]

4(5—2—a)+<(€+§—ﬁ)—<(§+€—a)+<(€—f+ﬁ)}

Ap

—

= fiA [c(?—é—ﬁ)+<(§+&—a)—<(?+§—ﬁ)+<(§+&—a)]

Ap

—

C(*?*ffa)+<(§f§fﬁ)74(72~+§fa)+4(§+§+6)]
= A [c(?—é—ﬁ)+<(§—f—a)—c(?+§—ﬁ)+<(€+&+a)]

Ap

—

<(—?—§—a)+<(€+&—ﬁ)—c(—?+€—a)+<(€—f+/3)]

— A [((E—E- B+ CEHE—a) = ((E+E=-BFCE - +a)



The Adler class of lattice equation; case N = 2
For the case N = 2 the Lax pair in this class has the form:

= Sl —E—a) —Ou(l+E-a)

=Lex = A = ~
X=X ( Ope(—E—E—a) —bp(—E+E—a) )
o _ G2 (E—€-0)  —Pu(E+E-B)
X=Mex = “( Ooe(—€—€6—B) —Po(—E+E—B) )X’

in which the coefficients A and 1 are functions A = A(€, & ) and = u(€, & B),
respectively. The Lax equations are of the form:

A [C(?—&A—a)+<(§—§—ﬁ)—C(§+§—a)+C(§+§+ﬁ)]

- [céf@,@)w(@afa)f<(§+€fﬁ)+<(5+s+a)]

4(5—2—a)+<(€+§—ﬁ)—<(§+€—a)+<(€—f+ﬁ)}

Ap

—

= fiA [c(?—é—ﬁ)+<(§+&—a)—<(?+§—ﬁ)+<(§+&—a)]

Ap

—

C(*?*ffa)+<(§f§fﬁ)74(72~+§fa)+4(§+§+6)]
= A [c(?—é—ﬁ)+<(§—f—a)—c(?+§—ﬁ)+<(€+&+a)]

Ap

—

<(—?—§—a)+<(€+&—ﬁ)—c(—?+€—a)+<(€—f+/3)]

— A [((E—E- B+ CEHE—a) = ((E+E=-BFCE - +a)



which can be rewritten using the elliptic function addition law:
o(x+y)oly +z)o(x+2)
a(x)o(y)o(z)o(x+y+2z)

)+ +(2) —Cx+y +2) =

We, thus, obtain:
o@D o€ +E+8—a)
o€ —E—a)oE+E—a) o — &~ B)oE+E+B)
o)) o€+ +a—B)
€~ E—B)o(E+E—B)oE—€—a)oE+E+a)
o@D o(E—€+8—a)
o(E—E-a)o(€+E—a)o—£+B)aE+E—B)
L T
o(E—E-B)oE+E-BoE—e+a)oE+E—a)
Sy Do pra)
ol —E+a)o(§+&ta)o(§ —€E—B)a(E+E+B)
o(28) o€ — € —a+p)
o€~ E+B)o(E+E+B)o(E—E—a)o+E+a)
. o(28)o(€+¢—p+0)
g§—Eta)o(E+E+a)o(§—E+B)o(E+E€—P)
o(28) o€ +€~a+p) .
(E—E4B)o(E+E+B)o(E— ¢ 1a)o(Ele—a)

pY”

=X

pY”

=X

=\

X

=\



3-Leg equations
Eliminating the factors ’)\\u/(ﬁ)\) we get only two separate equations:

o€ —Et+a)o(€+E—a) o —E-B)o(E+E+P)

o —{—a)o(+E+a) o(§—E+B)a(l+E—B)

and

_ o(g—f —v)o(§+§+w)
€=+ o(E+E—7)

o€-E+a)oE+E+a) o€ —E-PoE+E-p) _ol€—E-oE+ei—1)

o€—E-a)o(+E—a) (€ —E+B)o(E+E+B)  a(€—E+Mo(E+E+7)
Actually, they are one and the same equation, and lead both to the same rational
form for u = (&) , namely Adler’s lattice equation in the Weierstrass form.




3-Leg equations

Eliminating the factors ’)\\u/(ﬁ)\) we get only two separate equations:

oE—tta)oE+e—0a) oE—E—BoE+e+h)  o(E—E—1oE+E+7)

o(€—E—a)o(f+E+a) o€ —E+PB)a€+E—B)  s(E—c+r)o(e+E—n)
and

o€-E+a)oE+E+a) o€ —E-PoE+E-p) _ol€—E-oE+ei—1)

o€-E-a)o(€+E—a) o(—E+B)o(E+E+B) o€ —E+Mo(E+E+7)
Actually, they are one and the same equation, and lead both to the same rational
form for u = (&) , namely Adler’s lattice equation in the Weierstrass form.
This is a consequence of the following elliptic identity:

(X = p(E+ )Y — p(& = B)Z — (& — o+ B))
—2(X — (6 — a))(Y — p(€+ B)(Z — p(6 + o — B))

= s{A[(p(§) — b)(Y — b) — (a— b)(c — b)] [(X — b)(Z — b) — (a — b)(c — b)]
+B(p(§) —a)(X —a) = (b—a)(c—a)] (Y —a)(Z —a) — (b—a)(c—a)]

—ABC(a—b)},
which holds for arbitrary (complex) variables X, Y, and Z. Here:

po =)o +B)o(E+a—-p) 1-¢2
o6 +a)o(6 —B)o(§ —a+B) (A+ B)p(€) — Ab— aB’

and where (a, A), (b, B) and (c, C) are given as before.




Rank 3 generalization
In the case the Lax pair

hlq)?).‘-i(f:l —& —a)

X=| m®s(—&—a)
h®3,(63 — &1 — @)
k14>3fc(£:1 —& - B)

X=| k®s(l—&—p)

k1®3, (&3 — &1 — B)

h2q)3.‘-€(£:1 —& —a)
h2¢3,i(§2 —& —a)
ha®3, (63 — &2 — @)

k24>3fc(£:1 —&—p)
ko®3: (62 — &2 — B)
ko®3,(&3 — &2 — B)

h3¢3»;(§1 —&—a)

h3®s (b2 —&3—a) | x,

h3®s3,. (63 — & — @)

k3¢3fc(£:1 - & —p5)
ks®3.(f2 =& —B) | x>
k3®3,(&3 — &3 — B)

subject to Z?:l h; = Z?:l ki =0, and where the coefficients hj, k; are some
functions of the variables &;, and of their shifts.

The compatibility conditions of this Lax pair results a coupled set of Lax equations in
terms of any two of the three variables §;. Eliminating h3 = —h; — hp and

k3 = —ki — ko and using addition formulae we get the system of equations:

S i SE -G —a- oG -G -G+ —ate@-&) _
o o(& — & —a)alé — & — B)o(E — & — a)o(—& + & + B)

SR (& —&—a—PoE-&-&+&+a—po@E &)

hj o o - - .
1 a(§i—& —B)a(& — & —a)a(&i — & — B)a(—& + &+ a)

we denote the coefficients on the |.h.s. and r.h.s. of the equation as
Aij = Aij(€,€, & o, B) and By = Byj(€, €, & a, B) respectiyely, .o, .

it
v
a
i
v
!



