Elliptic Asymptotics of Discrete Painlevé Equations Nalini Joshi

Supported by the Australian Research Council

Happy Birthday, Noumi san!

Paul Painlevé 1863-1933

Search for new functions

- To generalise elliptic functions: needs global definition of solutions.
- Painlevé property: singlevalued around all movable singularities => ODEs defining new functions.

The Painlevé Equations

$$
\begin{aligned}
\mathrm{P}_{\mathrm{I}}: y^{\prime \prime}= & 6 y^{2}+x \\
\mathrm{P}_{\mathrm{II}}: y^{\prime \prime}= & 2 y^{3}+x y+\alpha \\
\mathrm{P}_{\mathrm{III}}: y^{\prime \prime}= & \frac{y^{\prime 2}}{y}-\frac{y^{\prime}}{x}+\frac{\alpha y^{2}+\beta}{x}+\gamma y^{3}+\frac{\delta}{y} \\
\mathrm{P}_{\mathrm{IV}}: y^{\prime \prime}= & \frac{y^{\prime 2}}{2 y}+\frac{3 y^{3}}{2}+4 x y^{2}+2\left(x^{2}-\alpha\right) y+\frac{\beta}{y} \\
\mathrm{P}_{\mathrm{V}}: y^{\prime \prime}= & \left(\frac{1}{2 y}+\frac{1}{y-1}\right) y^{\prime 2}-\frac{y^{\prime}}{x}+\frac{(y-1)^{2}}{x^{2} y}\left(\alpha y^{2}+\beta\right) \\
& +\frac{\gamma y}{x}+\frac{\delta y(y+1)}{y-1} \\
\mathrm{P}_{\mathrm{VI}}: y^{\prime \prime}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-x}\right) y^{\prime 2}-\left(\frac{1}{x}+\frac{1}{x-1}+\frac{1}{y-x}\right) y^{\prime} \\
& +\frac{y(y-1)(y-x)}{x^{2}(x-1)^{2}}\left(\alpha+\frac{\beta x}{y^{2}}+\frac{\gamma(x-1)}{(y-1)^{2}}+\frac{\delta x(x-1)}{(y-x)^{2}}\right)
\end{aligned}
$$

$$
u(0)=0, \quad u^{\prime}(0)=0
$$

Asymptotic behaviours

- Studied since Boutroux, 1913
- Scaled elliptic-function behaviours within sectors as $|x| \rightarrow 1 \quad\left(\mathrm{P}_{\mathrm{VI}}\right)$ $|x| \rightarrow 0 \quad\left(\mathrm{P}_{\mathrm{III}}, \mathrm{P}_{\mathrm{V}}, \mathrm{P}_{\mathrm{VI}}\right)$ $|x| \rightarrow \infty\left(\mathrm{P}_{\mathrm{I}}, \ldots, \mathrm{P}_{\mathrm{VI}}\right)$

Problems still open...

Consider Pı $y^{\prime \prime}=6 y^{2}-x$ for $\mathrm{y}(\mathrm{x}), \mathrm{x} \in \mathbb{R}$

Kazuo Okamoto

Sur les feuilletages associés aux équations du second ordre a points critiques fixes de P. Painlevé. Espaces de conditions initiales. Jpn. J. Math. 5 1-79 (1979)

Unifying Property

Space of initial conditions is resolved at 9 points in CP^{2} (or 8 points in $\mathrm{P}^{1} \times \mathrm{P}^{1}$)

Equations on Rational Surfaces

$$
\begin{aligned}
& A_{7}^{(1)} \\
& A_{0}^{(1)} \rightarrow A_{1}^{(1)} \rightarrow A_{2}^{(1)} \rightarrow A_{3}^{(1)} \rightarrow A_{4}^{(1)} \rightarrow A_{5}^{(1)} \rightarrow A_{6}^{(1)} \rightarrow A_{7}^{(1) \prime} \quad A_{8}^{(1)} \\
& \left.\left.\begin{array}{ccccccc}
D_{4}^{(1)} & \rightarrow & D_{5}^{(1)} & \ngtr & D_{6}^{(1)} & \rightarrow & D_{7}^{(1)}
\end{array}\right) \rightarrow \begin{array}{cc}
\searrow & D_{8}^{(1)} \\
& \\
& \\
& E_{6}^{(1)} \\
& \\
& \\
& \\
& \\
& \\
& E_{7}^{(1)}
\end{array}\right)
\end{aligned}
$$

