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•The autonomous limit of the Painlevé-type equations 

•Generic degeneration of spectral curves for 4-
dimensional equations

•Families of Laurent series solutions and the Painlevé 
divisors

•Uniqueness (up to isomorphism) of the genus two curves 
in the Jacobians of our spectral curves 

•Eric Rains, “Generalized Hitchin systems on rational 
surfaces” and generic degeneration of spectral curves



The linear equation of the Painlevé equations and autonomous limit
Consider the following system of linear equations

             


The integrability condition  gives a nonlinear equation





When , this gives the usual isomonodromic 
deformation. When , we have an isospectral deformation.

δ
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= B(x, s)Y,
∂2Y
∂x∂t

= ∂2Y
∂t∂x∂A

∂t
− δ

∂B
∂x

+ [A, B] = 0.

δ = ds
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= 1
δ = 0



Linear and nonlinear problem commutative

noncommutative



Example

The autonomous first Painlevé equation has the following Lax pair.


              


The spectral curve is defined by , which is 
equivalent to

                        

The family of spectral curves parametrized by  also 
defines an elliptic surface with  singular fiber.

A(x) = ( −px2 + qx + q2 + s
x − q p) .

det(yI2 − A(x)) = 0

y2 = x3 + sx + HI .
h = HI ∈ ℙ1

E(1)
8



Kodaira’s classification of singular fibers and Tate’s algorithm
We can compute the type of singular fiber of an elliptic surface from 
the orders of discriminant and the j-invariant.
y2 = x3 + ax + b Δ = 4a3 + 27b2, j = 4a3

Δ .
For an affine equation around  obtained 
by ,  and  are

ỹ2 = x̃3 + sh̃4x̃ + h̃5 h = ∞
h = 1/h̃, y = ỹ/h̃3, x = x̃/h̃2 Δ j
Δ = 4(sh̃4)3 + 27(h̃5)2 = h̃10(4s3h̃2 + 27), j = 4(sh̃4)3

Δ = 4s4h̃2

4s3h̃2 + 27
.



Degeneration scheme of the 4-dimensional Painlevé-type equations

(Kimura, Kawamuko, Sakai, Sakai-Kawakami-N., Kawakami)



Example

The autonomous Garnier system of type  is given by the Hamiltonians





A regular level set (= the Liouville torus)




is an affine part of an abelian surface.

9
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H
9
2
Gar,s1

= p1q2
2 − p1s1 + p2s2 + p4

1 + 3p2p2
1 + p2

2 − 2q1q2,

H
9
2
Gar,s2

= p2
1q2

2 − 2p1q1q2 + p2q2
2 + p3

1s2 + p1s2
2 + p2p1s2 + p2s1 − p2p3

1 − 2p2
2 p1

−q2
2s2 + q2

1 ,

∩i=1 {Hi(q1, p1, q2, p2) = hi}



Example

The autonomous Garnier system of type  has a Lax pair with

           

and its spectral curve  is





This is a genus 2 hyperelliptic curve.

9
2

A(x) = A0x3 + A1x2 + A2x + A3,
det(yI − A(x)) = 0

y2 = x5 + 3s2x3 − s1x2 + (2s2
2 − h1)x + h2 − s1s2 .



genus 1 2

curve elliptic curve hyperelliptic curve

Jacobian elliptic curve abelian surface

possible types of singular fibers Kodaira Namikawa-Ueno

algorithm Tate’s algorithm Liu’s algorithm

normal form y2 = x3 + ax + b y2 = a1x5 + ⋯ + a5

Comparison of genus 1 and 2 curves



Generic degeneration of the spectral curves

Our genus 2 spectral curves are parametrized by . We shall 
consider the degeneration along a line , where  are 
generic constant in the base space.

Performing the genus counterpart of Tate’s algorithm, we find 
Namikawa-Ueno’s  as the type of special fiber at .

h1, h2
h2 = ah1 + b a, b

VII* h1 = ∞



Other examples



Weight homogeneous vector field and the Laurent series solutions
Definition


A polynomial  is a weight homogeneous polynomial of 
degree  if




A polynomial vector field 




is weight homogeneous if  are weight homogeneous with weight 

 respectively.

f ∈ ℂ[x1, ⋯, xn]
k

f(tν1x1, ⋯, tνnxn) = tkf(x1, ⋯, xn) .