Rank 3 generalization
In the case the Lax pair

X

=)

|
|

h®3,(&1 — & — )
h1®3,. (&2 — &1 — @)
h1®3. (&3 — &1 — )

k1¢3n(£:1 - & —B)
k1®3 (&2 — &1 — B)
k1®3, (&3 — &1 — B)

hy®3,.(€1 — & — )
hy®3, (&2 — &2 — @)
h®3. (&3 — &2 — )

k2¢3n(£:1 —&—p)
ka®3,: (&2 — &2 — B)
ko®3, (&3 — &2 — B)

h3®3, (2 — &3 — @)

h3®s,.(€1 — &3 — a)
4 X b
h3®3. (&3 — &3 — )

k3®3. (82 — &3 — B)

k3¢3n(§:1 -&—p)
X 9
k3®3,(&3 — &3 — B)



Rank 3 generalization
In the case the Lax pair

( h1¢3n(§1 —& —a) h2¢3n(§1 —& —a) h3¢3n(§1 —&—a) )
X b

X=| mP3(—&—a) hds(—&L—a) hew(é—§-a)
m®3.(63 —&1—a) 3 (3 —& —a) hP3(63 —E3—a)
k1¢3n(§1 - & —0) k2¢3/€(§1 — & —B) k3¢3m(§:1 —&—B)

X=| kvs(@e—&-8) hd(-8&—B8) kdw(l—-&&-F8) [Xx,
k1®3.(&3 — €1 — B)  ke®3k(&3 — & —B)  ks®3.(&3 — &3 — B)

subject to Z?:l h; = Z?:l ki =0, and where the coefficients hj, k; are some
functions of the variables &;, and of their shifts.



Rank 3 generalization
In the case the Lax pair

h1¢3/€(§1 —& —a) h2¢3/€(§1 —& —a)

X @3 (&2 — & — ) h®3(fe — & —a)
h1®3. (&3 — &1 —a) h®3.(6 — & — )

>
Il

k1¢3/€(§1 —&1—-8) k2¢3m(§1 —&—p)
ki3 (2 — &1 —B)  ka®3x(§2 — &2 — B)
k1®3.(&3 — &1 — B)  ko®3k(&3 — &2 — B)

)
Il

h3®s,.(€1 — &3 — a)
h3®3 (62 — 63— ) [ X,
h3®3, (&3 — &3 — @)

k3¢3m(§:1 -&—p)
k3®3r(E2 =& —B) | X
k3®3,(&3 — &3 — B)

subject to Z?:l h; = Z?:l ki =0, and where the coefficients hj, k; are some

functions of the variables &;, and of their shifts.

The compatibility conditions of this Lax pair results a coupled set of Lax equations in
terms of any two of the three variables §;. Eliminating h3 = —h; — hy and
k3 = —ki1 — ko and using addition formulae we get the system of equations:

L oG —G—a PG G- G+&—ateE &)

hik;

= e -G )o@ —&— Bl -6 —a)o(-6 +&+6)
B Y P kB o) T TR e d G )

T & -8 - BoE — & — a)o(& — & — Bo(—E + & + a)

Vij=1,23.



Rank 3 generalization
In the case the Lax pair

h®3,(&1 — & — )

X h1®3,. (&2 — &1 — @)
h®3,(63 — &1 — @)

k1¢3/€(§1 - & —B)
k1®3 (&2 — &1 — B)
k1®3, (&3 — &1 — B)

)
Il

hy®3,.(€1 — & — )
hy®3, (&2 — &2 — @)
ha®3. (83 — &2 — a)

k2¢3m(£:1 —&—p)
ka®3,: (&2 — &2 — B)
ko®3, (&3 — &2 — B)

h3®s,.(€1 — &3 — a)
h3®3 (62 — 63— ) [ X,
h3®3, (&3 — &3 — @)

k3¢3m(§:1 -&—p)
ks®3:(2 -8 —8) | X
k3®3,(&3 — &3 — B)

subject to Z?:l h; = Z?:l ki =0, and where the coefficients hj, k; are some
functions of the variables &;, and of their shifts.

The compatibility conditions of this Lax pair results a coupled set of Lax equations in
terms of any two of the three variables §;. Eliminating h3 = —h; — hy and

k3 = —ki1 — ko and using addition formulae we get the system of equations:

iﬁwo@f@fafﬂw@féf§+@fa+Mdéf® _
= oG =& —a)o(& — & - B — & — a)o(—& + & + B)
:iﬁwogkfﬁﬂffw@faf§+g+a7ﬁ¥@75)
=1 o =& —PB)o(§ =& —a)o(éi — & — Blo(—&+ €+ a)
Vij=1,2,3.

we denote the coefficients on the |.h.s. and r.h.s. of the equation as

Aij = Ay(€,€,6 a, B) and By = Byi(€, €, & a, B) respectively.



Analysis of the compatibility conditions



Analysis of the compatibility conditions
From the latter conditions we get the following expressions for the common factor
h;/k;:

hj Auﬁl + A12j;7\2 _ A21j7;1 + A22j77\2 _ A31j7;1 + A32j/’;2

ki 5111%1 + 5121%2 5211';1 + BZZj‘EZ 5311%1 + 5321%2
(i=1,2,3).



Analysis of the compatibility conditions
From the latter conditions we get the following expressions for the common factor
h;/k;:
hj Allj/l;l + A12j77\2 _ A21j7;1 + A22j77\2 _ A31j7;1 + A32j/l;2
ki Buj% + BleEZ Bnﬁl + 5221';2 B31j;1 + 5321%2
(=1,23).

We can rewrite the resulting set of relations as

(A11jBoyj — A21jBllj)/’;1;1 + (A11jBogj — Aoy Ble)/HIFZ

+(A12jBo1j — Az Biij)hoki + (A2 Booj — Az Bioj)hake = 0
(A1 B31j — As1jBuij)hiki + (A11jBsoj — AsijBioj)hik:

+(A12jB31j — Aspj Biij)hoki + (A2 Bsoj — AspjBioj)hake = 0
(Ag1jBs1j — As1jBoj )i k1 + (Az1jBaoj — AsijBanj)hi ko

+(A2jB31j — A32j521j)/ﬁ2;1 + (A B3y — A32jB22j)/H2;2 =0

(=1,2,3),
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From the latter conditions we get the following expressions for the common factor
h;/k;:

hj Auﬁl + A12j;7\2 _ A21j7;1 + A22j;7\2 _ A31j7;1 + A32j/’;2

ki Buj% + BleEZ Bnﬁl + 5221';2 B31j;1 + 5321%2
(G=1,23).

We can rewrite the resulting set of relations as
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where
A o6 — & é+@—a+m o - &)
ily - )
U(& —&—a) ( 5)0(5 —53—0)0(53—51 B)
B — a(é,- £3+£J+a—ﬁ) o€ — &)
i =

a@—a—md g —)o(& —E—B)o(E — & —a)



Analysis of the compatibility conditions
From the latter conditions we get the following expressions for the common factor
h;/k;:

hj Auﬁl + A12j;7\2 _ A21j7;1 + A22j;7\2 _ A31j7;1 + A32j/’;2

ki Buj% + BleEZ Bnﬁl + 5221';2 B31j;1 + 5321%2
(G=1,23).

