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Parabolic logarithmic connections

◦ t = {t1, t2, t3} ⊂ P1 = P1
C

◦ D(t) = t1 + t2 + t3

◦ ν = (νi,j)
1≤i≤3
0≤j≤2 ∈ C9

◦ (E,∇, l∗ = {li,∗}3i=1): a ν-parabolic logarithmic connection over (P1, t)

• E : a vector bundle of rank 3 and degree d,

• ∇ : E → E ⊗ Ω1
P1(D(t)) : a logarithmic connection

▷ ∇ is locally written by

∇ = d+
∑3

i=1
Ai

z−ti
dz + holomorphic, Ai ∈ M3(C).

• li,∗ : a filtration E|ti = E ⊗ k(ti) = li,0 ⊋ li,1 ⊋ li,2 ⊋ li,3 = 0 such that

(resti(∇)− νi,j id)(li,j) ⊂ li,j+1 for 1 ≤ i ≤ 3, 0 ≤ j ≤ 2.

◦ Mα
3 (t,ν) := {(E,∇, l∗) | α-stable}/ ∼
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Description of moduli space of logarithmic connections
Rank two case

(1) (2)

method
• apparent singularities

• dual parameters

• apparent singularities

• parabolic bundles

compactification ϕ-connections λ-connections

previous

research

• Arinkin-Lysenko

(g = 0, n = 4)

• Inaba-Iwasaki-Saito

(g = 0, n = 4)

• Oblezin

(g = 0, n ≥ 4)

• Komyo-Saito

(g = 0, n ≥ 4)

• Loray-Saito (g = 0)

• Fassarella-Loray

(g = 1, n = 2)

• Fassarella-Loray-

Muniz (g = 1)

• M (g ≥ 1)

We investigate the moduli space of rank three logarithmic connections on the

projective line with three poles in the above two ways.
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Difference Painlevé equations and moduli of connections

◦ Sakai ’01 characterized the spaces of initial conditions for the Painlevé

equations as certain surfaces and classified them according to some affine

root systems. Each such surface is the space of initial conditions for a class

of discrete Painlevé equations.

◦ Boalch ’09 considered the difference Painelvé equations arising as

symmetries of logarithmic connections on the trivial bundle.

surface type D
(1)
4 A

(1)∗
2 A

(1)∗
1 A

(1)∗∗
0

symmetry D
(1)
4 E

(1)
6 E

(1)
7 E

(1)
8

spectral type 11, 11, 11, 11 111, 111, 111 22, 1111, 1111 33, 222, 111111

A
(1)∗
2 -surface
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A
(1)∗
2 -surfaces and moduli of connections

◦ Arinkin and Borodin ’06

S(A
(1)∗
2 ) \ −K

S(A
(1)∗
2 )

∼= moduli of a certain type of

“difference connections”

Mellin transform∼= Mα
3 (t,ν)

for generic ν.

◦ Dzhamay and Takenawa ’15 gave a coordinate on a Zariski open subset of

the moduli space Mα
3 (t,ν) of rank 3 logarithmic connections on P1 with 3

poles by giving a normal form of connections over the trivial bundle.

Goal: We gives the natural compactification Mα
3 (t,ν) of Mα

3 (t,ν) and

prove Mα
3 (t,ν) is isomorphic to S(A

(1)∗
2 ) by using the apparent singularity

and its dual parameter.
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Moduli of parabolic bundles and parabolic connections

Rank two case

◦ (C, t): a n-pointed smooth irreducible projective curve over C
◦ (L,∇L): a tr(ν)-connection over (C, t) of rank one and degree 2g − 1

◦ Mα
(C,t)(ν, (L,∇L)) := {(E,∇, l∗) | α-stable, (detE, tr∇) ∼= (L,∇L)}/ ∼

◦ Pα
(C,t)(L) := {(E, l∗) | α-stable, detE ∼= L}/ ∼

◦ N := 1
2 dimMα

(C,t)(ν, (L,∇L)) = dimPα
(C,t)(L)

Theorem (Loray-Saito, Fassarella-Loray, Fassarella-Loray-Muniz, M)

For a suitable α, the rational map

App× Bun: Mα
(C,t)(ν, (L,∇L)) · · · → PN × Pα

(C,t)(L)

is birational.