Sakai 2001

Symmetries

Sakai 2001

Discrete Painlevé Equations

$$
\begin{gathered}
\mathrm{dP}_{\mathrm{I}}: w_{n}\left(w_{n+1}+w_{n}+w_{n-1}\right)=z_{n}+d w_{n} \\
\mathrm{dP}_{\mathrm{II}}: w_{n+1}+w_{n-1}=\frac{z_{n} w_{n}+d}{1-w_{n}^{2}} \\
\mathrm{qP}_{\mathrm{III}}: w_{n+1} w_{n-1}=c d \frac{\left(w_{n}-a q^{n}\right)\left(w_{n}-b q^{n}\right)}{\left(w_{n}-c\right)\left(w_{n}-d\right)} \\
\mathrm{dP}_{\mathrm{IV}}:\left(w_{n+1}+w_{n}\right)\left(w_{n}+w_{n-1}\right)=\frac{\left(w_{n}^{2}-a^{2}\right)\left(w_{n}^{2}-b^{2}\right)}{\left(w_{n}-(a n+b)\right)^{2}-c^{2}} \\
\vdots \quad \text { \&manymore }
\end{gathered}
$$

Geometry as a tool for Analysis

- Construct, compactify and regularize the initial value space
- Deduce behaviour of solutions in this space.
- Find global information about behaviours

Hans Duistermaat

General Solutions

- In system form P_{1} is

$$
\frac{d}{d t}\binom{w_{1}}{w_{2}}=\binom{w_{2}}{6 w_{1}^{2}-t}
$$

- $\quad P_{1}$ has t-dependent Hamiltonian

$$
H=\frac{w_{2}^{2}}{2}-2 w_{1}^{3}+t w_{1}
$$

Perturbed Form

- Or, in Boutroux's coordinates:

$$
\begin{aligned}
& w_{1}=t^{1 / 2} u_{1}(z), w_{2}=t^{3 / 4} u_{2}(z) \quad z=\frac{4}{5} t^{5 / 4} \\
& \binom{u_{1}}{u_{2}}=\binom{u_{2}}{6 u_{1}^{2}-1}-\frac{1}{(5 z)}\binom{2 u_{1}}{3 u_{2}}
\end{aligned}
$$

- a perturbation of a Hamiltonian system

$$
E=\frac{u_{2}^{2}}{2}-2 u_{1}^{3}+u_{1} \Rightarrow \frac{d E}{d t}=\frac{1}{5 t}\left(6 E+4 u_{1}\right)
$$

A Geometric Approach

- The values of E provide level curves of

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{I}}: f_{\mathrm{I}}(x, y)=y^{2}-4 x^{3}+g_{2} x, g_{2}=2 \\
& \mathrm{P}_{\mathrm{II}}: f_{\mathrm{II}}(x, y)=y^{2}-2 x^{2} y-y \\
& \mathrm{P}_{\mathrm{IV}}: f_{\mathrm{IV}}(x, y)=x^{2} y+x y^{2}+2 x y
\end{aligned}
$$

- The level curves $f_{\mathrm{I}}(x, y)=g_{3}$ are well known in the theory of algebraic curves as the Weierstrass cubic pencil.

Projective Space

- What if x, y become unbounded?
- Use projective geometry: $x=\frac{u}{w}, y=\frac{v}{w}$

$$
[x, y, 1]=[u, v, w] \in \mathbb{C P}^{2}
$$

- The level curves of P_{I} are now

$$
F_{\mathrm{I}}=w v^{2}-4 u^{3}+g_{2} u w^{2}+g_{3} w^{3}
$$

all intersecting at the base point $[0,1,0]$.