We can rewrite the resulting set of relations as
(A11jBoyj — A21jBllj)/’;1;1 + (A11jBogj — Aoy Ble)/HIFZ
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Cayley's hyper-determinant
Hyper-determinants were first considered in the 19th century by A. Cayley and L.
Schlafli in the "theory of elimination”. In the simplest case of format 2 x 2 x 2 cubic
matrix, an explicit formula was given by Cayley in 1845.
The hyperdeterminant of hypermatrix A = (ajy) (7,j,k =0,1)

2
Det(A) = [det <aooo 3001> + det <3100 3010> ]

a110 aiil a101 ao11

a a a a
— 4 det 000 001 det 100 101 :
4010 ao11 aiio aiil

vanishes identically iff the set of homogeneous bilinear equations in six unknowns

ao10 as-
ao11 B
111
a001X0Y0 + a011X0y1 + ato1x1yo + aiixayr = 0,
a000X0Y0 + ao10Xoy1 + aioox1yo + aioxtyr = 0,
a010X020 + a011X0Z1 + a110x12o + a1ixizr = 0,
a000X020 + @001 X021 + aioox120 + awo1x121 = 0,
a100Y020 + a101Y021 + ai0y12o + ai1y1z1 = 0,
a000Y020 + a001X0Z1 + ao10y120 + ao11y1z1 = 0, ao00 N
1O
has a non-trivial solution in terms of xp, x1,
0, Y1 and 20,21
Y0, s a001

«4O0>» «Fr «E>» «



Cayley's hyper-determinant
Hyper-determinants were first considered in the 19th century by A. Cayley and L.
Schlifli in the "theory of elimination”. In the simplest case of format 2 x 2 X 2 cubic
matrix, an explicit formula was given by Cayley in 1845.



Y0, y1 and zg, z1.

Cayley's hyper-determinant

Hyper-determinants were first considered in the 19th century by A. Cayley and L.
Schlifli in the "theory of elimination”. In the simplest case of format 2 x 2 X 2 cubic
matrix, an explicit formula was given by Cayley in 1845.

The hyperdeterminant of hypermatrix A = (aji) (i,j,k =0,1)

2
Det(A) = [det (3000 3001) © det (amo 3010)]

a110 a1l a101 ao11

a a a a
— 4 det 000 001 det 100 101 ,
4010 ao11 aiio aii1

vanishes identically iff the set of homogeneous bilinear equations in six unknowns

a010
ao11 A
111
a001X0Y0 + a011X0y1 + ato1x1yo + anixiyr = 0,
a000X0Y0 + ao10Xoy1 + aioox1yo + aroxtyr = 0,
a010X020 + d011X0Z1 + a110x120 + a111x1z1 = 0,
a000X020 + a001X021 + a100x120 + a101x121 = 0,
a100Y020 + a101Y021 + a110y12o + a11y1z1 = 0,
a000Y020 + a001%021 + a010y120 + a011y121 = 0, 32000 o
TU
has a non-trivial solution in terms of xg, x1,

aopo1 a101

a1



A compound theorem for hyper-determinants



A compound theorem for hyper-determinants
In the case at hand, we have a Cayley type homogeneous system with the variables x;,
yj identified as the quantities h; and k; respectively and with coefficients a;j, all being
AIIIJ
i Birrj
this homogeneous system the following compound theorem for hyper-determinants is
directly applicable.

. Ajjj . .
2 X 2 determinants of the form il . Noting the particular structure of




A compound theorem for hyper-determinants
In the case at hand, we have a Cayley type homogeneous system with the variables x;,
yj identified as the quantities /I;,- and k; respectively and with coefficients ajj all being
A,'/j A,'//j
i Birrj
this homogeneous system the following compound theorem for hyper-determinants is
directly applicable.

Lemma (Compound Theorem for 2 x 2 x 2 hyper-determinants)
The following general identity holds for a compound hyper-determinants of format

2 X 2 determinants of the form . Noting the particular structure of

2X2x2:
a// a/ a// a/ a// a a//
b b// dl d// b/ b// d d//
2
( + )
c C// C/ CN C/ C// c C//
b b/l dl d// b/ b// d d//
a al/ a al/ al a// al al/
b b// d d// b/ b// dl d//
—4
c CN c CN C/ C// C/ CN
b b/l d dll b/ b/l dl d//
a a// b b// 2
c C// d d//
a/ a// bl b//
C/ C// dl dll



A compound theorem for hyper-determinants
In the case at hand, we have a Cayley type homogeneous system with the variables x;,
yj identified as the quantities /I;,- and k; respectively and with coefficients ajj all being
A,'/j A,'//j
i Birrj
this homogeneous system the following compound theorem for hyper-determinants is
directly applicable.

Lemma (Compound Theorem for 2 x 2 x 2 hyper-determinants)
The following general identity holds for a compound hyper-determinants of format

2 X 2 determinants of the form . Noting the particular structure of

2X2x2:
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b b// dl d// b/ b// d d//
2
( + )
c C// C/ CN C/ C// c C//
b b/l dl d// b/ b// d d//
a al/ a al/ al a// al al/
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—4
c CN c CN C/ C// C/ CN
b b/l d dll b/ b/l dl d//
a a// b b// 2
c C// d d//
a/ a// bl b//
C/ C// dl dll



Resolution of the N = 3 system

Identifying the coefficients of the system of homogeneous Lax equations as entries of a
2 X 2 X 2 hyper-determinant, we observe that the structure of this hyper-determinant
is exactly of the form as given in the Lemma, and hence we have the following
immediate corollary.



Resolution of the N = 3 system

Identifying the coefficients of the system of homogeneous Lax equations as entries of a
2 X 2 X 2 hyper-determinant, we observe that the structure of this hyper-determinant
is exactly of the form as given in the Lemma, and hence we have the following
immediate corollary.

Proposition
Identifying the 8 entries (ajj)i j.k=0,1 the hyper-determinant for the Lax system takes
the form as given by the compound theorem, and hence reduces to a perfect square:

A A A Aaii| P
AI‘”/]’ Al'////]' Al'//lj AI'////]'
(=1.2.3),
B,'/]' B,-//j Bi’lj Bi’l’j
BI'///]' Bl'////]' Bl'//lj BI'////]'
where
‘ Ay A,‘//j _ U(g/ - 53) U(El’ - 53) U(E\l - g/’)
Ay Ay = = = = < = Py = Py
" e o§i—& —a)o(§ — & —a)o(&r —& —a)o(&n — & — a)

o, — ) +En —E -8 — B+ & —20+p)
o€ —E—a)o(€n —&G—a)o(l — & — B o€y — & — B o(& — & — B)

in which we can set i,i’ = 1,2, I,I' = 1,2 # 3, and where we naturally should take
i"” = 3. A similar expression for the corresponding determinants in terms of the Byjj is
obtained by interchanging o and B and the shifts ~ and ~ .



As the hyper-determinant in the case at hand is a perfect square, the homogeneous
Lax system leads to a simple quadratic equation for either the ratios h; /h or ki/k;,

(i,j = 1,2). Thus, their solutions lead to rational expressions in terms of the
quantities A;; and Bjj;.