Goal: We construct the compactification Mw
3 (t,ν)0 of a Zariski open subset

Mw
3 (t,ν)0 of Mw

3 (t,ν) and investigate App× Bun.
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Parabolic ϕ-connections

Definition

(E1, E2, ϕ,∇, l(1)∗ = {l(1)i,∗ }3i=1, l
(2)
∗ = {l(2)i,∗ }3i=1):

a ν-parabolic ϕ-connection of rank 3 and degree d

(1) E1 and E2 are vector bundles on P1 of rank 3 and degree d,

(2) ϕ : E1 → E2 is a homomorphism,

(3) ∇ : E1 → E2 ⊗ Ω1
P1(t1 + t2 + t3) is a logarithmic ϕ-connection, i.e.

∇(fa) = ϕ(a)⊗ df + f∇(a), f ∈ OP1 , a ∈ E1, and

(4) l
(k)
i,∗ is a filtration Ek|ti = l

(k)
i,0 ⊋ l

(k)
i,1 ⊋ l

(k)
i,2 ⊋ l

(k)
i,3 = 0 satisfying

ϕti(l
(1)
i,j ) ⊂ l

(2)
i,j , (resti(∇)− νi,jϕti)(l

(1)
i,j ) ⊂ l

(2)
i,j+1 for 1 ≤ i ≤ 3, 1 ≤ j ≤ 3.

◦ For (E,∇, l∗), (E,E, id,∇, l∗, l∗) is a ν-parabolic ϕ-connection.

◦ ∧3ϕ 6= 0 ⇐⇒(E1, E2, ϕ,∇, l(1)∗ , l
(2)
∗ ) ∼= (E,E, id,∇, l∗, l∗) for some (E,∇, l∗)

◦ Rank 2 ϕ-connections were introduced by Inaba-Iwasaki-Saito. Their

definition is a little different from the above definition.
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Moduli of parabolic ϕ-connections

◦ T3 := {(ti)1≤i≤3 ∈ (P1)3 | ti 6= tj , i 6= j}

◦ Nd :=
{
(νi,j)

1≤i≤3
0≤j≤2 ∈ C9

∣∣∣ ∑3
i=1

∑2
j=0 νi,j = −d

}
, d ∈ Z

Proposition

(1) There exists a relative fine moduli scheme

Mα
3 (d) −→ T3 ×Nd

of α-stable parabolic ϕ-connections of rank 3 and degree d. If α is generic,

then the morphism becomes projective, and in particular, the fiber Mα
3 (t,ν)

over (t,ν) ∈ T3 ×Nd is projective.

(2) Put
Uisom :=

{
(E1, E2, ϕ,∇, l(1)∗ , l

(2)
∗ ) ∈Mα

3 (d) | ∧3ϕ 6= 0
}
.

Then Uisom is an open subscheme of Mα
3 (d) and Uisom

∼=Mα
3 (d).

The above proposition follows from the same arguments as the construction of

moduli space of parabolic connections by Inaba-Iwasaki-Saito.
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Main theorem

◦ N (0, 0, 2) :=
{
(νi,j)

1≤i≤3
0≤j≤2 ∈ C9

∣∣∣∑2
j=0 νi,j = 2resti(

dz
z−t3

), 1 ≤ i ≤ 3
}
⊂N−2

◦ Y := {∧3ϕ = 0} ⊂Mα
3 (−2)×(T3×Nd) (T3 ×N (0, 0, 2))

Theorem

Take α = (αi,j)1≤i,j≤3 such that 0 < αi,j � 1 for any 1 ≤ i, j ≤ 3. Then for

each (t,ν) ∈ T3 ×N (0, 0, 2),

(1) Mα
3 (t,ν) is isomorphic to an A

(1)∗
2 -surface, and

(2) the fiber Y(t,ν) is the effective anti-canonical divisor of Mα
3 (t,ν).
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Outline of proof

Step 1: Show that E1
∼= E2

∼= OP1 ⊕OP1(−1)⊕OP1(−1).

Step 2: Construct the apparent map App: Mα
3 (t,ν) → P1.

▶ The apparent map on Mα
3 (t,ν) is defined by Saito and Szabó.

▶ We can extend it on the locus defined by rankϕ = 2 on Mα
3 (t,ν), but cannot

on the locus defined by rankϕ = 1.

⇝ Construct the apparent map on moduli space M̂α
3 (t,ν) of pairs of a

parabolic ϕ-connection and a certain subbundle of E1.
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Step 3: Construct a morphism ψ from M̂α
3 (t,ν) to P(Ω1

P1(D(t))⊕OP1)

and show that ψ is a blow-up of P(Ω1
P1(D(t))⊕OP1) at 9 points.