·xi = fi(x1, ⋯, xn) (i = 1,⋯, n)
f1, ⋯, fn

νi + 1 (i = 1,⋯, n)



Theorem(Kowalevskaya, Yoshida, Adler-van Moerbeke)

Let  be a weight homogeneous vector 
field and suppose

                 


be its formal series solution. Then the leading coefficients  satisfy

.


The subsequent terms  for  satisfy




where  depends only on  with  and 


.

·xi = fi(x1, …, xn), (i = 1,…, n)

xi(t) = 1
tνi

∞

∑
k=0

x(k)
i tk (i = 1,⋯, n)

x(0)
i

νix(0)
i + fi(x(0)

1 , …, x(0)
n ) = 0 (i = 1,⋯, n)

x(k)
i k ≥ 1

(kIn − %(x(0)))x(k) = R(k)

R(k) x(l)
1 , ⋯, x(l)

n 0 ≤ l < k

%i,j = ∂fi
∂xj

+ νiδi,j



Example: The 2-dimensional first Painlevé equation

Let us consider the autonomous  given by the Hamiltonian  

              

The Hamiltonian system is thus

               

This is a weight-homogeneous system with the weights

HI
HI(q, p) = p2 − q3 − sq .

·q = 2p, ·p = 3q2 + s .

We assume the following form of formal solutions

q(t) =

∞

∑
k=0

x(k)
1 t−2+k, p(t) =

∞

∑
k=0

x(k)
2 t−3+k .



We will solve for the coefficient of the formal solution

 


for 

                .

The initial terms have to satisfy the following nonlinear equations




These indicial equations have two solutions


q(t) =
∞

∑
k=0

x(k)
1 t−2+k, p(t) =

∞

∑
k=0

x(k)
2 t−3+k

·q = 2p, ·p = 3q2 + s

2x(0)
1 + 2x(0)

2 = 0, 3x(0)
2 + 3 (x(0)

1 )
2

= 0.

(x(0)
1 , x(0)

2 ) = (0,0) = m1, (1, − 1) = m2 .



The subsequent terms can be computed by solving linear equations





where each  is a polynomial which depends on the variables 
with .Also, the Kowalevskatya matrix  is 


(kI2 − "(x(0))) (x(k)
1

x(k)
2 ) = (R(k)

1

R(k)
2 ),

R(k)
i x(l)

1 , x(l)
2

1 ≤ l ≤ k − 1 "

f1 = 2p, f2 = 3q2 + s



When , .


For  (the eigenvalues of ),  is uniquely determined 

by the previous terms from 


We obtain a family of Laurent series solutions with free parameters .





(x(0)
1 , x(0)

2 ) = (0,0) = m1 "(m1) = ( 2 2
6x(0)

1 3) = (2 2
0 3)

k ≠ 2,3 "(m1) (x(k)
1

x(k)
2 )

(kI2 − "(m1)) (x(k)
1

x(k)
2 ) = (R(k)

1

R(k)
2 ) .

α, β

q(t; m1) = α + βt + t2 (3α2 + s) + 2αβt3 + t4 (3α3 + β2

2 + αs) + O (t5),

p(t; m1) = β
2 + t (3α2 + s) + 3αβt2 + t3 (6α3 + β2 + 2αs) + O (t4) .



When , the Kowalevskaya matrix is now

.


There terms  for  (the only non-negative eigenvalue of ) 
are uniquely determined by





Therefore, we obtain the following family of the Laurent series solution 
with a parameter .


(x(0)
1 , x(0)

2 ) = (1, − 1) = m2

"(m1) = ( 2 2
6x(0)

1 3) = (2 2
6 3)

x(k) k ≠ 6 "(m2)

(kI2 − "(m2)) (x(k)
1

x(k)
2 ) = (R(k)

1

R(k)
2 ) .