As the hyper-determinant in the case at hand is a perfect square, the homogeneous
Lax system leads to a simple quadratic equation for either the ratios h; /h or ki/k;,
(i,j = 1,2). Thus, their solutions lead to rational expressions in terms of the
quantities Ajjj and Bj;. The result of this computation is the following:

Proposition
If the hyperdeterminant of the system is non-vanishing, we have the following two
solutions of the system of homogeneous equations, in terms of the ratios:

i) M Ao Bl B
ho Azyj ko Bzyj
Biij A B Aj Ay Buj
N Bo1j  Axj B _ Azxij  Axj B
.. hy B3ij Az Bsyj . ky Aszij  Asy  Bay
ii) = =— with = =—
A Bij A1 B ko A1, Ay By
Byij  Azj B Azij Az Baj
B3ij  Asyy  Bsj Asij  Asy Bayj



As the hyper-determinant in the case at hand is a perfect square, the homogeneous
Lax system leads to a simple quadratic equation for either the ratios h; /h or ki/k;,
(i,j = 1,2). Thus, their solutions lead to rational expressions in terms of the
quantities Ajjj and Bj;. The result of this computation is the following:

Proposition
If the hyperdeterminant of the system is non-vanishing, we have the following two
solutions of the system of homogeneous equations, in terms of the ratios:

h Asj k Bay;
) = =3 ith 2 =-22
ho Azyj ko Bzyj
Biij A B A1j A By
N Bo1j  Axj B _ Azxij  Axj B
hy B3ij Az Bsyj . As1j  Azp  Baj
ii) = =- with = =—
A Bij A1 B ko A1, Ay By
Bo1j  Azij B Axnj Axj Baj
B31j  Aszij  Bsyj Aslj Az Bsyj
(j - 17 27 3)
Remark: The system of equations resulting from solution i) reads as follows
M o -B-B+5—atp)oE & - a)oE —&—BoE - &)
b oG -G -G4g—a+B)o(E—&—a)o(e—§ - B)o(& - &)
b _oG-G-Grgra=poG -t -pfo@-§-a)i&=-&)
ko oG- -GG ta-BoG -8 -Bo@-§ - )o@ &)

G=1,23).



The elliptic rank 3 system
We postulate the coupled system of (implicit) lattice equations for &1, &2, &3 given by:

Biii A1 Bia Biiz A2 Bix Bz Az Bixs
Bai A Bon Bao Az Boax Bans Az B
Bsii  Asz1 Bsa B3z Asn  Bsx B3z Asxs Bsxs
Biii Amn Bia Bz Az B Bz Aus B
By A1 Bon Bz A1z Box Bz Anz  Boxs
Bsii  Asin Bsa B3z Asiz Bsx B3z Asi3s Bsxs
Amn A1 B Az Az Bz Ans Az Bz
A1 An1 B Az Axz B A2z Axnsz  Bxs
Asin A1 Bso Asiz Asn Bsx Asi3 Az Bsos
= = )
Ain A1 B Az Az B Az Az Bugs
A1 Axi Bonn Az Axn Bon Aoz Axnz  Bags
Asin A1 Bsun Asiz Az Bsiz Asi3 Az Bsis

with the determinants expanded by means of the formulae:

o6, -G -E+&—a+p) o &)

M a5 -8 -B-ae@-5-5
and
A At . ”(5/*23)”(5/ *23)”(5*5/’)
A A (& — & — ) o€ — & — a) 0§, — & — a)o(Ey — Ev — )
. o€ - &)oE+E&—&—& —E+§—2a+p)

o~ B )l —E—a)o@ —& - B)oEr —& - B o(E — & — B)

with the B-determinants obtained from these by interchapging J gnd f=pdozand & oo



The elliptic rank 3 system
We postulate the coupled system of (implicit) lattice equations for &1, &2, €3 given by:

Biin A1 Bz Biiz Az Bix Bi1z Az B
Byi1 A B By Ay Bux Byizs  Axs B
Bsin  Asn B B3z Asx  Bax B33 Az Bax

- - b
Biin A Bin Biz Az Bix Bz Auz Bix
B Aui B Bz Az B Bxiz  Ans B
B3z Asii Bsz B3z Az B Bz Asiz Bszs
A1 A1 B Az Az B Az Az Bios
A1 Am1 Bo Az Anz  Box Az Axns  Bis
Asin As1 Bso Asiz Az Bs Asiz Az Bszs

- - 9
Amn A1 B Az Az B Auz Az Bus
A1 A1 B Az Axn Bon Axiz  Axnz  Baus
Asi1 A1 Bann Asiz Az Ban Asiz Az Bais




The elliptic rank 3 system

We postulate the coupled system of (implicit) lattice equations for &1, &2, €3 given by:

Biin A1 Bz Biiz Az Bix Bi1z Az B
Byi1 A B By Ay Bux Byizs  Axs B
By A Bz | | Baiz As Ban | | Baz Az B
Biin A Bin Biz Az Bix Bz Auz Bix
B Aui B Bz Az B Bxiz  Ans B
B3z Asii Bsz B3z Az B Bz Asiz Bszs
A1 A1 B Az Az B Az Az Bios
A1 Am1 Bo Az Anz  Box Az Axns  Bis
Asii A Ban | | Asz Asm Ba | | Asiz Az Bam
Amn A1 B Az Az B Auz Az Bus
A1 A1 B Az Axn Bon Axiz  Axnz  Baus
Asi1 A1 Bann Asiz Az Ban Asiz Az Bais

with the determinants expanded by means of the formulae:
Ay — (& —&-&G+g—atB)od—&)

1 — =~ - s ~ —~ —~ 4
o =& —a)o(& =& —B)o(§; — & —a)o(& =& —B)
and
Ajj A,/’j _ U(E/ - 53) U(gl’ - 23) U(gl _ E/’)
T 0§ — & —a)o(& — & —a)o(& — & — ) (& — & — a)
y o(& — €)ool + & — & —& — &+ & —2a +B)

with the B-determinants obtained from these by interchanging ~.and ~ and c-and .

o6 —E—a)o(E —E—a)olE —&— B oE —&— B oE& — & — B)

s



Reductions

General question: how to obtain reductions of integrable lattice equations (PAEs)?
Lattice systems typically admit several types of reductions, e.g.:

1. Periodic reductions (stationary solutions);

2. Non-autonomous scaling-type reductions (often yielding discrete Painlevé
equations).

So far very little work exists for doing this for elliptic lattice systems!
obtained by imposing

The simplest periodic reduction of the elliptic lattice system is the 1-step period one
Xk = Mk s
for which we get an isospectral problem of the form

Lli Xk = )‘X,‘c )

)/ZN =Mix, ,
and this is precisely the Lax pair for the discrete-time Ruijsenaars model”.
the replacement

The corresponding non-autonomous analogue is obtained by de-autonomization, i.e
)\X,‘-E o XN+T

i.e. by going over to a non-isospectral problem which in the elliptic case corresponds
to a linear difference equation on the torus and the corresponding discrete
isomonodromic deformations®.

TFWN, O. Ragnisco, V. Kuznetsov, (1996) loc. cit.
(1992) 57-64.

8First examples of such de-autonomizations were considered in: V. Papageorgiou, FWN, B. Grammaticos and

A. Ramani, Isomonodromic deformation problems for discrete analogues of Painlevé equations, Phys. Lett.164A

«4O0>» «Fr <> «E)»
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General question: how to obtain reductions of integrable lattice equations (PAEs)?
Lattice systems typically admit several types of reductions, e.g.:

1. Periodic reductions (stationary solutions);

2. Non-autonomous scaling-type reductions (often yielding discrete Painlevé
equations).
So far very little work exists for doing this for elliptic lattice systems!
The simplest periodic reduction of the elliptic lattice system is the 1-step period one
obtained by imposing
X = A

for which we get an isospectral problem of the form

Le X = AXs > )/Z,g =MsX, »

and this is precisely the Lax pair for the discrete-time Ruijsenaars model”.

