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Happy Birthday, Noumi san!
~1998





Paul Painlevé
1863 – 1933



Search for new 
functions

• To generalise elliptic 
functions: needs global 
definition of solutions.

• Painlevé property: single-
valued around all movable 
singularities => ODEs 
defining new functions.
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The Painlevé Equations



F"#. 4.7. Pole locations displayed over the region [-50,50]x[-50,50] for six different choices of
initial conditions at z = 0. For the tritronquée case (subplot f ), see (4.1) for the values of u(0) and
u′(0).
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Asymptotic 
behaviours

• Studied since Boutroux, 
1913 
• Scaled elliptic-function 
behaviours within sectors
as

Fornberg & Weideman 2009

|x| ! 1 (PVI)

|x| ! 0 (PIII,PV,PVI)

|x| ! 1 (PI, . . . ,PVI)

PI



Problems still open…
Consider PI                      for y(x), x∈ℝ

Real Solutions of PI : y ⇥⇥ = 6y2 � x

I �± = {(x , y)
�� x > 0, y = ±

⇥
x/6} are inflection curves.
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Kazuo 
Okamoto

Sur les feuilletages associés 
aux équations du second 
ordre a points critiques fixes 
de P. Painlevé. Espaces de 
conditions initiales. Jpn. J. 
Math. 5 1-79 (1979)



Unifying 
Property

Space of initial conditions is 
resolved at 9 points in CP2 

(or 8 points in P1xP1)



Equations on Rational 
Surfaces

Rational Surfaces Associated with Affine Root Systems and Geometry of Painlevé Eqs. 181

Table 2. Classification of generalized Halphen surfaces with dim |−KX | = 0

R

Elliptic type A
(1)
0 (= I0)

Multiplicative type A
(1)∗
0 (= I1), A

(1)
1 (= I2), A

(1)
2 (= I3), . . . , A

(1)
7 , A

(1)′
7 (= I8), A

(1)
8 (= I9)

Additive type A
(1)∗∗
0 (= II), A

(1)∗
1 (= III), A

(1)∗
2 (= IV),

D
(1)
4 (= I∗0 ), . . . , D

(1)
8 (= I∗4 ),

E
(1)
6 (= IV∗), E

(1)
7 (= III∗), E

(1)
8 (= II∗)

Generalized Halphen surfaces are divided into two types;

• dim |−KX| = 1: a Halphen surface of index one,
• dim |−KX| = 0.

We classify the surfaces through the classification of anti-canonical divisors, but
a Halphen surface of index one has many types of anti-canonical divisors. A Halphen
surface is awell-known object [1] and the elliptic functions appear instead of the Painlevé
equations. We study mainly generalized Halphen surfaces with dim |−KX| = 0.
If |−KX| has a unique divisorD, then X is classified according to the type R ofD,

where R is in the Table 2. We call X an R-surface and denote it by X(R).
The symbols in the parentheses correspond to the ones from Kodaira’s elliptic sin-

gular fibers. We divide all cases with dim | − KX| = 0 into three classes according to
rankH1(Dred, Z) = 2, 1 or 0, where Dred = ∪Di for D = ∑

miDi . We call them the
elliptic type, the multiplicative type and the additive type respectively. We will see later
that this classification corresponds to the types of discrete equations from the affineWeyl
group symmetry: what we call elliptic-difference equation, q-difference equation and
usual difference equation.
We will obtain this classification, first by studying the divisor classes Di = [Di] ∈

Pic(X), and then by a much finer investigation on the divisors Di .

2. Wehave two important root subsystemsR andR⊥ inQ(E
(1)
8 ) = (−KX)⊥ ⊂ Pic(X).

(The symbolR in the classification of surfaces in Table 2 needs more detailed distinction
than that of the root system R. See 3.) The root lattice of R is the spanQ(R) = ∑

ZDi

of the classes of irreducible components Di of D, and that of R⊥ is its orthogonal
complement Q(R⊥) := Q(R)⊥ = {v ∈ Pic(X) | (v|Di ) = 0 for all i}. The lists of R
and the corresponding R⊥ are the following:

Table 3. R

Sakai 2001



Symmetries

Sakai 2001

182 H. Sakai

Table 4. R⊥

The arrows mean inclusions (R → R′ ⇔ R⊥ → R′⊥ ⇔ Q(R) ⊂ Q(R′) ⇔
Q(R⊥) ⊃ Q(R′⊥)). Let R = A

(1)
0 stand for the latticeQ(R) = ZKX in the case thatD

itself is irreducible. NowA
(1)
7 has two types of realizations in the latticeQ(E

(1)
8 ).We use

the symbolA(1)
7 for the one which has no orthogonal real root ofE(1)

8 in its complement,
and A

(1)′
7 for the other one. The symbol A(1)

1,|α|2=l
means the root subsystem of type A

(1)
1

whose square length of roots is l, that is, it has an intersection form such that

−
(

l −l

−l l

)

.