γ
q(t; m2) = 1

t2 − s
5 t2 + γt4 + s2

75 t6 − 3sγ
55 t8 + O (t10),

p(t; m2) = − 1
t3 − s

5 t + 2γt3 + s2

25 t5 − 12sγ
55 t7 + O (t9) .

~ ト! II



If we confine these Taylor/Laurent series solution to the level set 
, we have







H(q, p) = h

H(q(t; m1), p(t; m2)) = − sα − α3 + β2

4 = h .
( ↔ y2 = x3 + sx + h, α = x, β = 2y)

H(q(t; m2), p(t; m2)) = − 7γ = h .

☆で

!
""'

affine part

! t H

た



dq1
dt

= 4p3
1 + 6p2p1 + q2

2 − s1,

dp1
dt

= 2q2,

The autonomous  Garnier system of type 9/2 is a Hamiltonian system

This is a weight-homogeneous Hamiltonian system with the following 
weights.

dq2
dt

= 3p2
1 + 2p2 + s2,

dp2
dt

= 2 (q1 − p1q2) .



There are 3 types of family of Laurent series solutions to .H
9
2
Gar,s1



The following families of Laurent series starting from 
contains three free parameters, .m2 = (−1,1, − 1,0) α, β, γ



The level set of the moment map is

These are equivalent to the followings

This is equivalent to

By replacing , the equation readsα = 2
3 x, β = 1

9 y

○
が
,

Paintwdivisorfltheboundargd.isor of the
Lionvie tous )



In this example of the autonomous Garnier system of type , the 
spectral curve (linear) and the Painleve divisor (nonlinear) are difined by 
the same equation





We will show in the following that it is not a mere coincidence.

9
2

y2 = x5 + 3s2x3 − s1x2 + (2s2
2 − h1)x + h2 − s1s2 .



Theorem(N.-Rains)

For the 4-dimensional autonomous Painlevé-type equations, any genus 
2 curve in the Jacobian of the generic spectral curve is isomorphic to 
the spectral curve.

Corollary

For the 4-dimensional autonomous Painlevé-type equations, any genus 
2 component of the generic Painlevé divisor is isomorphic to the

corresponding spectral curve.  In particular, the generic degeneration 
of the spectral curve and the generic degeneration of any irreducible 
component of the Painlevé divisor are the same.



Nonlinear to linear



Theorem(Torelli)

Two Jacobians  and  of smooth curves  and  
are isomorphic as polarized abelian varieties if and only if  and  
are isomorphic.

(J(C), Θ) (J(C′ ), Θ′ ) C C′ 

C C′ 

Sketch of the proof
•It is enough to prove the uniqueness of the principal polarization of 
the Jacobian  for our spectral curves.J(C)

(Then the classical Torelli theorem for curves assures the uniqueness of 
isomorphism class of curves.)



•It is enough to prove the Jacobian  has no nontrivial 
endomorphisms.

A = J(C)

For a polarization , we  get






where  is the translation by .

For a principal polarization , we get an isomorphism of 

 and the symmetric (w.r.t Rosati involution) endomorphisms.




L ∈ NS(A) = Im(c1 : H1($*A) → H2(A, ℤ))
ϕL : A → ̂A = Pic0(A)

a ↦ t*a L ⊗ L−1

ta : A → A a ∈ A
L0 ∈ NS(A)

NS(A)
NS(A) ≃ Ends(A)

L ↦ ϕ−1
L0

ϕL



•It is enough to prove the triviality of the endomorphism rings for 
the most degenerated 6 cases.
 When an equation  degenerates to , the endomorphism ring for 

 injects in the endomorphism ring for .


Under some mild assumptions for , we have the following,

PA PB
PA PB

S

where .


If we can prove that the endomorphism rings of the most degenerated 
equations are trivial, then all the other equations degenerating to one 
of these 6 equations also have trivial endomorphism rings.

s ∈ S



•For the most degenerated 6 types, we can check that their 
endomorphism rings are trivial by direct computation.
1)Note that the Jacobian of a generic hyperelliptic curve has

trivial endomorphism ring.

We can show that the family of spectral curves of a system of type


 dominates the moduli space of genus two

curves, so that a typical curve in our family has no non-trivial

endomorphisms. 