7FWN, O. Ragnisco, V. Kuznetsov, (1996) loc. cit.



Reductions

General question: how to obtain reductions of integrable lattice equations (PAEs)?
Lattice systems typically admit several types of reductions, e.g.:

1. Periodic reductions (stationary solutions);
2. Non-autonomous scaling-type reductions (often yielding discrete Painlevé
equations).
So far very little work exists for doing this for elliptic lattice systems!
The simplest periodic reduction of the elliptic lattice system is the 1-step period one
obtained by imposing
X = A

for which we get an isospectral problem of the form

Le X = AXs > )/Z,g =MsX, »

and this is precisely the Lax pair for the discrete-time Ruijsenaars model”.
The corresponding non-autonomous analogue is obtained by de-autonomization, i.e.
the replacement
AXy ™ Xk+1 s
i.e. by going over to a non-isospectral problem which in the elliptic case corresponds

to a linear difference equation on the torus and the corresponding discrete
isomonodromic deformations®.

7FWN, O. Ragnisco, V. Kuznetsov, (1996) loc. cit.

8First examples of such de-autonomizations were considered in: V. Papageorgiou, FWN, B. Grammaticos and
A. Ramani, Isomonodromic deformation problems for discrete analogues of Painlevé equations, Phys. Lett.164A
(1992) 57-64.
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We now generalize the elliptic lattice Lax system to

Xw =LeXer Xe=MuX,,
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We now generalize the elliptic lattice Lax system to
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and supplement it with a difference equation on the torus:

Xn+7' = TN Xk



Isomonodromic deformation problem

We now generalize the elliptic lattice Lax system to
X =Le Xk, X =MueXy
and supplement it with a difference equation on the torus:
Xk+1 = T Xk >

with Lax matrices

(Le)ij = Hijo(r)®u(&—&—a),
(My)ij = Kijo(k) @, (& — & —8),
(Tr)ij = Sijor)Pu(&—&—7),

(i, j=1,...,N)



Isomonodromic deformation problem

We now generalize the elliptic lattice Lax system to
X =Le Xk, X =MueXy
and supplement it with a difference equation on the torus:
Xk+1 = T Xk >

with Lax matrices

(L)ij = Hijo(r)®u(& —& —a),

(My)ij = Kijo(k) @, (& — & —8),

(Tr)ij = Sijor)Pu(&—&—7),
(i,j=1,...,N)

in which H; j, K; j and S; j do not depend on x and remain to be determined. As it
turn out ~, and perhaps « and 3, will depend on the discrete variables n, m, while
& = &(n, m) are the main independent variables.



Isomonodromic deformation problem

We now generalize the elliptic lattice Lax system to
X =Le Xk, X =MueXy
and supplement it with a difference equation on the torus:
Xk+1 = T Xk >

with Lax matrices

(L)ij = Hijo(r)®u(& —& —a),

(My)ij = Kijo(k) @, (& — & —8),

(Tr)ij = Sijor)Pu(&—&—7),
(i,j=1,...,N)

in which H; j, K; j and S; j do not depend on x and remain to be determined. As it
turn out ~, and perhaps « and 3, will depend on the discrete variables n, m, while
& = &(n, m) are the main independent variables.

In addition to the usual compatibility on the lattice:

’L\KMH:MKLﬁy

we have also: ~ R
L.Lc+‘r Tn = T.‘-c Ln 5 Mrc-f—r T.‘-c = Tn M.‘»c .

We will now analyse the first of these latter two Lax equations.



Compatibility

Let us now consider first the compatibility L.+r T, = TeLe.
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Let us now consider first the compatibility L.+ Tx = T, Ls. We use the addition
formula

Pr()PA(Y) = Pr(x = y) Prsaly) + Pria(x) ®aly —x).



Compatibility
Let us now consider first the compatibility L.+r T, = T, L. We use the addition
formula
Pu()PA(Y) = Pul(x = y) Prsa(y) + Prsa(x) Paly —x).

and also using the properties : @ (7)Prir(x) = Pp(x + 7)P-(x) , and
P (X)Pr(y) = ®ul(x + ¥) [C(r) + ((x) +C(y) = L +x+y)] -



Compatibility ~
Let us now consider first the compatibility L.++ T, = T, L.. We use the addition

formula
Pr(X)Pr(y) = Pu(x —y) Prsaly) + Prialx) Paly —x).
and also using the properties : . (7)Prir(x) = Pu(x + 7)P-(x) , and
B (3)Pr(y) = O (x + y) [C(k) + () + C(v) — C(k + x + )] . We compute:

N
(1) (T) D Hy Sy Prir (& — & — o) P (€ — & — 7)

=1
)0, (T)ZH// Sy [®rir (& — & —a—NO_o(& — & — )
O (€ — & — )Pu(§ — & — o = 7)]

SiH @ (& — & —F)0.(& — & — @),

Mz

1



Compatibility ~
Let us now consider first the compatibility L.++ T, = T, L.. We use the addition

formula
Pr(X)Pr(y) = Pu(x —y) Prsaly) + Prialx) Paly —x).
and also using the properties : . (7)Prir(x) = Pu(x + 7)P-(x) , and
B (3)Pr(y) = O (x + y) [C(k) + () + C(v) — C(k + x + )] . We compute:

N
()0 (1) D Hi Sy Prir (& — & — @) B (& — & — )

=
¢(ﬂ§:Hﬁu Prir(& =& —a =& — & — )
O (& — & — )Pu(E — & — o — )]
= EN: SiHy ®(& — & — 7P (& — & — @),
which subsequentIyI:;/ields:
dﬂfyw&hAﬂmﬂ@—@—a—w¢q@—@—w+

FO (G- & — )G — & —a—v+T)(C(R) —C(r+E —&—a—v+T)+
+H()+CE - g —a-)] =

N
EZEW E—&—a—F[Ck) —r+E&—&—a—7)+

Vij=1,...,N. FUE -G -+ UG— = )]



Thus, we end up with the form:
N ~ ~
o(T)D HiSj®u(& — & —a—y+1)0-(& — & — a)
=

x[CW) = Cr+& -G —a—r+n)+CE -G +7—a) = (G — &+ )]

N
= S SiHou(E & —a—F)[C(K) —Ch+E— & —a—F)+
=1

(Vi j=1,...,N). +CE - & —F) +C(E - & —a)]



Thus, we end up with the form:
N
o(T)D HiSj®u(& — & —a— v+ 1) (& — & — o)
=
x[CW) = Cr+& -G —a—r+n)+CE -G +7—a) = (G — &+ )]

N
= D SiHo (G —&—a—N[K) —C(r+E&—&—a—7F)+

=1
(Vi j=1,...,N). +CE - & —F) +C(E - & —a)]

Thus, by setting ¥ = v — 7, the equations can be separated into a part depending on
the spectral parameter k, and the remainder independent of k.



Thus, we end up with the form:
ZH/ISU '_51_0‘_'Y+T)¢’ (ft_fl_a)
x[c(n)f«nwfﬁjfaw+r)+4(éfsl+rfa)f<(@fmw)]

N
= S S H LG~ —a—)[C(R) (& — & —a—F)+

=1
(Vij=1,...,N). +CE - & —F) +C(E - & —a)]

Thus, by setting ¥ = v — 7, the equations can be separated into a part depending on
the spectral parameter k, and the remainder independent of . This leads to the
relations:

N N
° Zg,/HU = Z Hl/s/j(b‘r(gi —& - O‘) ‘7(7—) )
=1

I=1

N N
Z iHyj o A& =G =N (G =G —a) =D HiS o (& — & — ),
=y =1

foralli,j=1,...,N.



