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Discrete Painlevé equation

In 1990’s, Grammaticos and his collaborators proposed a discrete analogue of the
Painlevé property called the singularity confinement.

Example

Consider a difference equation

aTn
$n+1+xn—1:71_x2, To=p, x1=1+¢.

n

Then we obtain

_a a-+4p
R P

+0(e), zz=-14+e+0(?), z4=-p+O0().

Taking a limit e — 0, we can find that a singularity appears at x2 and disappears at 4.

v

That became a trigger for the discovery of various discrete Painlevé equations.
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Problem

How many 2nd order discrete Painlevé equations exist?

An answer to this problem was given as follows.

Fact ([Sakai 01])

The 2nd order continuous/discrete Painlevé equations are classified by the geometry of
rational surfaces called the initial value spaces as follows:

Symmetry/Surface type

elliptic Es/Ao
multiplicative | Es/Ag E7/A: Es/As Ds/As As/As E3/As
E>/A¢ |a|/;1:8/A7 Ai1/A7  Aog/As
additive | Es/Ao  E:/A1  Es/As Di/Ds As/Ds 2A1/Ds
Az /Es ‘GQL4/D7 Ai/E; Ao/Ds Aog/Es

Here the symbols Es and E» stand for As + A1 and A1 + \a\;‘;hl respectively.
Blue-colored types correspond to the continuous Painlevé equations.

A
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Problem

Can we classify continuous/discrete Painlevé type systems of order > 37

Several higher order generalizations have been proposed from both continuous side;
@ Isomonodromy deformation of the Fuchsian equations (Garnier, Sakai, S, etc.)

o Similarity reduction of the infinite dimensional integrable hierarchies (Adler,
Noumi-Yamada, Gordoa-Joshi-Pickering, Fuji-S, Tsuda, etc.)

o Okamoto initial value space and affine Weyl group symmetry (Sasano, etc.)

and discrete side:
o Discrete analogue of the isomonodromy deformations (Sakai, Nagao-Yamada, etc.)
o Similarity reduction of the discrete integrable hierarchies (Tsuda, S, etc.)

@ Birational representation of the extended affine Weyl groups
(Kajiwara-Noumi-Yamada, Masuda, Okubo-S, etc.)

However there doesn't exist any theory which governs all of them.
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(¢-)Painlevé VI equation and its higher order generalizations

The Painlevé VI equation is described as the Hamiltonian system
dg _ OHvr 1t — )@ _ _0Hv
dt op "’ dt oq ’

) K1 Ke — 1
H ) K =q(g—1)(g—t AL AL - ”
vilko, K1, ke, K3, p] = q(g — 1) (g — t)p (p . -1 4 i > + kg

In 1996, Jimbo and Sakai proposed a g-analogue of the Painlevé VI equation, which is
described as

I _@-th)@—th) g5 _ (f—ta)(f —tas)
azas  (G—03)(G—bs) = bsbs  (f—a3)(f —as)’

where aiazbsbs = gbib2azaa.

Symmetry/Surface type

elliptic Eg/Ao
multiplicative | Eg/Ao E7/Aq E¢/As Ds/As As/As  Es/As
Ey/A¢ |aé1:8 JA7  Ai1/A7  Ao/As
additive Es/Ao E7/Aq E¢/As Ds/Ds As/Ds 2A1/Ds
Az /Es ‘aé124/D7 Ai1/E; Ao/Ds Ao/Es
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The Painlevé VI equation is obtained as the isomonodromy deformation of the Fuchsian
equation. We propose higher order generalizations from this point of view.

Fact ([Oshima 08])

Irreducible Fuchsian equations with a fixed number of accessory parameters can be
reduced to finite types of systems by the Katz's two operations (addition and middle
convolution).

Fact ([Haraoka-Filipuk 07])

The isomonodromy deformation equation of the Fuchsian equation is invariant under the
Katz's two operations.

Thanks to them, we have a good classification theory of isomonodromy deformation
equations of Fuchsian equations.
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We list 4 types of representative isomonodromy deformation equations below:
@ Garnier system
o Isomonodromy deformation [Garnier 1912]
@ Sasano system

o Okamoto initial value space and affine Weyl group symmetry [Sasano 07]
o Similarity reduction of the integrable hierarchy [Fuji-S 08]
e Isomonodromy deformation [Sakai 10][Fuji-Inoue-Shinomiya-S 13]

o FST system

o Similarity reduction of the integrable hierarchy [Fuji-S 09][S 13][Tsuda 14]
o Isomonodromy deformation [Sakai 10]

@ Matrix Painlevé system
o Isomonodromy deformation [Sakai 10][Kawakami 15]