We can use absolute Igusa invariants

                    


as coordinates for the affine subset . Use Jacobian 
criterion to check that these are algebraically independent.


H
9
2
Gar, H

5
2 + 3

2
Gar , HIII(D8)

Mat , HI
Mat

I1 = J4
J2

2
, I2 = J6

J3
2

, I3 = J10
J5

2
ℳ2∖{J2 ≠ 0}



2)Use reduction modulo two different primes to reduce the problems to 
curves over finite field study the intersection.


•For the most degenerated 6 types, we can check that their 
endomorphism rings are trivial by direct computation.

Remark

Approach 1) using the 
Igusa invariants does 
not work for  

and .
H

4
3 + 4

3
KFS

H
3
2 + 5

4
KSs

semicontinuity of endomorphism rings



The endomorphism of an abelian variety  over a finite field  can be

studied using the Frobenius endomorphism







If the characteristic polynomial of the Frobenius endomorphism has no 
multiple root, then . 

For the Jacobian  the characteristic polynomial of  can be 
computed from the Zeta function of the curve  (Weil conjecture).





for , and  is the characteristic polynomial.

A .p

π : A ⟶ A
(x0 : ⋯ : xn) ↦ (xp

0 : ⋯ : xp
n) .

End.p
(A) ⊗ ℚ = ℚ[π]

A = J(C) π
C

Z(C, s) = exp (
∞

∑
m=1

#C(.pm)
m

p−ms) = L(t)
(1 − t)(1 − pt) ,

t = p−s P(t) = t2gL ( 1
t )



The spectral curve for  is




Consider an instance  and reduce this curve modulo
.




We can compute using Magma that


 .

The zeta function of this hyperelliptic curve is




The characteristic polynomial of Frobenius is 


H
4
3 + 4

3
KFS

y2 = x6 − 2x5 + (2h1 + 1)x4 + 2(h2 − h1)x3 + (h2
1 − 2h2)x2 + 2h1h2x + h2

2 − 4s .
h1 = 12, h2 = 17, s = 29

p = 37
C1 : y2 = x6 + 35x5 + 25x4 + 10x3 + 36x2 + x + 25.

N1 = #C1 (.p) = 36, N2 = #C1 (.p2) = 1442

ZC1
(t) = 372t4 − 37 ⋅ 2t3 + 38t2 − 2t + 1

(1 − t)(1 − 37t) = L1(t)
(1 − t)(1 − 37t) .

P1(t) = t4L1 ( 1
t ) = t4 − 2t3 + 38t2 − 37 ⋅ 2t + 372 .



We have, 

          

where  is a root of the characteristic polynomial

  





Note that  contains the unique degree 2 subfield over , since 
the Galois group of  is .

・  is irreducible over  ( The Galois group is transitive.)

・The Galois group contains a transposition ( not a subgroup of )

・The Galois group does not contain the whole group 

End.p
(J(C1)) ⊗ ℚ ≃ ℚ(α) = ℚ[t]/P1(t),

α
P1(t) = t4 − 2t3 + 38t2 − 37 ⋅ 2t + 372

= (t2 − (1 + 37)t + 37) (t2 − (1 − 37)t + 37) .

ℚ(α) ℚ
P1(t) D4 = ⟨σ = (1234), τ = (13)⟩

∵ P1(t) ℚ ⇒
⇒ A4

S4



P1(t) = = (t2 − (1 + 37)t + 37) (t2 − (1 − 37)t + 37) .

The Galois group of 
 and its subgroupsP1(t)

Subfields of the 
splitting field of P1(t)

Galois

correspondence

 contains 
the unique

subfield of 

degree 2 over 

ℚ(α1)

ℚ



Consider the same curve over , but reduce modulo a different prime 
 to obtain




We find that . The zeta function of 
this hyperelliptic curve is




The characteristic polynomial of Frobenius is 

        


         

ℚ
q = 53

C2 : y2 = x6 + 51x5 + 25x4 + 10x3 + 4x2 + 37x + 14.
#C2 (.q) = 57, #C2 (.q2) = 3001

ZC2
(t) = 532t4 + 53 ⋅ 3t3 + 100t2 + 3t + 1

(1 − t)(1 − 53t) .