Case N=1

This is the simplest case which can be explicitly solved. In this case all quantities H; j,
S; j are scalars, leading to the system of equations:

SiHi = HuSu®- (€ — € —a)a(r) ,
SiHio(—T)®_(E—E—a)P_r (£ —€—7F) = HuSu ®_,(§ — € — 7).

Eliminating gn, S11 and Hi; (simply by dividing the relations over each other) and
using the definition of ®4+,(x), as well as 5 =~ — 7, we obtain:

oy +moly=7) _of-E-atno-g-a-7)

20 P(E-€—a)

Rearranging by using the addition formula
o(x+y)olx—y) _
20020) o(y) —p(x),

we find that ~
pl€—¢—a) = (),
which gives a first order difference equation for & =: £(n) , namely
E—t—a= ++v(mod period lattice) .
Integrating the latter, using v = 79 — nT we get
&(n) = £(0) + (a £~0)n £ 3n(n — )7 .

This indicates that in the simplest case the scheme gives rise to functions obeying the
rational version of the equations that are elliptic functions with arguments depending
quadratically on the discrete independent variable n.



Higher N values

The general system was given as:

N N
o Zg,/HU = Z Hl/s/j(b‘r(gi —& = O‘) ‘7(7—) )

I=1

=1

N _ _ _ _ N
Zs,H,, GG A O (G- —a) = HiS; b
-1 I=1

=& =)



Higher N values

The general system was given as:

N N
o Zg,/HU = Z Hl/s/j(b‘r(gi —& = O‘) ‘7(7—) )

=1 I=1

N _ _ _ _ N

ZS/H/] GG =NO (G- —a) =D HiS; P (& — & — ),

= =
forall i,j=1,...,N. As in the autonomous case we want to eliminate the variables
Hj;, Sjj and obtain a closed form system of equations for the dependent variables
& =:&i(n). To write the system more concisely we introduce matrices:

A = o(ET)04 (& — & —a), TF=o(En)er (& — & —7)

and the operation of "glueing” matrices: for any two matrices A = ( ,-_J-), B =(B;))
we introduce the glued matrix [AB], given by:

([AB])i,; == AiBi ,



Higher N values

The general system was given as:

N N
o Zg,/HU = Z Hl/s/j(b‘r(gi —& = O‘) ‘7(7—) )

=1 =1
N _ _ _ _ N
ZS/H/] GG =NO (G- —a) =D HiS; P (& — & — ),
=y =1
forall i,j=1,...,N. As in the autonomous case we want to eliminate the variables

Hj;, Sjj and obtain a closed form system of equations for the dependent variables
& =:&i(n). To write the system more concisely we introduce matrices:

A = o(ET)04 (& — & —a), TF=o(En)er (& — & —7)

and the operation of "glueing” matrices: for any two matrices A = ( ,-_J-), B =(B;))
we introduce the glued matrix [AB], given by:

([AB])ij == Ai;Bi »
In terms of this notation the above system takes the simple matrix form:
e S.-H=[AH]-S,
e [ S]-[A"H=H-[r"S].



Higher N values

The general system was given as:

N N
o Zg,/HU = Z Hl/s/j(b‘r(gi —& = O‘) ‘7(7—) )

=1 I=1

N _ _ _ _ N

ZS/H/J GG =NO (G- —a) =D HiS; P (& — & — ),

= =
forall i,j=1,...,N. As in the autonomous case we want to eliminate the variables
Hj;, Sjj and obtain a closed form system of equations for the dependent variables
& =:&i(n). To write the system more concisely we introduce matrices:

A = o(ET)04 (& — & —a), TF=o(En)er (& — & —7)

and the operation of "glueing” matrices: for any two matrices A = ( ,-_J-), B =(B;))
we introduce the glued matrix [AB], given by:

(IAB])ij := Ai B ,
In terms of this notation the above system takes the simple matrix form:
e S H=[A"H] S,
e [ S]-[A"H=H-[r"S].
We want the matrix H to be of rank 1 (as in the autonomous case) it follows from the

first eq. that [ATH] is of rank 1, since [A~H] is generically not of rank 1, and the
second eq. then implies that [[~S] is of rank 1 (and not S itself!), implying:

det(AT) = det(®- (& — & —a)ijer,. . n=0 = 7T+=—=—Na=0.

for = := Z{L &: . (This follows from Frobenius' elliptic Cauchy determinant):



Revised scheme

From the implied condition that the matrix [['S] must be of rank 1, it is convenient
to revise the scheme absorb the matrix I' = (T'; ;) in the coefficient, leading to a
revised Lax scheme. This yields an alternative Lax pair of the form:

%ra =% Xk Xk+1 = y/iJrT Xk
with revised Lax matrices containing rank 1 matrix coefficients
Hij = hh  , Kij =k k (assumed independent of x):
(ZLx)i

(T

h;r ‘7("7) q)h:(gi o Ej o O‘) hji 5
s o(R)Ou(&G—&—)s - (hLi=1,...,N)
For this system the calculation proceeds in a similar way as before, and using the
addition formulae the compatibility yields the following system of equations:
N
o h! (ths,‘) s

=1

N
=o(-T) 5 X F O (G -G,
=1
N ~ ~ ~
o h Y s o(T) (& — & —a) (& — & — )5 =5 D5 b O (& — & —F)h;
I=1 1=1
(for all i,j =1,...,N), which as before can be cast in the matrix form:
e S [AH=H-5S,
o [ATH].[[*S]=[TS] - H,
with now the rank 1 matrices H = ht(h~)7, S =s%(s~)" and the matrix "
(instead of ™). Again, we need to impose that det(A") = 0, implying:

1

—==Na-r1 =

=(n) ==(0) + (N =7 -

p2LN G
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to revise the scheme absorb the matrix I' = (T'; ;) in the coefficient, leading to a
revised Lax scheme. This yields an alternative Lax pair of the form:
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with revised Lax matrices containing rank 1 matrix coefficients
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Revised scheme
From the implied condition that the matrix [['S] must be of rank 1, it is convenient
to revise the scheme absorb the matrix I' = (T'; ;) in the coefficient, leading to a
revised Lax scheme. This yields an alternative Lax pair of the form:

%n = zﬁ: XK Xk+1 = gn-f—f Xk
with revised Lax matrices containing rank 1 matrix coefficients
Hij = h{h ., Kij= ki k~ (assumed independent of x):

(ZLe)iy = hfo(k)Ou(&—&—a) b,
(T)ii = s o(®)PuE—&—1s - (hji=1...,N)

For this system the calculation proceeds in a similar way as before, and using the
addition formulae the compatibility yields the following system of equations:

N N
ohf (Dohs ) s =o(-)F D F h e (E—g—a)h
=1 =1
N _ N - -
o hi D b s{o(T)0n(6 =& —a) O (& — & — )5 =5 D5 b 06— & —F)h},
=1 =1
(for all i,j=1,...,N), which as before can be cast in the matrix form:

e S.[AH=H-5,
o [ATH]-[I"S]=[T*5]-H,

with now the rank 1 matrices H = h*(h=)7, S = st (s~)7 and the matrix 't
(instead of ™).