- Resolve the flow through base points.

Resolution

- "Blow up" the singularity or base point:

$$
\begin{aligned}
& f(x, y)=y^{2}-x^{3} \\
& (x, y)=\left(x_{1}, x_{1} y_{1}\right) \\
\Rightarrow & x_{1}^{2} y_{1}^{2}-x_{1}^{3}=0 \\
\Leftrightarrow & x_{1}^{2}\left(y_{1}^{2}-x_{1}\right)=0
\end{aligned}
$$

- Note that

$$
x_{1}=x, y_{1}=y / x
$$

$$
y^{2}=x^{3}
$$

Example

$$
f(x, y)=y^{2}-x^{3}
$$

$$
(x, y)=\left(x_{1}, x_{1} y_{1}\right)
$$

$$
f\left(x_{1}, x_{1} y_{1}\right)=x_{1}^{2}\left(y_{1}^{2}-x_{1}\right)
$$

$$
\begin{aligned}
& f_{1}\left(x_{2} y_{2}, y_{2}\right)=y_{2}\left(y_{2}-x_{2}\right) \\
& \left(x_{1}, y_{1}\right)=\left(x_{2} y_{2}, y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
y_{2} & =x_{2} \\
\left(x_{2}, y_{2}\right)=\left(x_{3}, x_{3} y_{3}\right) & y_{3}=1 \\
f_{2}\left(x_{2}, y_{2}\right) & =y_{2}-x_{2} \\
f_{2}\left(x_{3}, x_{3} y_{3}\right) & =x_{3}\left(y_{3}-1\right)
\end{aligned}
$$

Initial-Value Space

The space is compactified and regularised.

Pı, $P_{\text {II }}, P_{\text {IV }}$

$\mathrm{P}_{\mathrm{I}}: \quad w_{1}=t^{1 / 2} u_{1}(z), w_{2}=t^{3 / 4} u_{2}(z) \quad z=\frac{4}{5} t^{5 / 4}$

$$
\binom{u_{1}}{u_{2}}=\binom{u_{2}}{6 u_{1}^{2}-1}-\frac{1}{(5 z)}\left(\begin{array}{l}
2 \\
u_{1} \\
3
\end{array} u_{2}\right)
$$

$\mathrm{P}_{\|:} \quad w_{1}=t^{1 / 2} u_{1}(z), w_{2}=t u_{2}(z), z=\frac{2}{3} t^{3 / 2}$

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\binom{u_{2}-u_{1}^{2}-\frac{1}{2}}{2 u_{1} u_{2}}-\frac{1}{3 z}\binom{0}{-(2 \alpha+1)+2 u_{2}}
$$

PIV: $\quad w_{1}=t u_{1}, w_{2}=t u_{2}, z=\frac{t^{2}}{2}$

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\binom{-u_{1}\left(u_{1}+2 u_{2}+2\right)}{u_{2}\left(2 u_{1}+u_{2}+2\right)}-\frac{1}{2 z}\binom{2 \alpha_{1}+u_{1}}{2 \alpha_{2}+u_{2}}
$$

Piv

$E_{6}{ }^{(1)}$

autonomous eqn
Joshi \& Radnovic, 2015

Explicit Estimates

Proof. Recall that $L_{8}^{(1)} \backslash L_{7}^{(2)}$ is determined by the equation $u_{922}=0$ and is parametrized by $u_{921} \in \mathbb{C}$. Moreover, L_{9} minus one point not on $L_{8}^{(1)}$ corresponds to $u_{921}=0$ and is parametrized by u_{922}. For the study of the solutions near the part $L_{8}^{(1)} \backslash L_{7}^{(2)}$ of I, we use the coordinates $\left(u_{921}, u_{922}\right)$. Asymptotically for $u_{922} \rightarrow 0$ and bounded u_{921}, z^{-1}, we have