We use unusual symbols (2A1)(1), (A2 + A1)
(1) and (A1 + A1,|α|2=14)

(1). They mean
that they have the following intersection forms:

(2A1)(1) = A
(1)
1 + A1 : −

⎛

⎜⎜⎝

2 −2 0
−2 2 0
0 0 2

⎞

⎟⎟⎠

∼ A1 + A
(1)
1 : −

⎛

⎜⎜⎝

2 0 0
0 2 −2
0 −2 2

⎞

⎟⎟⎠ ,

(A2 + A1)
(1) = A

(1)
2 + A1 : −

⎛

⎜⎜⎜⎜⎝

2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 2

⎞

⎟⎟⎟⎟⎠

∼ A2 + A
(1)
1 : −

⎛

⎜⎜⎜⎜⎝

2 −1 0 0
−1 2 0 0
0 0 2 −2
0 0 −2 2

⎞

⎟⎟⎟⎟⎠
,



Discrete Painlevé Equations

zn = a+ b n+ c (�1)n

dPII : wn+1 + wn�1 =
zn wn + d

1� w2
n

dPI : wn (wn+1 + wn + wn�1) = zn + dwn

qPIII : wn+1 wn�1 = cd
(wn � a qn)(wn � b qn)

(wn � c)(wn � d)

dPIV : (wn+1 + wn) (wn + wn�1) =
(w2

n � a2) (w2
n � b2)

(wn � (an+ b))2 � c2

... & many more



Geometry as a 
tool for 

Analysis
• Construct, compactify and 

regularize the initial value 
space

• Deduce behaviour of 
solutions in this space.

• Find global information 
about behaviours

Duistermaat & J, 2011



General Solutions

• In system form PI is

• PI has t-dependent Hamiltonian

d

dt

✓
w1

w2

◆
=

✓
w2

6w2
1 � t

◆

H =
w2

2

2
� 2w3

1 + t w1



Perturbed Form
• Or, in Boutroux’s coordinates:

• a perturbation of a Hamiltonian system

w1 = t1/2 u1(z), w2 = t3/4 u2(z) z =
4

5
t5/4

✓
u1

u2

◆
=

✓
u2

6u2
1 � 1

◆
� 1

(5z)

✓
2u1

3u2

◆

E =
u2
2

2
� 2u3

1 + u1 ) dE

dt
=

1

5t

�
6E + 4u1

�



A Geometric Approach

• The values of E provide level curves of 

in the theory of algebraic curves as the                         
Weierstrass cubic pencil. 

• The level curves                   are well known 

PI : fI(x, y) = y

2 � 4x3 + g2x, g2 = 2

PII : fII(x, y) = y

2 � 2x2
y � y,

PIV : fIV(x, y) = x

2
y + xy

2 + 2xy

fI(x, y) = g3



• Use projective geometry: 

Projective Space

• What if x, y become unbounded?

x =
u

w

, y =
v

w

[x, y, 1] = [u, v, w] 2 CP2

• The level curves of       are now 

  all intersecting at the base point [0, 1, 0]. 

• Resolve the flow through base points.

PI

FI = wv2 � 4u3 + g2uw
2 + g3w

3



Resolution
• “Blow up” the singularity or base point:

f(x, y) = y

2 � x

3

(x, y) = (x1, x1 y1)

)x

2
1 y

2
1 � x

3
1 = 0

,x

2
1 (y

2
1 � x1) = 0

x1 = x, y1 = y/x

• Note that 



Exampley

2 = x

3

y

2
1 = x1

(x, y) = (x1, x1 y1)

f(x, y) = y

2 � x

3

f(x1, x1 y1) = x

2
1(y

2
1 � x1)

f1(x1, y1) = y

2
1 � x1

�1



y2 = x2

y3 = 1

(x1, y1) = (x2 y2, y2)

(x2, y2) = (x3, x3 y3)

f1(x2 y2, y2) = y2(y2 � x2)

f2(x2, y2) = y2 � x2

f2(x3, x3 y3) = x3(y3 � 1)

�1

�2

�2

�2



Initial-Value Space

L1 : x1 = 0

L2 : y2 = 0

L3 : x3 = 0

L1
(3)

L2
(2)

L3

A1
(1)

The space is compactified and regularised. 



