Families of bilinear transformations for basic hypergeometric series and their multivariate generalizations Yasushi KAJIHARA (Kobe University) Mar. 2015. Noumi 60, RIMS, Kyoto University ### ♠ Bilinear summation formula for orthogonal polynomials (to name few) Motivated by the theory of moments and etc. - A. Cayley, Orr (19th century) - H. Bateman, W.N. Bailey, Burchnal-Chaundy, G.N. Watson (Beginning of the 20th century) - E.D. Rainville, L. Carlitz Many classical results can be found in R. Askey's lecture notes "Orthogonal polynomials and special functions (OPSF)" with fundamental properties of orthogonal polynomials. #### More recently - M. Rahman and his collaborators (the theory of orthogonal polynomials) - T.H. Koornwinder, E. Koelink, J.V. Stokman and his collaborators (representation theoretic) (among others) In this talk, I will propose yet another simple approach towards the construction of bilinear transformations by using multiple hypergeometric transformations. #### ♡ Main theme of my talk The results obtained here seem to be more general than ever before. Namely, I present a class of bilinear transformation formulas which include the following as a special case: $$\begin{split} \sum_{K \in \mathbb{N}} q^K \frac{(b/s, c_1/s, c_2/s, q^{-N}, g, tq)_K}{(1/s, q, q/d, tq/e, tq/f_1, tq/f_2)_K} \\ &\times \ _8W_7 \left[q^{-K}s; b, c_1, c_2, q^{-K}d, q^{-K}; q; \frac{s^2q^2}{bc_1c_2d} \right] \\ &\times \ _8W_7 \left[q^Kt; e, f_1, f_2, q^Kg, q^{K-N}; q; \frac{t^2q^{N+2}}{ef_1f_2g} \right] \\ &= g^N \frac{(tq, tq/eg, tq/f_1g, tq/f_2g)_N}{(tq/e, tq/f_1, tq/f_2, tq/g)_N} \\ &\times \ _6\phi_5 \left[\frac{g, sq/c_1d, sq/c_2d, sq/bd, q^{-N}g/t, q^{-N}}{q/d, q^{-N}f_1g/t, q^{-N}f_2g/t, sq/d, q^{-N}eg/t}; q; q \right] \\ &\text{provided } s^2t^2q^{2+N} = bc_1c_2de\, f_1f_2q. \end{split}$$ Our construction is very close to one of most famous and elementary proof of Sears transformation formula for terminating balanced $_4\phi_3$ series. #### ★ Notations of basic hypergeometric series Throughout of this talk, we assume that 0 < |q| < 1. We denote the basic hypergeometric series $_{r+1}\phi_r$ as $$_{r+1}\phi_r\begin{bmatrix}a_0, a_1, \dots a_r\\c_1, \dots c_r; q; u\end{bmatrix} = \sum_{n \in \mathbb{N}} \frac{(a_0)_n (a_1)_n \dots (a_r)_n}{(c_1)_n \dots (c_r)_n (q)_n} u^n.