Step 4: Prove that the forgetful map from M̂α
3 (t,ν) to Mα

3 (t,ν) is the

blow-up along the locus defined by rankϕ = 1.

Takafumi Matsumoto moduli space of rank three logarithmic connections over the projective line with three poles2023/11/08 13 / 28



The apparent map App

(E1, E2, ϕ,∇, l(1)∗ , l
(2)
∗ ) ∈Mα

3 (t,ν).

Proposition

There exists a filtration Ek = F
(k)
0 ⊋ F

(k)
1 ⊋ F

(k)
2 ⊋ F

(k)
3 = 0 for k = 1, 2 such

that
F

(1)
1

∼= F
(2)
1

∼= OP1 ⊕OP1(−1), F
(1)
2

∼= F
(2)
2

∼= OP1 ,

and
ϕ(F

(1)
i ) ⊂ F

(2)
i , ∇(F

(1)
i+1) ⊂ F

(2)
i ⊗ Ω1

P1(D(t))

for any 0 ≤ i ≤ 2. F
(1)
2 , F

(2)
1 , F

(2)
2 are uniquely determined. If rankϕ = 2 and 3,

then F
(1)
1 is also unique. If rankϕ = 1, then there is a one-to-one correspondence

between the set of all such F
(1)
1 and P1.

The apparent map

Let App(E1, E2, ϕ,∇, l(1)∗ , l
(2)
∗ , F

(1)
1 ) be the zero of the composite

OP1(−1) ∼= F
(1)
1 /F

(1)
2 → E1

∇−→ E2 ⊗ Ω1
P1(D) → E2/F

(2)
1 ⊗ Ω1

P1(D) ∼= OP1 .
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A normal form of connections
rankϕ = 3

ϕ =

(
1 0 0

0 1 0

0 0 1

)
, ∇ = d+

(
0 a12(z) a13(z)

1 (z − t1)(z − t2)− p 0

0 z − q (z − t1)(z − t2) + p

)
dz

h(z)
,

, where a12(z), a13(z) are quadratic polynomials satisfying

a12(ti) = −h′(ti)
2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)− p2,

(ti − q)a13(ti) = h′(ti)
3

2∏
j=0

(νi,j + resti(
dz

z−t3
)− h′(ti)

−1p)

for any i = 1, 2, 3 and h(z) = (z − t1)(z − t2)(z − t3).

the fiber of App at ti

νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0 νi,0 = νi,1 ̸= νi,2 νi,0 = νi,1 = νi,2
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Normal forms and loci of ϕ-connections
rankϕ = 2

ϕ =

(
1 0 0

0 0 0

0 0 1

)
, ∇ = ϕ⊗ d+

(
0 0

∏
j ̸=i(z − tj)

1 0 0

0 z − ti (z − t1)(z − t2) + p

)
dz

h(z)

rankϕ = 1

ϕ =

(
1 0 0

0 0 0

0 0 0

)
, ∇ = ϕ⊗ d+

(
0

∏
j ̸=i(z − tj) 0

1 0 0

0 z − q z − ti

)
dz

h(z)
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rankϕ = 0

◦ Under the assumption, parabolic ϕ-connections becomes α-unstable.

◦ Parabolic ϕ-connections of rank 1 and rank 0 are infinitesimally close.

ϕ :=

(
1 0 0

0 1 0

0 0 1

)
, ∇ := d+

(
0 a12(z) a13(z)

1 (z − t1)(z − t2)− p 0

0 z − q (z − t1)(z − t2) + p

)
dz

h(z)

rankϕ = 1(
p−2 0 0

0 p−2 0

0 0 1

)
(ϕ,∇)

(
p2 0 0

0 1 0

0 0 p−1

) (
1 0 0

0 0 0

0 0 0

)
,

(
0 ∗ ∗
1 0 0

0 z − q 1

)
dz
h(z)

p→∞

rankϕ = 0(
1 0 0

0 p−1 0

0 0 p−2

)
(ϕ,∇)

(
p−1 0 0

0 p−2 0

0 0 p−3

) (
0 0 0

0 0 0

0 0 0

)
,

(
0 ∗ ∗
1 −1 0

0 z − q 1

)
dz
h(z)

p→∞
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Parabolic bundles and w-stability

Definition

(E, l∗ = {li,∗}3i=1): a parabolic bundle over (P1, t = (ti)1≤i≤3)

• E : a vector bundle of rank 3 and degree d, and

• li,∗ : a filtration E|ti = E ⊗ k(ti) = li,0 ⊋ li,1 ⊋ li,2 ⊋ li,3 = 0.