PI, PII, PIV
w1 = t1/2 u1(z), w2 = t3/4 u2(z) z =

4

5
t5/4

✓
u1

u2

◆
=

✓
u2

6u2
1 � 1

◆
� 1

(5z)

✓
2u1

3u2

◆
PI:

PII: w1 = t1/2u1(z), w2 = t u2(z), z =
2

3
t3/2

✓
u̇1

u̇2

◆
=

✓
u2 � u2

1 � 1
2

2u1u2

◆
� 1

3z

✓
u1

� (2↵+ 1) + 2u2

◆

PIV: w1 = t u1, w2 = t u2, z =
t2

2✓
u̇1

u̇2

◆
=

✓
�u1(u1 + 2u2 + 2)
u2(2u1 + u2 + 2)

◆
� 1

2z

✓
2↵1 + u1

2↵2 + u2

◆



PIL9

L8
(1)

L7
(2)

L6
(3)

L5
(4)

L4
(5)

L3
(6)

L0
(9)

L1
(8)

L2
(7)

E8
(1)

Duistermaat & Joshi, 2011

autonomous eqn



PII28 Constr Approx (2014) 39:11–41

Fig. 1 The 9-point blow up of P2(C) showing the configuration of the exceptional curves. The numbers
represent the self intersection of the lines they are adjacent to. The configuration of the irreducible divisors
(the infinity set) is that of the root lattice E

(1)
7 (see Fig. 2). The dashed lines indicating L

(3)
6 and L9 are

the pole lines, where the vector field is transversal to the line and a crossing indicates a pole of residue ±1
for u

Fig. 2 The Dynkin diagram for E
(1)
7 ; the numbers i indicate the line Li which gives rise to the node. The

nodes j and k are connected when L
(9−j)
j intersects L

(9−k)
k

The resolution of the Boutroux-Painlevé system can be seen in Fig. 1, and can be
summarized by the following diagram, where we omit the coordinate charts which
are free from base points:

(u02, v02) = (u/v,1/v)
(0,0)←−− (u12, v12)

(0,0)←−− (u21, v21)

(1/2,0)←−−−− (u31, v31)
(0,0)←−− (u41, v41)

(−1/4,0)←−−−−− (u51, v51)

( 1−2α
12z ,0)

←−−−−− (u61, v61),

(u01, v01) = (1/u, v/u)
(0,0)←−− (u72, v72)

(0,0)←−− (u82, v82)
(0, 1+2α

3z )
←−−−−− (u91, v91).

Here the label above each arrow represents the base point that is blown up in the
preceding coordinate chart.

Remark A.1 The following blow up calculations are provided in explicit detail for
completeness. The essential information for proofs in the body of the paper can be
found in Eqs. (5.1) and Table 1.

Author's personal copy

E7
(1)

Howes & Joshi, 2014

autonomous eqn



PIV

ASYMPTOTIC BEHAVIOUR OF THE FOURTH PAINLEVÉ TRANSCENDENTS 3

For each z ̸= 0, and each (u0, v0) ∈ C2, there is a unique solution of (2.2) with
the initial conditions u(z0) = u0, v(z0) = v0. Since the solutions will have poles as
well, it is natural to consider the solutions as maps C → CP2. However, in this
setting, points in CP2 where infinitely many solutions pass for any given z0 ̸= 0
appear. Such points are called base points.

For our consideration, we need to construct the space of initial conditions [Gér1975],
where graph of each solutions will represent a separate leaf of the foliation. The
spaces of initial conditions for all six Painlevé equations are constructed by Okamoto
in [Oka1979]. The solutions are separated by blowing up the singular points.

In this paper, we apply the same construction to (2.2). The calculation details
can be found in Appendix A, and now we describe the main steps in that resolution
process.

Resolution of singularities. System (2.2) has no singularities in the affine part
of CP2. However, at the line L0 at the infinity, as it is calculated in Appendix A.1,
the system has three base points: b0, b1, b2, whose coordinates do not depend on z.

In the next step, we construct blow ups at points b0, b1, b2. In the resulting space,
we obtain three exceptional lines which we denote by L1, L2, L3 respectively. The
induced flow will have one base point on each of these lines, denote them by b3,
b4, b5 respectively. Their coordinated so not depend on z. See Appendix A.2 for
details.