$$ and $$(a)_{\infty}:=\prod_{n\in\mathbb{N}}(1-aq^n),\quad (a)_k:=\frac{(a)_{\infty}}{(aq^k)_{\infty}}\quad \text{for } k\in\mathbb{C}$$ is a q-shifted factorial. And we frequently use $$(a_1, a_2, \cdots, a_n)_N := (a_1)_N (a_2)_N \cdots (a_n)_N$$ #### ★ Very well-poised basic hypergeometric series The basic hypergeometric series $_{n+1}\phi_n$ is "well-poised" if $a_0q=a_1c_1=\cdots=a_nc_n$. It is called very well-poised if it is well-poised and if $a_1=q\sqrt{a_0}$ and $a_2=-q\sqrt{a_0}$. Namely, the very well-poised $_{n+1}\phi_n$ is expressed as the following form: $$= \sum_{k \in \mathbb{N}} \frac{1 - a_0 q^{2k}}{1 - a_0} \frac{(a_0, q\sqrt{a_0}, -q\sqrt{a_0}, a_3, \dots, a_n}{-\sqrt{a_0}, a_0 q/a_3, \dots, a_0 q/a_n}; q, u}{(a_0)_k (a_3)_k \cdots (a_n)_k} u^k$$ $$:= \sum_{k \in \mathbb{N}} \frac{1 - a_0 q^{2k}}{1 - a_0} \frac{(a_0)_k (a_0 q/a_3)_k \cdots (a_0 q/a_n)_k}{(q)_k (a_0 q/a_3)_k \cdots (a_0 q/a_n)_k} u^k$$ $$:= \sum_{n+1} W_n \left[a_0; a_3, \dots, a_n; q; u \right]$$ #### ♡ A proof of Sears transformation Sears transformation formula for terminating balanced $_4\phi_3$ series provided the (1-) balancing condition $$abcq^{1-N} = def.$$ First, consider the following product of two $_2\phi_1$ series: $$_{2}\phi_{1}\begin{bmatrix}a,b\\c;q;u\end{bmatrix}\times\frac{(deu/f)_{\infty}}{(u)_{\infty}}_{2}\phi_{1}\begin{bmatrix}f/e,f/d\\f;q;\frac{deu}{f}\end{bmatrix}.$$ Now assume that ab/c = de/f. By the 3rd Heine transformation (basic analogue of Euler transformation formula for Gauss' hypergeometric series ${}_2F_1$): $$_{2}\phi_{1}\begin{bmatrix}a,b\\c;q;u\end{bmatrix} = \frac{(abu/c)_{\infty}}{(u)_{\infty}} \quad _{2}\phi_{1}\begin{bmatrix}c/b,c/a\\c;q;\frac{abu}{c}\end{bmatrix},$$ The following equality holds: $${}_{2}\phi_{1}\begin{bmatrix}a,b\\c;q;u\end{bmatrix}\times{}_{2}\phi_{1}\begin{bmatrix}f/e,f/d\\f;q;\frac{deu}{f}\end{bmatrix}$$ $$={}_{2}\phi_{1}\begin{bmatrix}c/b,c/a\\c;q;\frac{abu}{c}\end{bmatrix}\times{}_{2}\phi_{1}\begin{bmatrix}d,e\\f;q;u\end{bmatrix}$$ Taking the coefficient of u^N in the equation above and relabeling the parameters gives Sears transformation. #### \bigstar Definition of A_n basic hypergeometric series $$\beta=(\beta_1,\ldots,\beta_n)\in\mathbb{N}^n$$: multi-index $|\beta|=\sum_{i=1}^n\beta_i$: length of β In this talk, a multiple series $\sum_{\beta\in\mathbb{N}^n}S(\beta)$ is called A_n basic hypergeometric series if: • the series has a form $$\sum_{\beta \in \mathbb{N}^n} \frac{\Delta(xq^\beta)}{\Delta(x)} u_1^{\beta_1} \cdots u_n^{\beta_n} \times (\text{basic hypergeometric stuff})$$ where $$\Delta(x) = \prod_{1 \le i < j \le n} (x_i - x_j)$$ and $$\Delta(xq^{\beta}) = \prod_{1 \le i < j \le n} (x_i q^{\beta_i} - x_j q^{\beta_j})$$ are Vandermonde determinants of $x=(x_1,\ldots,x_n)$ and $xq^\beta=(x_1q^{\beta_1},\ldots,x_nq^{\beta_n})$ respectively. - symmetric w.r.t. the subscript - n = 1 \Rightarrow basic hypergeometric series ★ Multiple basic hypergeometric series ♡ Origin (ordinary case) W.Holman, L.Biedenharn, J.Louck Representation of SU(n+1): Clebsch-Gordan