Revised scheme
From the implied condition that the matrix [['S] must be of rank 1, it is convenient
to revise the scheme absorb the matrix I' = (T'; ;) in the coefficient, leading to a
revised Lax scheme. This yields an alternative Lax pair of the form:
%n = zﬁ: XK Xk+1 = yrﬁ—f Xk
with revised Lax matrices containing rank 1 matrix coefficients
Hij = h{h ., Kij= ki k~ (assumed independent of x):
(Z)ij = ho(k)Ou(&—& —a)h,

(T = s o®ou(& =& =7 s - (hi=1...,N)

For this system the calculation proceeds in a similar way as before, and using the
addition formulae the compatibility yields the following system of equations:

N N
ohf (Dohs ) s =o(-)F D F h e (E—g—a)h
=1 =1
N B N o
ohi D s o() 06— & — ) (6 — & = )5 =5 D5 b 6 (&— &~ Ty,
I=1 =1
(for all i,j=1,...,N), which as before can be cast in the matrix form:
e S.[AH=H-5,
o [ATH].[[*S]=[T"S] H,
with now the rank 1 matrices H = h*(h=)7, S = st (s~)7 and the matrix 't
(instead of ™). Again, we need to impose that det(A") = 0, implying:

1R

—=Z=Na-7 = Z(n)=Z0)+Na—-7)n.



Case N =2

To resolve this case, the first identity allows us to identify h™ = ps* (for some scalar
function p), and consequently:

_ —o(T LN =~ = _
S = e Esrs, O (& —&—a)h .



Case N =2

To resolve this case, the first identity allows us to identify h™ = ps* (for some scalar
function p), and consequently:

s = Zsl 5 P (& —¢&—a) h;".
Expressing all the entries of the first and second relation in terms of s/'*'s,_ =:5,
s,*h,_ =: H, we get:

H2 —-= _ = H1 o~ o~
<1+ E)Sl =A1151+A2152 y (E-l-l)Sz =A1251+A2252 y
The entries of the other matrix relation yields the system:

Hy
(A+r++A+r+ )51 (A1+1r+H +A+F+)527F 1S+ THS

H; o~~~
(A2+1r+1+A+r+ )51 (A;lrlgH +A+r+)52:r2+151+r2+252.



Case N =2

To resolve this case, the first identity allows us to identify h™ = ps* (for some scalar
function p), and consequently:

s = Zsl 5 P (& —¢&—a) h;".
Expressing all the entries of the first and second relation in terms of s/'*'s,_ =:5,
s,*h,_ =: H, we get:

H2 —-= _ = H1 o~ o~
<1+ E)Sl =A1151+A2152 y (E-l-l)Sz =A1251+A2252 y
The entries of the other matrix relation yields the system:

Hy
(A+ M+ AL, — ) S = (Af1 re

Y +A+r+)52—r 1S+ THS

H; o~~~
(A2+1r+1+A+r+ )51 (A;lrlgH +A+r+)52:r2+151+r2+252.

To analyse these further, taking into account that det(A'*') = 0, we rewrite the

relations in terms of the ratios X = Ha/H1, Y = $2/S1 and Z = S51/51, leading to:
Y/X = (A +ApY)/(An +AnY) . Z=(1+X)/(Ag +AnY)
ALTH + ALTHEX = (AL THL + ALTLX)Y /X = (T +THLY)Z,
ALIAS = AL A = (T +THLY) /(T +T5LY)

Eliminating X,Y, Z this leads to a 15* order difference equation for &(n) (j =1, 2).



The result of this calculation is the following:
[o(a+ & —&)ola—y+7+& -&)olatb—&)o(—v+7+& —&)
o2r —a—v—& — &) (o(-y+& — &)ola — v+ & — &)
o—a—yt+r—&+&)ola+T+& — &) ola+ & —&)—o(—y— &+ &)
ola—y+&—&)o(—a—y+T—E+&)o(a+& —&)ola+T+8&—&))
+(o(—y+ & — &) ola+T+& — &) ola+ & — &) ola— v+ & — &)
oa—y+7 -t &) to(-y— G t+&)olat b —&)ola—+& &)
ola+T+&—&)o(—a—y+T— & +E))o(—a—y+271 — & + &)
olat+é& —&)ola—y+T+E& —&)ola+é— &) U(—’Y+T—§~1+§~2)]
o(=2y+7)o(—v+7)o(s—&) ol —& —atr)
a(v) o(37 —27) o(& — &) o(&2 — &1 — a)
ola—v+T+a-—G)ola+T+a —&) ot — v+ — &)
o —&+2r—a—q)—ola+T+& —&)o(&— & +21 —v—a)
ola+&—&)ola—y+7+& - &) o(r—v - & +8&)]
[ola—v+7+&a-&)ola+&—&)ola+T+&—&)o(r—v+& - &)
o&—&+2r—a—7y)—ola+T+&—&)o(&1— & +27 — 7 —a)
clat&—&)ola—v+7+a—-&)o(r—y-&+&)] =0

[o(a+& - &)

which is subject to the condition & + & = (2a — 7)n 4+ =(0). This a first order
nonlinear ordinary elliptic difference equation.



Higher order scheme
In order to derive higher-order OAEs we extend the isomonodromic problem to a
higher order one as follows:

Xf»c+7' = T; Xk

N

(TL)ig = 0%(5) D SV0u(& —m)@u(m —&—7) . (i=1,....N),
1=1

(n

where the 7); variables as well as the extended coefficients Sij remain to be

determined.
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In order to derive higher-order OAEs we extend the isomonodromic problem to a
higher order one as follows:

Xf»c+7' = T; Xk

N
(Th)iy = 02(k) D Sw(&r —m)®u(m —&—7) , (ii=1,....N),
1=1

where the 7); variables as well as the extended coefficients SI.(IJ.) remain to be
determined. We consider this difference equation on the torus in conjunction with he
lattice Lax system (as before):

X =LeXn» (Le)ij=Hijo(k)®u(& — & —a),
X =Max., (Mp)ij=Kijo(k)®u(E—&—B),

where as before we like to take the coefficient matrices H and K of rank 1 and
independent of the spectral variable k.



Higher order scheme
In order to derive higher-order OAEs we extend the isomonodromic problem to a
higher order one as follows:

XI<L+T = T; Xk

N
! ..
(TL)ig = 0%(5) D SV0u(& —m)@u(m —&—7) . (i=1,....N),
I=1
where the 7); variables as well as the extended coefficients SI.(IJ.) remain to be
determined. We consider this difference equation on the torus in conjunction with he
lattice Lax system (as before):

X =LeXn» (Le)ij=Hijo(k)®u(& — & —a),
X =Max., (Mp)ij=Kijo(k)®u(E—&—B),

where as before we like to take the coefficient matrices H and K of rank 1 and
independent of the spectral variable k.

We can think of the scheme above as an elliptic de-autonomization of a higher-order
periodic reduction on the lattice.

X, & X, 1 2-step p_eriodiczreduction:
—_— X =+ X = X=Xx
followed by de-autonomization:
)‘X ~ X:q+7'
However, now we want to keep the
A, € midpoint unspecified associated with
some value 7 for &.