$$
\begin{align*}
\dot{u}_{921} & \sim-2^{-1} u_{922}{ }^{-1}, \tag{4.1}\\
w_{92} & \sim 2^{6} u_{922}, \tag{4.2}\\
\dot{w}_{92} / w_{92} & =6(5 z)^{-1}+\mathrm{O}\left(u_{922}{ }^{2}\right)=6(5 z)^{-1}+\mathrm{O}\left(w_{92}{ }^{2}\right), \tag{4.3}\\
q w_{92} & \sim 1-2^{8}(5 z)^{-1} u_{921}{ }^{-1} . \tag{4.4}
\end{align*}
$$

It follows from (4.3) that, as long as the solution is close to a given large compact subset of $L_{8}^{(1)} \backslash L_{7}^{(2)}, w_{92}(z)=(z / \zeta)^{6 / 5} w_{92}(\zeta)(1+\mathrm{o}(1))$, where $z / \zeta \sim 1$ if and only if $|z-\zeta| \ll|\zeta|$. In view of (4.2), in this situation, u_{922} is approximately equal to a small constant, when (4.1) yields that $u_{921}(z) \sim u_{921}(\zeta)-2^{-1} u_{922}{ }^{-1}(z-\zeta)$, and it follows that $u_{921}(z)$, the affine coordinate on $L_{8}^{(1)} \backslash L_{7}^{(2)}$, fills an approximate disc centered at $u_{921}(\zeta)$ with radius $\sim R$, if z runs over an approximate disc centered at ζ with radius $\sim 2\left|u_{922}\right| R$. Therefore, if $\left|u_{922}(\zeta)\right| \ll 1 /|\zeta|$, the solution at complex times z in a disk D centered at ζ with radius $\sim 2\left|u_{922}\right| R$ has the

Global results for $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}}, \mathrm{P}_{\mathrm{IV}}$

- The union of exceptional lines is a repeller for the flow.
- There exists a complex limit set, which is non-empty, connected and compact.
- Every solution of P_{1}, every solution of $P_{\|}$whose limit set is not $\{0\}$, and every non-rational solution of Piv intersects the last exceptional line(s) infinitely many times => infinite number of movable poles and movable zeroes.

Duistermaat \& J (2011); Howes \& J (2014); J \& Radnovic (2014)

What about discrete Painlevé Equations?

1. Find discrete analogue of Boutroux coordinates.
2. Resolve the space of initial values.
3. Obtain estimates to analyse results.

Consider the Contiguity Relations

Figure 2.3. The Parameter Space of P_{IV}
Noumi, 2000
$d P_{I}$ is a contiguity relation of $P_{\text {IV }}$

dP

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha n+\beta+c(-1)^{n}}{x_{n}}+\gamma
$$

This arises as a contiguity relation of PIv. Using

$$
u_{n}=x_{2 n}, v_{n}=x_{2 n+1}
$$

we obtain

$$
\begin{aligned}
u_{n+1}+v_{n+1}+u_{n} & =\frac{2 \alpha n+\alpha+\beta-c}{v_{n+1}}+\gamma \\
v_{n+1}+u_{n}+v_{n} & =\frac{2 \alpha n+\beta+c}{u_{n}}+\gamma
\end{aligned}
$$

Asymptotic Series Solutions

- Consider the case $c=0$.
- Take $s=\epsilon n$ and $u_{n}=\frac{U(s, \epsilon)}{\epsilon^{1 / 2}}, v_{n}=\frac{V(s, \epsilon)}{\epsilon^{1 / 2}}$
- Then

$$
U(s, \epsilon) \sim \sum_{m=0}^{\infty} \epsilon^{m / 2} U_{m}(s), V(s, \epsilon) \sim \sum_{m=0}^{\infty} \epsilon^{m / 2} V_{m}(s)
$$

are divergent asymptotic series solutions, containing exponentially small terms, hidden beyond all orders.