Next, blow ups at points b3, b4, b5 are constructed. The corresponding excep-
tional lines are L4, L5, L6. On each of these three lines, there is a base point of
the flow. We denote them by b6, b7, b8. The coordinates of these points depend
on z and they approach to the base points of the autonomous flow as z → ∞. See
Appendix A.3 for details.

Finally, blow ups at b6, b7, b8 leave the flow without the base points. The
exceptional lines are denoted by L7(z), L8(z), L9(z).

By this procedure, we constructed the fibers F(z), z ∈ C ∪ {∞} \ {0} of the
Okamoto space O for the system (2.2), see Figure 1. We denote by L∗

i the proper
preimages of the lines Li, 0 ≤ i ≤ 6.

L∗
0

L∗
1 L∗

2 L∗
3

L∗
4

L7(z)

L∗
5

L8(z)

L∗
6

L9(z)

Figure 1. Fiber F(z) of the Okamoto space.

The set where the vector field associated to (2.1) is infinite is I = L∗
0 ∪ · · ·∪L∗

6.

The autonomous system. The fiber F(∞) of the Okamoto space will correspond
to the system obtained by omitting the z-dependent terms in (2.2):

(2.3)
u′ = −u(u+ 2v + 2),

v′ = v(2u+ v + 2),

E6
(1)

Joshi & Radnovic, 2015
autonomous eqn



Explicit Estimates

718 J. J. Duistermaat & N. Joshi

the remaining part L(1)
8 \L(2)

7 of I , and q d → 1, d/w92 → 1 when approaching
L(1)

8 \L(2)
7 .

If the solution at the complex time z is sufficiently close to a point of
L(1)

8 \L(2)
7 (parametrized by coordinate u921), then there exists a unique ζ ∈ C such

that |z − ζ | = O(|d(z)| |u921(z)|), where d(z) is small and |u921(z)| is bounded,
and u921(ζ ) = 0, that is, the solution of the Boutroux–Painlevé equation has a pole
at z = ζ . In the sequel we write δ := d(ζ ) = w92(ζ ) = 26u922(ζ ), and consider
δ → 0. We have d(z)/δ ∼ 1. For large finite R8 ∈ R>0, the connected component
of ζ in C of the set of all z ∈ C such that |u921(z)| ! R8 is an approximate disc D8
with center at ζ and radius ∼ 2−5|δ|R8, and z %→ u921(z) is a complex analytic
diffeomorphism from D8 onto {u ∈ C | |u| ! R8}.

For i decreasing from 7 to 4 we use the coordinate u(i+1)21 in order to
parametrize L(9−i)

i \L(10−i)
i−1 , where u(i+1)21 = 0 corresponds to the intersec-

tion point of L(9−1)
i with L(8−i)

i+1 . The point on L(8−i)
i+1 \L(9−i)

i with coordinate
u(i+2)21 runs to the same intersection point when |u(i+2)21| → ∞. For large
finite Ri ∈ R>0, the connected component of ζ in C of the set of all z ∈ C
such that the solution at the complex time z is close to L(9−i)

i \L(10−i)
i−1 , with

|u(i+1)21(z)| ! Ri , but not close to L(8−i)
i+1 , is the complement of Di+1 in an approx-

imate disc Di with center at ζ and radius ∼ (23−i |δ|Ri )
1/(9−i), where we note that

|δ|1/(9−i)/|δ|1/(9−(i+1)) = |δ|−1/(9−i) (8−i) ≫ 1. More precisely, z %→ u(i+1)21
defines a (9 − i)-fold covering from the annular domain Di\Di+1 onto the com-
plement in {u ∈ C | |u| ! Ri } of an approximate disc with center at the origin and
small radius ∼ (2−6|δ|Ri+1

9−i )1/(8−i), where u(i+1)21(z) ∼ −2i−3δ(z − ζ )9−i .
For all z ∈ D4, the largest approximate disc, we have |z − ζ | ≪ |ζ | and

d(z)/δ ∼ 1.