And their g-analogues are proposed recently (but there is no classification theory):
@ ¢-Garnier system or g-FST system

o g-Analogue of the isomonodromy deformation [Sakai 05][Park 18]

e Similarity reduction of the discrete integrable hierarchy [Tsuda 10][S 15][S 17]
e Pade method [Nagao-Yamada 18]

e Birational representation of the extended affine Weyl group [Okubo-S 20]

@ ¢-Sasano system

o Birational representation of the extended affine Weyl group [Masuda 15]
@ g-Matrix Painlevé system

o g-Analogue of the isomonodromy deformation [Kawakami 20]
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Cluster mutation

Let @ be a quiver without loops and 2-cycles and I a vertex set. We define a mutation
i at ¢ € I as follows:

Q If there are k1 arrows from i1 to 7 and k2 arrows from 7 to i3, then we add k1k>
arrows from i; to io.

@ If 2-cycles appear via the first operation, then we remove all of them.
© We reverse the directions of all arrows touching 1.

1 1 1 1
/N7 SN SN SN
«——2 3<———=2 3 2 3 2
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We define a skew-symmetric matrix A = (A; 5), jer corresponding to Q as follows:
@ |If there are k arrows from i to j, then we set \; ; = k and \;; = —k.
@ If there is no arrow between ¢ and j, then we set \; ; = Aj,; = 0.

! 0 1 -1
1 -1 0
3<——2

Let y = (y:)ier be a tuples of coefficients. We define an action of p; on y by

y ! (j=1)
yi (1+97)™ (Aij > 0)
mi(ys) = T
yi (L + i) (Mij <0)

Q and A are the same as those in the previous examples.

1 yiye
(y1,92,y3) ~5 <£7 1+y1,y3(1 +y1))
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Extended affine Weyl group of type (Apmn—1 X Am_1 X Ap_q1)D

AN
N
AN

SN SN SN S
SN SN SN S
SN

Consider the above quiver. We always assume that
il =0 +mn,i=[j,i+m] (m,neNm>1mn>2).
Let y(;.i) (J € Zmn, i € Zm) be coefficients. We define multiplicative simple roots by

mn—1

m—1 mn—1
a; = H Yl4,i] J € Zmn H Y14,i] bé = H Ylj,i+3] (Z S Zm)>
. 0
m— m mn—1m—1 ’
o="TT o =TI H = 11 Il wsa
j=0 =0 1=0 =0 =0
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We first define simple reflections 7; (j € Zm») by

75 = Jg0) Kl - - - Bigme—2) (Jsmo— 2] [Fm = 1]) g m—2) - - - 1y5,1] Hij,00-

Their actions on the coefficients and the simple roots are described as

Pljit2) 1 Py
75 (Y—1,1) = Yli—1,1) Ygi+1] ) By i (Y,) = Vouen) Byival’
P[] i+1]
7"(?![‘+1,i]) = Y[4,4) Yli+1,4) - s
J J J J P[‘]yz]
1
ri(aj-1) = aj_1a;, 7i(a;) = - ri(aj+1) = aj a1,
J
where
m—1k—1
Yyt = L+ G0 + Y50 Yo+ + o F UG VG - Yhibm—2)-
k=0 1=0
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We next define simple reflections s;, s; (i € Z,) by

Si = Po,i] K[Li] - - - Kimn—2,] ([mn = 2,1] [mn = 1,4]) ppmn—2,0) - - i) Ko,
Si = o, MLi) - - B-2i-2) (22,0 = 2] [=1,0 = 1)) pozima) - i) Bo,a)-

Their actions on the coefficients and the simple roots are described as

1 Q1i4) Q2.4
! , Si(y[j,iJrl]) = Y[5,4 Y5,i+1] Y[5+1,4] 2
Qi

si(Ypa) =
0 i Quae.

1
si(bi) = B si(bit1) = b biy1,

for m =2 and

Qui+2, 1 Qua
sz'(y ji—1 ) = Ylj,i—1] Ylji+1,i —, si(y )i ) = —_—,
el I Qi Byt Qe
Qpy+1,1
8i(Ylj,it+1]) = Ypjiil Yljsi+1] 765 ;
[4,4]
1

si(bi—1) = bi—1bi, si(bs) = b Si(big1) = bi bit1,

for m > 3, where
mn—1k—1

!
Qi = Z H Yi+iils Ylga) = Yl=g,i—4]-

k=0 [=0
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In the last we define Dynkin diagram automorphisms 71, w2 by

m = ([0,0] [1,1] ... [m—=1,m —1] [m,0] ... [mn—1,m —1])

x ([0,1] [1,2] ...,[m —1,0] [m,1] ... [mn —1,0])

X ...

x ([0,m—=1] [1,0] ... [m—=1,m—2] [m,m—1] ... [mn—1,m —2]),
w2 = ([0,0] [0,1] ... [0,m — 1])

x ([1,0] [1,1] ... [1,m —1])

X ...