coefficients of $SU(2) \Rightarrow$ terminating $_3F_2$ series (Hahn polynomials) Racah-Wigner coefficients of $SU(2) \Rightarrow$ terminating balanced $_4F_3$ series (Racah polynomials) #### **♠** Derivation - ullet S.Milne A certain algebraic invariants and q-difference equation - S.Milne, G.Lily, G.Bhatnager, C.Krattenthaller, M.Schlosser Multidimensional matrix inversion (Multidimensional Bailey lattice) - Y.K, M.Noumi-Y.K Cauchy kernel and Macdonald's q-difference operators #### **♠** Application - C.Krattenthaller, I.Gessel Cylindric partition enumeration - S.Milne Analytic number theory —-sum of squares - S.Milne, V.Leininger New infinite families of η function identities - J.F. van Diejen, M.Noumi-Y.K Macdonald polynomials In this talk, we wants to claim: "Multivariate hypergeometric transformation is useful for (even in the case of) onevariable hypergeometric series case." (Especially, hypergeometric transformations with different dimensions in our previous work.) \heartsuit Euler transformation formula for basic hypergeometric series of type A Theorem 1. (Y.K. 2004 Adv. Math.) Suppose that none of denominators vanish. Then we have the Euler transformation formula for basic hypergeometric series of type A with different dimension: $$\begin{split} \sum_{\gamma \in \mathbb{N}^n} u^{|\gamma|} \frac{\Delta(xq^\gamma)}{\Delta(x)} \prod_{1 \leq i,j \leq n} \frac{(a_j x_i/x_j)_{\gamma_i}}{(q x_i/x_j)_{\gamma_i}} \\ & \prod_{1 \leq i \leq n, 1 \leq k \leq m} \frac{(b_k x_i y_k/x_n y_m)_{\gamma_i}}{(c x_i y_k/x_n y_m)_{\gamma_i}} \\ & = \frac{(a_1 \cdots a_n b_1 \cdots b_m u/c^m)_{\infty}}{(u)_{\infty}} \\ & \sum_{\delta \in \mathbb{N}^m} (a_1 \cdots a_n b_1 \cdots b_m u/c^m)^{|\delta|} \frac{\Delta(yq^\delta)}{\Delta(y)} \\ & \prod_{1 \leq k, l \leq m} \frac{((c/b_l) y_k/y_l)_{\delta_k}}{(q y_k/y_l)_{\delta_k}} \prod_{1 \leq i \leq n, 1 \leq k \leq m} \frac{((c/a_i) x_i y_k/x_n y_m)_{\delta_k}}{(c x_i y_k/x_n y_m)_{\delta_k}} \\ & \text{for } a_1^{-1}, \dots, a_n^{-1}, b_1/c, \dots, b_m/c \in \mathbb{C}. \end{split}$$ \heartsuit Sears transformation formula for basic hypergeometric series of type A Theorem 2. (Y.K. 2004 Adv. Math.) $$\begin{split} & \sum_{\gamma \in \mathbb{N}^{n}} q^{|\gamma|} \frac{\Delta(xq^{\gamma})}{\Delta(x)} \prod_{1 \leq i, j \leq n} \frac{(b_{j}x_{i}/x_{j})_{\gamma_{i}}}{(qx_{i}/x_{j})_{\gamma_{i}}} \\ & \frac{(q^{-}N, a)_{|\gamma|}}{(e, f)_{|\gamma|}} \prod_{1 \leq i \leq n, 1 \leq k \leq m} \frac{(c_{k}x_{i}y_{k}/x_{n}y_{m})_{\gamma_{i}}}{(dx_{i}y_{k}/x_{n}y_{m})_{\gamma_{i}}} \\ & = a^{N} \frac{(e/a, f/a)_{N}}{(e, f)_{N}} \sum_{\delta \in \mathbb{N}^{m}} q^{|\delta|} \frac{\Delta(yq^{\delta})}{\Delta(y)} \prod_{1 \leq k, l \leq m} \frac{((d/c_{l})y_{k}/y_{l})_{\delta_{k}}}{(qy_{k}/y_{l})_{\delta_{k}}} \\ & \frac{(q^{-N}, a)_{|\delta|}}{(q^{1-N}a/e, q^{1-N}a/f)_{|\delta|}} \prod_{1 < i < n, 1 < k < m} \frac{((d/b_{i})x_{i}y_{k}/x_{n}y_{m})_{\delta_{k}}}{(dx_{i}y_{k}/x_{n}y_{m})_{\delta_{k}}} \end{split}$$ provided $aBCq^{1-N} = d^m ef$. However it was obtained from the case when we consider the product: $$\sum_{\gamma \in \mathbb{N}^{n}} u^{|\gamma|} \frac{\Delta(xq^{\gamma})}{\Delta(x)} \prod_{1 \leq i,j \leq n} \frac{(a_{j}x_{i}/x_{j})_{\gamma_{i}}}{(qx_{i}/x_{j})_{\gamma_{i}}}$$ $$\prod_{1 \leq i \leq n, 1 \leq k \leq m} \frac{(b_{k}x_{i}y_{k}/x_{n}y_{m})_{\gamma_{i}}}{(cx_{i}y_{k}/x_{n}y_{m})_{\gamma_{i}}}$$ $$\times {}_{2}\phi_{1} \begin{bmatrix} f/e, f/d \\ f \end{bmatrix}; q; \frac{deu}{f}$$ #### Question What arises when we consider the product of multiple series in general?? ### \bigstar Definition of the multiple very well-poised BHS $W^{n,m}$ To simplify expressions of formulas, we introduce a notation of multiple very well-poised basic hypergeometric series as follows: $$W^{n,m}\left(\begin{cases} \{a_{i}\}_{n} \mid s; \{u_{k}\}_{m}; \{v_{k}\}_{m}; z\right) \\ = \sum_{\gamma \in \mathbb{N}^{n}} z^{|\mu|} \prod_{1 \leq i < j \leq n} \frac{\Delta(xq^{\gamma})}{\Delta(x)} \prod_{1 \leq i \leq n} \frac{1 - q^{|\gamma| + \gamma_{i}} s x_{i} / x_{n}}{1 - s x_{i} / x_{n}} \\ \prod_{1 \leq j \leq n} \frac{(s x_{j} / x_{n})_{|\gamma|}}{((s q / a_{j}) x_{j} / x_{n})_{|\gamma|}} \left(\prod_{1 \leq i \leq n} \frac{(a_{j} x_{i} / x_{j})_{\gamma_{i}}}{(q x_{i} / x_{j})_{\gamma_{i}}}\right) \\ \prod_{1 \leq k \leq m} \frac{(v_{k})_{|\gamma|}}{(s q / u_{k})_{|\gamma|}} \left(\prod_{1 \leq i \leq n} \frac{(u_{k} x_{i} / x_{n})_{\gamma_{i}}}{((s q / v_{k}) x_{i} / x_{n})_{\gamma_{i}}}\right),$$ where $\{u_i\}_n$ means u_1, \ldots, u_n according to this order. This series contains "well-poised" combinations of factors $$\frac{(ux_{1}/x_{n})_{\gamma_{1}}\cdots(ux_{n-1}/x_{n})_{\gamma_{n-1}}\cdot(u)_{\gamma_{n}}}{(sq/u)_{|\gamma|}},\\ \frac{(v)_{|\gamma|}}{((sq/v)x_{1}/x_{n})_{\gamma_{1}}\cdots((sq/v)x_{n-1}/x_{n})_{\gamma_{n-1}}\cdot(sq/v)_{\gamma_{n}}}$$ Note that in the case when n=1, $W^{1,m}$ reduces $_{2m+4}W_{2m+3}$ series. Homogeneous part of multiple hypergeometric series \simeq (multiple) very well-poised hypergeometric series \spadesuit (Example) q-multiple binomial theorem and Rogers' terminating multiple very-well-poised $_6\phi_5$ summation An A_n q-binomial theorem S.C. Milne (Adv. Math (1985)) $$\frac{(b_1 \cdots b_{n+1} u)_{\infty}}{(u)_{\infty}} = \sum_{\beta \in \mathbb{N}^{n+1}} u^{|\beta|} \frac{\Delta(xq^{\beta})}{\Delta(x)} \prod_{1 \le i,j \le n+1} \frac{(b_j x_i / x_j)_{\beta_i}}{(q x_i / x_j)_{\beta_i}}.