Stokes sectors

- Stokes Line
- - - Anti-Stokes Line
\cdots Branch Cut
\square No ContributionExp. Small ContributionExp. Large Contribution

χ_{3}

(a) General Stokes Structure
J. \& Lustri, 2015

Boutroux-like coordinates

Scaling

$$
u_{n}=\sqrt{n} y_{n}, v_{n}=\sqrt{n} z_{n}
$$

yields

$$
\begin{aligned}
y_{n+1}+y_{n}+z_{n+1} & =\frac{2 \alpha}{z_{n+1}}+\frac{\gamma}{\sqrt{n}}+\mathcal{O}\left(\frac{1}{n}\right), \\
z_{n+1}+y_{n}+z_{n} & =\frac{2 \alpha}{y_{n}}+\frac{\gamma}{\sqrt{n}}+\mathcal{O}\left(\frac{1}{n}\right)
\end{aligned}
$$

Leading-order

$$
K(x, y)=x^{2} y+x y^{2}-2 \alpha x-2 \alpha y
$$

Elliptic curves

Solutions

Solution orbits of scalar dP1 on the Riemann sphere (where the north pole is infinity).

q-Discrete P I

$$
\bar{w} \underline{w}=\frac{1}{w}-\frac{1}{\xi w^{2}}
$$

Almost stationary solutions:

$$
\begin{gathered}
\bar{w} \sim w, \underline{w} \sim w \text { as }|\xi| \rightarrow \infty \\
\Rightarrow w\left(w^{3}-1\right)=\mathcal{O}(1 / \xi)
\end{gathered}
$$

Near fixed points I

$$
\begin{aligned}
& w(\xi)=\sum_{n=0}^{\infty} \frac{a_{n}}{\xi^{n}}, \\
& a_{0}^{3}=1, \\
& a_{1}\left(q+1+q^{-1}\right)=-1, \\
& \sum_{m=0}^{n} \sum_{j=0}^{n-m} \sum_{l=0}^{m} a_{j} a_{n-m-j} a_{l} a_{m-l} q^{(n-m-2 j)}=a_{n}, n \geq 2 .
\end{aligned}
$$

Near fixed points II

$$
\begin{aligned}
w(\xi) & =\sum_{n=1}^{\infty} \frac{b_{n}}{\xi^{n}} \\
b_{1} & =1 \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

$$
b_{n}=\sum_{r=2}^{n-2} \sum_{k=1}^{r-1} \sum_{m=1}^{n-r-1} b_{k} b_{r-k} b_{m} b_{n-r-m} q^{(r-2 k)}, n \geq 4
$$

Base Points

$$
\begin{array}{lll}
\left\{\begin{array}{lll}
\bar{u} & =\frac{\xi u-1}{\xi u^{2} v}, & \\
\bar{v} & =u,
\end{array}\right. \\
\left\{\begin{array}{lll}
\underline{u} & =v, \\
\underline{v} & =\frac{\xi v-q}{\xi u v^{2}}, &
\end{array}\right. & \Rightarrow(u, v)=(1 / \xi, 0) \\
\left\{\begin{array}{lll}
\bar{u} & =\frac{U(\xi-U)}{\xi v} \\
\bar{v} & = & \frac{1}{U}
\end{array}\right. & \Rightarrow(U, v)=(0,0) U=1 / u
\end{array}
$$

similarly for $V=1 / v$

Results for qP_{I}

- The second type of series is divergent, valid in a large region.
- The corresponding true solution, called "quicksilver solution", is analytic in this region. Corresponds to case of merging base points. Is it an analogue of the tritronquée solution?
- Exceptional lines are repellers for the flow.
- J (2014); J. \& Lobb (2015)

Summary

- Dynamics of solutions of non-linear equations, whether they are differential or discrete, can be described globally and completely through geometry.
- Geometry appears to be the only analytic approach available in \mathbb{C} for discrete equations.
- Finite properties?

Some of the geometric inquisitors who are part of the team at Sydney