X ([mn —1,0] jmn—1,1] ... [mn—1,m —1]).

They act on the coefficients and the simple roots as

T (Yya) = Y+t Ti(a) = ajp1,  mi(bi) = bita,
mo(yya) = Ygera,  m2(bi) = biv1,  m2(bi) = big.
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Fact ([Masuda-Okubo-Tsuda 18])

Let
G={(ro, .. s,Tmn-1), H=1{(s0,...,8m—-1), H = (s0,...,8m_1),

Then G, H and H' are isomorphic to the affine Weyl groups of type AS}LL,l, Aﬁ,{{l and
As,llll respectively. Furthemore, any two groups are mutually commutative, namely

GH =HG, GH =H'G, HH =H'H.

Proposition ([Okubo-S 20])

The Dynkin diagram automorphisms 71,2 satisfy fundamental relations

mn __ mo _
=1, my =1, mm =mm,

/ /
’I’j7T1:7T1Tj+1, 8; M1 — T1 Si+1, S§; M1 — 71 S;,

/ I
rj7r2:7r2rj, S; T2 = T2 Si+1, SZ-7T2:71'2$1-+1.

Hence we can regard a group (G, H, H') x (w1, m2) as an extended affine Weyl group of
type (Amnfl + Amfl + Amfl)(m-
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Let us introduce an independent variable z satisfying

1/m

ri(z) =2, si(z)==z si(z)=2 m(2)=2 9m(z)=q¢" "z

We also set

:Zmﬁ ni_[ (mn—j)/my (lJrl)/m
j=1 1i=0

Let Ej, j, be a mn x mn matrix with 1 in (j1, j2)-th entry and O elsewhere. Consider

matrices
l mn—1j5—1 b .
Hl ©8a ay al Z H ]j+1+ n- CEmnl 3
j=1 k= 0
and
mn j—1 mn—1
H2 —ZHy[kjfl 3,7 + Z E],]+1+7CEmnl
j=1k=1
We also set
M = (Hz) (Hz) e 7T2(H2)H2.
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Example (mn

0 L 0 0 0
Y[1,0]
0 0 1 0 0 0
Y[1,01Y[1,1]
o 0 0 o —1 0 0
1 _ Y[1,0]++Y[1,2] |
logq ﬁ 0 0 0 0 m 0 ?
C 1
0 0 O O y[l,O]-“y[l,él]
bin_1$ 0 0 0 0
ayq
1 1 0 0 0 0
0y 1 0 0 0
I 0 0 y[1,219[2,2] 1 0 0
2 0 0 0 y[1,3] .o y[373] 1 0
. 0 0 0 0 y[1’4] oo y[4,4] 1
e 0 0 0 0 Y58
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Let I be the identity matrix. Consider matrices

Pro 1) [Tico Yio.x q(1— ag)
RO: log, ag Jj— k= 0 E7 +7*E1 | s
‘ ; Ppo,o P Yio.m—1) P €

Rj=r;(IY)m(R;-)Ih (j=1,...,mn—1).

Example (mn = 6)

Wtz 0 0 0 0
Py
g
e (L 0 0 0
y[l,l] [1,2]
R g 0 Y121 P(1,3) (L g g
1 1 y[l,l] [1,2] ?
Cogq 1 g 0 0 Y[1,2]Y[1,3] Pl1,4] J J
0 0 0 0 _VLufiy 0
Y[1,2]---Y[1,4] P[1,5)
0 0 0 0 0 _vayPpa
Y[1,2] 91,5 P[1,0]
1 0 0 0 0 O
0 1 0 0 0 O
(1—a2)y[ 13
Ry = 0 T Ppa 1 0 0 O
0 0 1 0 O
0 0 0 0 1 o0
0 0 0 0 0 1
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We also consider matrices

ka+20H yzo
So—I—i—Z([ Q[zf)]Q L 1) Bkt it

— Qo
+ g (Q [ TY]Lk 1 -1 Emk+2,'mk+2
k=0 y[l,o]

+
[mk+2,0] Hl:l

n—1 b 1
0 —
+ —————— Epkt1,mk+2,
; yo Qo
Si = Si(H;l)']TQ(SZ‘_l)HQ (Z = 1,...,m7 1)7

and

n—1 ’ 2
Yio.0) @

So=T+> [ PEZRY 1) Bz e,
Q[070]

S = si(Iy ) ma(Si_1) o (i=1,...,m —1).
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Example (m = 3,n = 2)