P2(t) = t4 + 3t3 + 100t2 + 53 ⋅ 3t + 532

= (t2 + 3 + 33
2 t + 53) (t2 + 3 − 33

2 t + 53) .



(h1, h2, s) = (12,17,29)

ℚ(α) ∩ ℚ(β) = ℚ



the unique subfield

ℚ( 37) ≠ ℚ( 53)

∴ Ends(As) = ℤ



Néron-Severi

group (polarization)

symmetric

endomorphisms

endomorphism ring

of the generic fiber endomorphism on the 


generic fiber can be

extended to the family

specialize to

a point s ∈ S

reduction

mod p

 is generated

by the Frobenius


 (non-trivial, yet computable

 by counting points)

End"p
(Ap) ⊗ ℚ



Degeneration scheme of the 4-dimensional Painlevé-type equations

(Kimura, Kawamuko, Sakai, Sakai-Kawakami-N., Kawakami)



Eric Rains, Generalized Hitchin systems on rational surfaces

arXiv:1307.4033, p.65

Blow up the surface (  etc.) to separate  (spectral curve) from the 
anticanonical curve .

F2 D
Cα



Example: The -Noumi-Yamada System 

nonsymmetric differece Garnier): 


A(1)
4

((11))((1)),111
D = 3s + 3f − 2e1 − 2e2 − e3 − e4 − e5

−e6 − e7 − e8 − e9 − e10
= Cα + Dres Dres = s + f − e1 − e2 :anticanonicalCα



See you at the RIMS Review Seminar 

“Generalized Hitchin Systems, 


Non-commutative Geometry and Special Functions”,

 with Prof. Eric Rains as a special guest.


This is a part of RIMS Research Project 2020 "Differential Geometry 
and Integrable Systems - Mathematics of Symmetry, Stability and 

Moduli -“, organized by Prof. Ohnita.


2020 May—>2021 May—>2021 November—>?? 

Thank you!



Some of the references

•M. Adler, P. van Moerbeke, and P. Vanhaecke, Algebraic integrability, 
Painlevé geometry and Lie algebras, vol. 47, Springer-Verlag, 2004. 

•H. Kawakami, A. Nakamura, and H. Sakai, Degeneration scheme of 4-
dimensional Painlevé-type equations, vol. 37, MSJ Memoirs, 2018. 

•H. Kawakami, Four-dimensional Painlevé-type equations… 2017,2018,2020.

•N., Autonomous limit of 4-dimensional Painlevé-type equations and 
degeneration of curves of genus two,  Annales de l'Institut Fourier, 
2019.

•N., The Painlevé divisors of the autonomous 4-dimensional Painlevé-type 
equations, RIMS Kôkyûroku Bessatsu, B78, 2020.

•N., E. Rains, Uniqueness of polarization for the autonomous 4-dimensional 
Painlevé-type systems, IMRN, 2020.

•E. Rains, Generalized Hitchin systems on rational surfaces, 
arXiv:1307.4033,  2013. 



Some of the references

•M. Adler, P. van Moerbeke, and P. Vanhaecke, Algebraic integrability, 
Painlevé geometry and Lie algebras, vol. 47, Springer-Verlag, 2004. 

•H. Kawakami, A. Nakamura, and H. Sakai, Degeneration scheme of 4-
dimensional Painlevé-type equations, vol. 37, MSJ Memoirs, 2018. 

•H. Kawakami, Four-dimensional Painlevé-type equations… 2017,2018,2020.

•N., Autonomous limit of 4-dimensional Painlevé-type equations and 
degeneration of curves of genus two,  Annales de l'Institut Fourier, 
2019.

•N., The Painlevé divisors of the autonomous 4-dimensional Painlevé-type 
equations, RIMS Kôkyûroku Bessatsu, B78, 2020.

•N., E. Rains, Uniqueness of polarization for the autonomous 4-dimensional 
Painlevé-type systems, IMRN, 2020.

•E. Rains, Generalized Hitchin systems on rational surfaces, 
arXiv:1307.4033,  2013. 