Proof. Recall that L(1)
8 \L(2)

7 is determined by the equation u922 = 0 and is param-
etrized by u921 ∈ C. Moreover, L9 minus one point not on L(1)

8 corresponds to
u921 = 0 and is parametrized by u922. For the study of the solutions near the part
L(1)

8 \L(2)
7 of I , we use the coordinates (u921, u922). Asymptotically for u922 → 0

and bounded u921, z−1, we have

u̇921 ∼ −2−1u922
−1, (4.1)

w92 ∼ 26u922, (4.2)

ẇ92/w92 = 6(5z)−1 +O(u922
2) = 6(5z)−1 +O(w92

2), (4.3)

q w92 ∼ 1 − 28(5z)−1u921
−1. (4.4)

It follows from (4.3) that, as long as the solution is close to a given large compact
subset of L(1)

8 \L(2)
7 , w92(z) = (z/ζ )6/5w92(ζ )(1 + o(1)), where z/ζ ∼ 1 if and

only if |z − ζ | ≪ |ζ |. In view of (4.2), in this situation, u922 is approximately equal
to a small constant, when (4.1) yields that u921(z) ∼ u921(ζ ) − 2−1u922

−1(z − ζ ),
and it follows that u921(z), the affine coordinate on L(1)

8 \L(2)
7 , fills an approxi-

mate disc centered at u921(ζ ) with radius ∼ R, if z runs over an approximate disc
centered at ζ with radius ∼ 2|u922|R. Therefore, if |u922(ζ )| ≪ 1/|ζ |, the solu-
tion at complex times z in a disk D centered at ζ with radius ∼ 2|u922|R has the

Duistermaat & J (2011); 



Global results for PI , PII , PIV

• The union of exceptional lines is a repeller for the flow.

• There exists a complex limit set, which is non-empty, 
connected and compact.

• Every solution of PI , every solution of PII whose limit set is 
not {0}, and every non-rational solution of PIV intersects 
the last exceptional line(s) infinitely many times => infinite 
number of movable poles and movable zeroes.

Duistermaat & J (2011); Howes & J (2014); J & Radnovic (2014)



What about discrete 
Painlevé Equations?

1. Find discrete analogue of Boutroux 
coordinates. 

2. Resolve the space of initial values. 

3. Obtain estimates to analyse results.



Consider the Contiguity 
Relations

dPI is a contiguity relation of PIV

Noumi, 2000



dPI

xn+1 + xn + xn�1 =
↵n+ � + c(�1)n

xn
+ �

This arises as a contiguity relation of PIV . Using
un = x2n, vn = x2n+1

we obtain

un+1 + vn+1 + un =
2↵n+ ↵+ � � c

vn+1
+ �,

vn+1 + un + vn =
2↵n+ � + c

un
+ �



Asymptotic Series Solutions

• Consider the case c=0. 

• Take              and  

• Then

s = ✏n un =
U(s, ✏)

✏1/2
, vn =

V (s, ✏)

✏1/2

U(s, ✏) ⇠
1X

m=0

✏m/2 Um(s), V (s, ✏) ⇠
1X

m=0

✏m/2 Vm(s)

are divergent asymptotic series solutions, containing 
exponentially small terms, hidden beyond all orders.



Stokes sectors

J. & Lustri, 2015



Boutroux-like coordinates
Scaling 

yields 
un =

p
nyn, vn =

p
nzn

yn+1 + yn + zn+1 =
2↵

zn+1
+

�p
n
+O

✓
1

n

◆
,

zn+1 + yn + zn =
2↵

yn
+

�p
n
+O

✓
1

n

◆



Leading-order
K(x, y) = x

2
y + xy

2 � 2↵x� 2↵ y

-10 -5 0 5 10
-10

-5

0

5

10

Elliptic curves



dPI
Algebraic geometry of Painlevé equations 2.3. Picard group

⇡

u
v v

u
1

u

1

v
1

v

1

u
u

v

hv � e1 � e3

hv � e5

hu � e1

hu � e3 � e5

e1 � e2e2

e3 � e4

e4 � e6

e6 � e8

e8

e5 � e7 e7

hv

hv

hu hu

FIGURE 2.1. The blow up of (2.7), displaying the 4 charts

of P1⇥P1 and the proper transforms of some relevant curves

on the rational surface X .

(u, 1/v) = (0, 0)1  (uv, 1/v) = (2↵n + � + c, 0)2 (2.48)

(1/u, 1/u) = (0, 0)3  (u/v, 1/v) = (�1, 0)4  (v(u + v)/u, 1/v) = (��, 0)6

(2.49)

 (v(�u + uv + v2)/v, 1/v) = (��2 � ↵ + 2c, 0)8

(2.50)

(1/u, v) = (0, 0)5  (1/uv, v) = (1/(2↵n� ↵ + � � c), 0)8 , (2.51)

Where the subscripts of the brackets indicate the number of the base point. The

blow up is summarised in Figure 2.1.