1 0 0 0 0 0
Y[2,1]R[3,1] b1 —1
0 Q2,1 Y[1,1] Q2,1 v g U
0 — <L g 0 0
Sy — Y[1,119(2,11 Q3,11
L 0 0 0 1 0 0 2
Y[2,1]---Y[5,1]Q0,1] b1—1
g g v v Qr2,1] Y[1,1]1 Q2,1
0 0 0 0 0 )y
Y[1,1]---Y[5,1]Q0,1]
1 0 0 0 O 0
0 1 0 0 O 0
’ ’
0 o i o g 0
5 — Qlo,1]

1 0 O 1 0 0

0 O 0 0 1 0
Q/
0 0 0 0 0 y[‘)é], [L.1]
[0,1]
v
The matrix S},,_, is rational in (, is not diagonal and hence is much more complicated
than the others. The cause has not been clarified yet.
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Denoting by T,,. = 73", we arrive at the following results.

Theorem ([S 21])

The compatibility condition of a system of linear q-difference equations

Ty,-(¢) = M,
m(Y) = 1’4117 m2(Y) = T2,
ri(Y) = (J € Zmn), s:i(p) =8itp, si(¥)=8iv (i € Zm),

is equivalent to the action of the Dynkin diagram automorphisms and the simple
reflections given in the previous section.

Remark

| \

Our Lax form gives a similarity reduction of a q-Drinfeld-Sokolov hierarchy of type
A( _, corresponding to the partition (n,...,n) of mn € N.

Remark

| \

Our Lax form (with mn X mn matrices) is transformed to that with m X m matrices via
a q-Laplace transformation. The reduced system has been already proposed by Nagao,
Park and Yamada.

N
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Case m = 2

This case has been already investigated well.

Theorem ([Okubo-S 20][S 21])
We set

/
T1 — S0 So T2,

T2 =70 ...T2n—2T1Tn ... T2n—170 ... Tn—2 71,
_ 2

T3 = (7’07’2 7"2”_2771) s

T4 = S07T0 ... T2n—2T1.

Then they provide higher order q-Painlevé systems as follows.
o 71: q-FST system
@ 75: (a direction of) Sakai's q-Garnier system

o 73: Tsuda's g-Painlevé system arising from the q-LUC hierarchy

o 74: Nagao-Yamada's "variation” of the q-Garnier system

Moreover we have clarified a relationship between those g-Painlevé systems and the
g-hypergeometric functions ,¢,_1 or ¢p.
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Case (m,n) = (3,2)

The matrix M is described as

1 Py Py 1 0 0
0 a1 % L 1 0
ajaz P3 o] *
0 0 aiaz Vaa el Y,z 5 g 1
M= b;bl 0 0 ai...as % y[1,2]...y[3,2]P[2’2] ’
y[o,[f?];)[]ril] o © 0 0 e
where

Pyl =1+ Yug + Yiq Yig+1 g =1+ Vg1 + Y Yt

We consider a translation
/ i
T1 = S0 S1 Sg S1 Tr2.

Then the compatibility condition of a Lax pair
Ty-(BYM =11 (M)B, B =s1sys1m2(S0)s051m2(S1) s1m2(S4) m2(S7) Mz,

implies a 8th order g-Painlevé system with parameters a1, ...,as, b1, b2, b, b5 and q.
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Assume that
Py =Pl =Puy=Piy=0,

which contains a specialization between parameters
/17 \2 2 2 2
bl(bg) = a1 azayas b1 b2.
Then we have 2 invariants

T1(Y[0,0) Y[0,2] Y[1,0]) = Y[0,0] Y[0,2] ¥[1,0]> T1(Y[1,2] ¥[2,0] Y[2,2]) = Y[1,2] Y[2,0] Y[2,2]»

and hence obtain 3rd order g-Riccati like system. Introduce variables xo, ..., x3 such that
T1 Z2 Y[2,0] x3
=1 2 = (1
- (1 + ypo,01) 10,21 20 ysa' (1 + yi3,00) Yiz,005

and assume that
2 2 2
ajazayas b bs =q.

Proposition ([S 2021])

A vector of variables (xo, . . .,x3) satisfies a system of linear g-difference equation, which
reduces a rigid system of type 22,211,1111 (EQ4) in a continuous limit ¢ — 1.

Another hypergeometric-type particular solution has been proposed by Park. \
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We have proposed an extended affine Weyl group of type (Amn—1 + Am-1 + Am,1)<1)
in two ways.

@ Cluster mutation for a quiver on a torus with m?n vertices
@ Lax form with mn X mn matrices

We have also investigated for (m,n) = (3,2) as an experiment and derived a " ¢-rigid”
system as a particular solution.

There are some future problems.
@ Particular solutions in terms of g-hypergeometric functions
@ A classification theory of higher order g-Painlevé systems

o Formulations of higher order elliptic Painlevé systems

Thank you for your attention.
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