$$ In the case when n=1, it reduces to q-binomial theorem: $$\frac{(bu)_{\infty}}{(u)_{\infty}} = \sum_{k \in \mathbb{N}} u^k \frac{(b)_k}{(q)_k}.$$ After changing $n \to n+1$, take the coefficients of u^N in the both side of A_n q-binomial theorem. The coefficient which appear from the right hand side can be expressed in terms of $W^{n,1}$ series. Then by changing the parameter appropriately, we obtain A_n Rogers' terminating ${}_6W_5$ summation formula due to Milne, $$\frac{(aq/b_1 \cdots b_n c)_N}{(aq/c)_N} \prod_{1 \le i \le n} \frac{(aqx_i/x_n)_N}{((aq/b_i)x_i/x_n)_N} = W^{n,1} \left(\begin{cases} b_i \\ x_i \end{cases}_n \middle| a; c; q^{-N}; \frac{aq^{1+N}}{b_1 \cdots b_n c} \right).$$ The case when n=1, this formula reduces to Rogers' terminating ${}_6W_5$ summation formula $$_{6}W_{5}\left[a;b,c,q^{-N};q;\frac{aq^{1+N}}{bc}\right] = \frac{(aq/bc)_{N}}{(aq/c)_{N}}\frac{(aq)_{N}}{(aq/b)_{N}}.$$ Set the homogeneous part in multiple basic hypergeometric series as Φ_N : $$\Phi_{N}^{n,m} \left(\begin{cases} a_{i} \rbrace_{n} | \{b_{k}y_{k} \rbrace_{m} \\ \{cy_{k} \rbrace_{m} \end{cases} \right)$$ $$:= \sum_{\gamma \in \mathbb{N}^{n}, |\gamma| = N} \frac{\Delta(xq^{\gamma})}{\Delta(x)} \prod_{1 \leq i, j \leq n} \frac{(a_{j}x_{i}/x_{j})_{\gamma_{i}}}{(qx_{i}/x_{j})_{\gamma_{i}}}$$ $$\times \prod_{1 \leq i \leq n, 1 \leq k \leq m} \frac{(b_{k}x_{i}y_{k}/x_{n}y_{m})_{\gamma_{i}}}{(cx_{i}y_{k}/x_{n}y_{m})_{\gamma_{i}}}.$$ Then we have #### Lemma $$\Phi_N^{1,m} \begin{pmatrix} a \mid \{b_k y_k\}_m \\ 1 \mid \{cy_k\}_m \end{pmatrix} = \begin{pmatrix} \text{the coeff. of } u^N \text{ in } {}_{m+1}\phi_m \text{ series} \end{pmatrix}$$ $$= \frac{(a)_N}{(q)_N} \prod_{1 \le k \le m} \frac{(b_k y_k)_N}{(cy_k)_N}$$ and $$\Phi_{N}^{n+1,m} \left(\begin{cases} a_{i} \rbrace_{n+1} | \{b_{k}y_{k} \}_{m} \\ \{cy_{k} \rbrace_{m} \end{cases} \right) \\ = \frac{(a_{n+1})_{N}}{(q)_{N}} \prod_{1 \leq i \leq n} \frac{(a_{i}x_{n+1}/x_{i})_{N}}{(x_{n+1}/x_{i})_{N}} \prod_{1 \leq k \leq m} \frac{(b_{k}x_{n+1}y_{k})_{N}}{(cx_{n+1}y_{k})_{N}} \\ W^{n,m+1} \left(\begin{cases} a_{i} \rbrace_{n} | q^{-N}/x_{n+1}; \{b_{k}y_{k} \}_{m}, a_{n+1}/x_{n+1}; \\ \{x_{i} \rbrace_{n} | q^{-N}/x_{n+1}; \{b_{k}y_{k} \}_{m}, q^{-N}; \frac{c^{m}q}{a_{1} \cdots a_{n}a_{n+1}B} \right)$$ ## ♥ The master formula and its reversing version Theorem 3 $$\sum_{K \in \mathbb{N}} \Phi_{K}^{n_{1},m_{1}} \begin{pmatrix} \{a_{i}\}_{n_{1}} | \{b_{k}y_{k}\}_{m_{1}} \\ \{x_{i}\}_{n_{1}} | \{cy_{k}\}_{m_{1}} \end{pmatrix} \tag{1}$$ $$\times \Phi_{N-K}^{n_{2},m_{2}} \begin{pmatrix} \{f/e_{p}\}_{n_{2}} | \{(f/d_{s})w_{s}\}_{m_{2}} \\ \{z_{p}\}_{n_{2}} | \{fw_{s}\}_{m_{2}} \end{pmatrix} \begin{pmatrix} \frac{f^{n_{2}}}{DE} \end{pmatrix}^{N-K}$$ $$= \sum_{L \in \mathbb{N}} \Phi_{L}^{m_{1},b_{1}} \begin{pmatrix} \{c/b_{k}\}_{m_{1}} | \{(c/a_{i})x_{i}\}_{n_{1}} \\ \{y_{k}\}_{m_{1}} | \{cx_{i}\}_{n_{1}} \end{pmatrix}$$ $$\times \Phi_{N-L}^{n_{2},m_{2}} \begin{pmatrix} \{d_{s}\}_{m_{2}} | \{e_{p}z_{p}\}_{n_{2}} \\ \{w_{s}\}_{m_{2}} | \{fz_{p}\}_{n_{2}} \end{pmatrix} \begin{pmatrix} \frac{c^{m_{1}}}{AB} \end{pmatrix}^{L}$$ when the "balancing" condition $AB/c^{m_1}=DE/f^{n_2}$ holds. And $$\sum_{K \in \mathbb{N}} \Phi_{K}^{n_{1},m_{1}} \begin{pmatrix} \{a_{i}\}_{n_{1}} | \{b_{k}y_{k}\}_{m_{1}} \\ \{cy_{k}\}_{m_{1}} \end{pmatrix}$$ $$\times \Phi_{N-K}^{n_{2},m_{2}} \begin{pmatrix} \{f/e_{p}\}_{n_{2}} | \{(f/d_{s})w_{s}\}_{m_{2}} \\ \{z_{p}\}_{n_{2}} | \{fw_{s}\}_{m_{2}} \end{pmatrix} \left(\frac{f^{n_{2}}}{DE}\right)^{N-K}$$ $$= \sum_{L \in \mathbb{N}} \Phi_{N-L}^{m_{1},b_{1}} \begin{pmatrix} \{c/b_{k}\}_{m_{1}} | \{(c/a_{i})x_{i}\}_{n_{1}} \\ \{y_{k}\}_{m_{1}} | \{cx_{i}\}_{n_{1}} \end{pmatrix}$$ $$\times \Phi_{L}^{n_{2},m_{2}} \begin{pmatrix} \{d_{s}\}_{m_{2}} | \{e_{p}z_{p}\}_{n_{2}} \\ \{w_{s}\}_{m_{2}} | \{fz_{p}\}_{n_{2}} \end{pmatrix} \left(\frac{c^{m_{1}}}{AB}\right)^{N-L}$$ when $AB/c^{m_1} = DE/f^{m_2}$ holds. \heartsuit Example of bilinear transformation formula for multivariate hypergeometric series (a) $n_1, n_2 \ge 2, m_1 = m_2 = 1$ case of (1) (after an appropriate replacement of parameters): $$\begin{split} \sum_{K \in \mathbb{N}} q^K & \frac{(c_1/s, c_2/s)_K}{(q, q/d)_K} \prod_{1 \leq i \leq n_1} \frac{((b_i/s)x_i^{-1})_K}{((1/s)x_i^{-1})_K} \\ & \times \frac{(q^{-N}, g)_K}{(tq/f_1, tq/f_2)_K} \prod_{1 \leq p \leq n_2} \frac{((tq)z_p)_K}{((tq/e_p)z_p)_K} \\ & \times W^{n_1, 2} \left(\begin{cases} b_i \\ x_i \end{cases}_{n_1} \middle| q^{-K}s; c_1, c_2; q^{-K}d, q^{-K}; \frac{s^2q^2}{Bc_1c_2d} \right) \\ & \times W^{n_2, 2} \left(\begin{cases} e_p \\ s_{n_2} \middle| q^Kt; f_1, f_2; q^Kg, q^{K-N}; \frac{t^2q^{N+2}}{Ef_1f_2g} \right) \\ & = g^N \frac{(tq/f_1g, tq/f_2g)_N}{(tq/f_1, tq/f_2)_N} \prod_{1 \leq p \leq n_2} \frac{((tq)z_p, (tq/e_pg)z_p)_N}{((tq/g)z_p, (tq/e_p)z_p)_N} \\ & \times \sum_{n_1+n_2+4} \phi_{n_1+n_2+3} \left[g, sq/c_1d, sq/c_2d, \{(sq/b_id)x_i\}_{n_1}, \frac{(q^{-N}g/t)z_p\}_{n_2}, q^{-n}}{(q^{-N}g/t)z_p\}_{n_2}, q^{-n}}; q; q \right] \end{split}$$ provided $s^2 t^2 q^{2+N} = B c_1 c_2 dE f_1 f_2 g$. In the case when $n_1=n_2=1$ and $x_1=z_1=1$, the formula above reduces to: $$\sum_{K \in \mathbb{N}} q^{K} \frac{(b/s, c_{1}/s, c_{2}/s, q^{-N}, g, tq)_{K}}{(1/s, q, q/d, tq/e, tq/f_{1}, tq/f_{2})_{K}}$$ $$\times {}_{8}W_{7} \left[q^{-K}s; b, c_{1}, c_{2}, q^{-K}d, q^{-K}; q; \frac{s^{2}q^{2}}{bc_{1}c_{2}d} \right]$$ $$\times {}_{8}W_{7} \left[q^{K}t; e, f_{1}, f_{2}, q^{K}g, q^{K-N}; q; \frac{t^{2}q^{N+2}}{ef_{1}f_{2}g} \right]$$ $$= g^{N} \frac{(tq, tq/eg, tq/f_{1}g, tq/f_{2}g)_{N}}{(tq/e, tq/f_{1}, tq/f_{2}, tq/g)_{N}}$$ $$\times {}_{6}\phi_{5} \left[\frac{g, sq/c_{1}d, sq/c_{2}d, sq/bd, q^{-N}g/t, q^{-N}}{q/d, q^{-N}f_{1}g/t, q^{-N}f_{2}g/t, sq/d, q^{-N}eg/t}; q; q \right]$$ provided $s^2t^2q^{2+N}=bc_1c_2def_1f_2g$, which we showed first of the present talk. \bigcirc Another example of bilinear transformation formulas for (multivariate) hypergeometric series (b) $$n_1 = n_2 = m_1 = m_2 = 2$$ case of (1): If the "balancing" condition $$t^3 q^2 \sigma^3 q^{N+2} = bcd_1 d_2 e f \beta \gamma \delta_1 \delta_2 \epsilon \phi$$ holds, then we have: $$\sum_{K \in \mathbb{N}} \frac{(b/t, c/t, d_1/t, d_2/t)_K}{(1/t, q/e, q/f, q)_K} \times \frac{(\sigma q, \epsilon, \phi, q^{-N})_K}{(\sigma q/\beta, \sigma q/\gamma, \sigma q/\delta_1, \sigma q/\delta_2)_K} q^K \times {}_{10}W_9 \left[tq^{-K}; b, c, d_1, d_2, eq^{-K}, fq^{-K}, q^{-K}; q; \frac{t^3q^3}{bcd_1d_2ef} \right] \times {}_{10}W_9 \left[\sigma q^K; \beta, \gamma, \delta_1, \delta_2, \epsilon q^K, \phi q^K, q^{K-N}; q; \frac{\sigma^3q^{N+3}}{\beta\gamma\delta_1\delta_2\epsilon\phi} \right]$$ $$= \phi^{N} \frac{(\sigma q/\delta_{1}\phi, \sigma q/\delta_{2}\phi)_{N}}{(\sigma q/\delta_{1}, \sigma q/\delta_{2})_{N}} \cdot \frac{(\epsilon, \sigma q/\gamma\phi)_{N}}{(\epsilon/\phi, (\sigma q/\gamma))_{N}} \times \frac{(\sigma q, \sigma q/\beta\phi)_{N}}{(\sigma q/\phi, \sigma q/\beta)_{N}} \times \sum_{L \in \mathbb{N}} \frac{(tq/cf, tq/bf, tq/d_{1}f, tq/d_{2}f)_{L}}{(e/f, tq/f, q/f, q)_{L}} \times \frac{(q^{1-N}\epsilon/\phi, q^{-N}\phi/\sigma, \phi, q^{-N})_{L}}{(q^{-N}\gamma\phi/\sigma, q^{-N}\beta\phi/\sigma, q^{-N}\delta_{1}\phi/\sigma, q^{-N}\delta_{2}\phi/\sigma)_{L}} q^{L} \times \frac{(q^{1-N}\epsilon/\phi, q^{-N}\phi/\sigma, q^{-N}\delta_{1}\phi/\sigma, q^{-N}\delta_{2}\phi/\sigma)_{L}}{(q^{-N}\gamma\phi/\sigma, q^{-N}\beta\phi/\sigma, q^{-N}\delta_{1}\phi/\sigma, q^{-N}\delta_{2}\phi/\sigma)_{L}} q^{L} \times {}_{10}W_{9} \left[q^{-L}f/e; tq/ce, tq/be, tq/d_{1}e, tq/d_{2}e, q^{-L}f, fq^{-L}f, fq^{L}f, fq^{-L}f, fq^{-L}f, fq^{-L}f, fq^{-L}f, fq^{-L}f, fq^{-L}f,$$ which can be considered as one of the most general formulas of our class of bilinear transformations in one dimensional setting. Note Each of ${}_{10}W_9$ series is NOT necessary to be balanced. But the product of the argument of ${}_{10}W_9$ series is q^2 by the "balancing" condition above. So, if one of the ${}_{10}W_9$ series is balanced, all of those become to be balanced.