We now consider the induced map on the basis elements of the Picard group.

The advantage of considering the induced mapping on the Picard group is that it

becomes a linear mapping. We must determine how each e
i

, as well as h
u

and h
v

,

are mapped. The most direct way is to work with the each e
i

and a representative

of each h
u

and h
v

. We can take the images of these curves and compute the degree

of the resulting image (thus finding the coefficients of h
u

and h
v

of the image) and
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SolutionsEqn 1. Alpha ! 0.25‘, Beta ! 0.‘, Gamma ! "0.5 .!1
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Solution orbits of scalar dP1 on the Riemann 
sphere (where the north pole is infinity).



q-Discrete PI 

Almost stationary solutions:

ww =
1

w
� 1

⇠w2

w ⇠ w, w ⇠ w as |⇠| ! 1

) w(w3 � 1) = O(1/⇠)



qP1

v
u

e1

e2

e3

e6

e4 e5

e7

e8

hv - e1-e3

hu -e2-e6

hv - e6

hu - e3

A7
(1)



Near fixed points I
w(⇠) =

1X

n=0

an
⇠n

,

a30 = 1,

a1 (q + 1 + q�1) = � 1,
nX

m=0

n�mX

j=0

mX

l=0

aj an�m�j al am�lq
(n�m�2 j) = an, n � 2.



Near fixed points II
w(⇠) =

1X

n=1

bn
⇠n

b1 = 1

b2 = 0

b3 = 0

bn =
n�2X

r=2

r�1X

k=1

n�r�1X

m=1

bk br�k bm bn�r�mq(r�2 k), n � 4



Base Points

Resolution of singularities - discrete example of

q-PI

January 8, 2014

Our working example is a simplified version of q-Painlevé I, which has the
following form

w̄w =
⇠w � 1

⇠w2
, (0.1)

where w̄(⇠) = w(q⇠).
If we set u = w, v = w, then we can write (0.1) as a system

8
<

:
ū =

⇠u� 1

⇠u2v
,

v̄ = u,
and

8
<

:

u = v,

v =
⇠v � q

⇠uv2
.

(0.2)

We’ll work in the space P1 ⇥ P1. Divide the domain into 4 regions:
v

u

v = 1

u = 1

✓
u1

v1

◆
=

✓
u
v

◆
Region 1 (u, v finite)

✓
u2

v2

◆
=

✓
1/u
v

◆
Region 2 (u infinite, v finite)

✓
u3

v3

◆
=

✓
u
1/v

◆
Region 3 (u finite, v infinite)

✓
u4

v4

◆
=

✓
1/u
1/v

◆
Region 4 (u, v infinite)

The subscripts on the variables are there to denote the region in which they
are useful.
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Resolution of singularities - discrete example of

q-PI

January 8, 2014

Our working example is a simplified version of q-Painlevé I, which has the
following form

w̄w =
⇠w � 1

⇠w2
, (0.1)

where w̄(⇠) = w(q⇠).
If we set u = w, v = w, then we can write (0.1) as a system

8
<

:
ū =

⇠u� 1

⇠u2v
,

v̄ = u,
and

8
<

:

u = v,

v =
⇠v � q

⇠uv2
.

(0.2)

We’ll work in the space P1 ⇥ P1. Divide the domain into 4 regions:
v

u

v = 1

u = 1

✓
u1

v1

◆
=

✓
u
v

◆
Region 1 (u, v finite)

✓
u2

v2

◆
=

✓
1/u
v

◆
Region 2 (u infinite, v finite)

✓
u3

v3

◆
=

✓
u
1/v

◆
Region 3 (u finite, v infinite)

✓
u4

v4

◆
=

✓
1/u
1/v

◆
Region 4 (u, v infinite)

The subscripts on the variables are there to denote the region in which they
are useful.

1

similarly for  



Results for qPI
• The second type of series is divergent, valid in a large 

region.

• The corresponding true solution, called “quicksilver 
solution”, is analytic in this region. Corresponds to case of 
merging base points. Is it an analogue of the tritronquée 
solution?

• Exceptional lines are repellers for the flow.

• J (2014); J. & Lobb (2015)



Summary

• Dynamics of solutions of non-linear equations, 
whether they are differential or discrete, can be 
described globally and completely through 
geometry.

• Geometry appears to be the only analytic approach 
available in     for discrete equations. 

• Finite properties?
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