Compatibility higher order scheme
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This system leads to the system of compatibility conditions:
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Compatibility higher order scheme

This system leads to the system of compatibility conditions:

—~ ~ ~/ ~
Lm Mm = Mm LK ) LK+T T; - TK LK ) MK+T T; - TK Mm

To do this most effectively we need a new elliptic addition rule:
P (x) Pr(y) Pu(2)

Sy = D+ )+ )l xty 4 2)

+o(k) = (9() + 0(y) + 9(2) + plk + x +y +2))] |

VK, X,y,Z.



Compatibility higher order scheme

This system leads to the system of compatibility conditions:
~ ~ , , =
LeMx =MgLg, Leyr T, =T, Ls, Miyr T, =T, Mg

To do this most effectively we need a new elliptic addition rule:

P (x)Pp(y) P

2eLIBE 4]l + €00 + €0+ €l — o x+y + 2)°
6(k) = (9() + 0(y) + 9(2) + pls + x +y +2))] |

Vk,x,y,z. The second consistency condition Ly, T/ = 'T'; L, works as follows:

T)® . (7) Z Hi §, /J Srir(§i — & —a)Pu(§ —np) Pulny — & — )

1,17=1

Z Hi S, T+£I & —a)d. (& 777/’)¢n(77/’ =& =)

1,1'=1

N
~! ~ ~ ~
= S S Hek(E — ) Py — & — F) Pul€l — & — @)
1,1'=1
and applying the above identity one there will be a common factor

b (& — §J —a—7v+7)on the l.Lhss. and &, (f, & —a —7) on the r.h.s. which can
once again be identied if we set ¥ = — 7 . The remaining terms separate terms in
accordance with the different dependence on k.



Thus, we find:
N B "
Z U(T)¢T(§; — r‘;:/ — Oz) H,‘/ S/(j )

1,1'=1
< [(6) = Cls+E— & —a— 7+ 1)+ Cr + & — & — @)+ Cl& — ) + Sl — & =)
+p(k) = (plr+ & — g —a— v+ 1)+ ot +& — & — a) + pl& — ) + ooy — & — )]
N
= 30 S () — G+ E & — @ —F) + GE — ) + < — 8- ) +CE - - @)
1,11=1

+o(r) = (p(r+& = & — a =) + p(& = i) + ol — & = 7) + 0l& — & — ) )]



Thus, we find:
N

37 o(r)e (& — & — ) Hy S\
1,1'=1
< [(6) = Cls+E— & —a— 7+ 1)+ Cr + & — & — @)+ Cl& — ) + Sl — & =)
+p(k) = (plr+ & — g —a— v+ 1)+ ot +& — & — a) + pl& — ) + ooy — & — )]
N
= 30 S () — G+ E & — @ —F) + GE — ) + < — 8- ) +CE - - @)
1,11=1

+o(r) = ((x + & = & = a=F) + p(& — ) + il — & =) + 9@ — & — )]

This breaks down in the following constitutive relations:

N
o D o(Me(&—&—a)H Zs Hy
1,1'=1 1,17 =1
N ~ / ~
o > oMo - & —a)Hy S (Cr+ & — & — o)+ C(& — me) + o — & =)
1,1'=1
N
Z Hy (& = i) + ¢ — & = 7) + <6 — & — a))
J Z Hi 5,, (& =) O—r(ny — & — )

1,1'=

N
=o(—7) S SV HO (& — ) O (Tl — & —F) O (& — & — ) .

1,1'=1



How to proceed?

The general scheme is of relations derived is rather complicated. The first and last
relation can be written in the form:

e S-H=[A"H]-S

e [AT S|-[A"H|=H-[AT"S],
where we have used the same notation as before, with the matrix S as the matrix with
entries (S);; = 3, S{), and where the “doubly glued” matrix [A~T~S] is the
matrix with entries:

> 5,-5-’ Yo (& —m) O r(y — &)
I/
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It follows, as before, that if H is of rank 1, then the latter matrix should be of rank 1
as well. This suggests that we again want to revise the scheme, and replace T, by
Tx++ in the monodromy problem.



How to proceed?

The general scheme is of relations derived is rather complicated. The first and last
relation can be written in the form:

e S-H=[A"H]-S

e [AT S].[AH=H-[AT"S],

where we have used the same notation as before, with the matrix S as the matrix with
’

entries (S);; = 3, S{), and where the “doubly glued” matrix [A~T~S] is the

matrix with entries:

> 5,-5-’ Yo (& —m) O r(y — &)
I/

It follows, as before, that if H is of rank 1, then the latter matrix should be of rank 1
as well. This suggests that we again want to revise the scheme, and replace T, by
Tx++ in the monodromy problem.

Strategy is once again to eliminate H, S and from the middle relation to solve the 7;.
All relations should also be supplemented by similar relations for the ~- shift generated
by the Lax matrix M.



Discussion

> We gave a general framework for elliptic Lax pairs in 141 dimensions associated
with elliptic (classical) 2D lattice equations containing two broad classes: LL (or
spin non-zero), and KN (spin zero) type systems;

» There are two main reductions: one-or multi-step period reductions leading to the
discrete-time Ruijsenaars model (and its "hierarchy”) and non-autonomous
reductions usually associated with scaling invariance;

» The isomonodromic problems obtained by de-autonomization of isospectral
problems on the torus lead to systems non-autonomous elliptic ordinary difference
equations and, we believe, will eventually yield elliptic discrete Painlevé equations
and possibly higher-order analogues (elliptic Garnier systems?), but further
analysis is needed;

> Recently isomonodromic deformation problems for Sakai’s elliptic discrete
Painlevé equation has been considered by several authors (Rains, Borodin,
Yamada, Noumi) and a comparison with those works would be interesting;

» Our constructions involve mostly basic addition formulae for (Weierstrass) elliptic
functions, while other constructions often theta-functions in multiplicative form;

> It would be interesting to further explore elliptic discrete integrable systems in
higher dimensions, such as the elliptic lattice KP equation we recently
constructed®, which is essentially a system in 3+1 dimensions.

P Jennings & FWN, On an elliptic extension of the Kadomtsev-Petviashvili equation, J.Phys. A:Math. Theor.
47 (2014) 055205. «O>» «Fr «E»r « >
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» We gave a general framework for elliptic Lax pairs in 1+1 dimensions associated
with elliptic (classical) 2D lattice equations containing two broad classes: LL (or
spin non-zero), and KN (spin zero) type systems;

» There are two main reductions: one-or multi-step period reductions leading to the
discrete-time Ruijsenaars model (and its " hierarchy”) and non-autonomous
reductions usually associated with scaling invariance;

» The isomonodromic problems obtained by de-autonomization of isospectral
problems on the torus lead to systems non-autonomous elliptic ordinary difference
equations and, we believe, will eventually yield elliptic discrete Painlevé equations
and possibly higher-order analogues (elliptic Garnier systems?), but further
analysis is needed;

> Recently isomonodromic deformation problems for Sakai's elliptic discrete
Painlevé equation has been considered by several authors (Rains, Borodin,
Yamada, Noumi) and a comparison with those works would be interesting;

» Our constructions involve mostly basic addition formulae for (Weierstrass) elliptic
functions, while other constructions often theta-functions in multiplicative form;

> It would be interesting to further explore elliptic discrete integrable systems in
higher dimensions, such as the elliptic lattice KP equation we recently
constructed?, which is essentially a system in 341 dimensions.

op Jennings & FWN, On an elliptic extension of the Kadomtsev-Petviashvili equation, J.Phys. A:Math. Theor.
47 (2014) 055205.



Thank you for your attention!
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