α = (αi,j)1≤i,j≤3: 0 < αi,1 < αi,2 < αi,3 < 1 for each i = 1, 2, 3

Assumption

For any 1 ≤ i ≤ 3, j = 1, 2,

αi,j+1 − αi,j = constant =: w

◦ 0 < w < 1/2

◦ (E, l∗) is w-stable =⇒ E ∼= OP1 ⊕OP1(−1)⊕OP1(−1)

◦ Pw(−2) := {(E, l∗) | w-stable, degE = −2}/ ∼
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Moduli space of parabolic bundles

Proposition

(1) If 0 < w < 2/9, 4/9 < w < 1/2, then Pw(−2) = ∅.
(2) If 2/9 < w < 1/3, then a w-stable parabolic bundle (E, l∗) fits into a

nonsplit exact sequence

0 −→ (OP1 , ∅) −→ (E, l∗) −→ (OP1(−1)⊕2, l′∗ = {l′i}3i=1) −→ 0,

where n(l′∗) := max
OP1 (−1)∼=F⊂OP1 (−1)⊕2

#{i | F |ti = l′i} = 1. In particular,

Pw(−2) ∼= P1.

2/9 < w < 1/3: Pw(−2) ∼= P1
(a:b)

l1,2 = C

(
0

1

0

)
, l1,1 = C

(
0

1

0

)
+ C

(
0

0

1

)
, l2,2 = C

(
0

0

1

)
, l2,1 = C

(
0

1

0

)
+ C

(
0

0

1

)

l3,2 = C

(
a+ b

1

1

)
, l3,1 = C

(
a

1

0

)
+ C

(
b

0

1

)
.
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Proposition

(3) If 1/3 < w < 4/9, then a w-stable parabolic bundle (E, l∗) is either type of
the following:

(i) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ li,1} = 0, n(l′∗) = 1, and the

condition (∗) holds.
(ii) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ li,1} = 1, n(l′∗) = 1, and the

condition (∗) holds.
In particular, Pw(−2) ∼= P1.

(∗) There is no subbundle F ⊂ E such that F ∼= OP1(−1)⊕2, li,2 ⊂ F |ti and

F |tj = lj,1 for some i and any j 6= i.

Pw(−2) ∼= P1

2/9 < w < 1/3 1/3 < w < 4/9
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Compactification by λ-connections

Definition

∇ : E → E ⊗ Ω1
P1(t1 + t2 + t3): a ν-parabolic λ-connection over (E, l∗) (λ ∈ C)

• ∇(fa) = λdf ⊗ a+ f∇(a) for a ∈ E, f ∈ OP1 , and

• (resti∇− νi,j id)(li,j) ⊂ li,j+1 for 1 ≤ i ≤ 3, 0 ≤ j ≤ 2.

When λ = 0,ν = 0, ∇ is called a parabolic Higgs field.

◦ ∇0: a ν-parabolic connection over (E, l∗)

◦ Φ0 6= 0: a parabolic Higgs field over (E, l∗)

∇0 + CΦ0 ⊂
open

P(C∇0 ⊕ CΦ0)

◦ Mw
3 (t,ν)0 := {(E,∇, l∗) | (E, l∗) ∈ Pw(−2)}/ ∼

◦ Mw
3 (t,ν)0 := {(λ,E,∇, l∗) | (E, l∗) ∈ Pw(−2)}/ ∼

◦ Bun: Mw
3 (t,ν)0 → Pw(−2), (λ,E,∇, l∗) 7→ (E, l∗)
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Description of Mw
3 (t,ν)

0

Theorem

Assume 2/9 < w < 1/3. Then we have

Mw
3 (t,ν)0 ∼=

{
P1 × P1 ν1,0 + ν2,0 + ν3,0 6= 0

P(OP1 ⊕OP1(−2)) ν1,0 + ν2,0 + ν3,0 = 0.

Outline of proof

Take coordinates (C, a), (C, b) of Pw(−2) ∼= P1 such that ab = 1.

(∇0(a),Φ0(a)): a connection and a Higgs field over (E, la,∗)

(∇∞(b),Φ∞(b)): a connection and a Higgs field over (E, lb,∗)

Mw
3 (t,ν)0 = P(C∇0 ⊕ CΦ0) ∪ P(C∇∞ ⊕ CΦ∞)

(∇∞,Φ∞) ∼= (∇0,Φ0)

(
1 0

−(ν1,0 + ν2,0 + ν3,0)a
−1 a−2

)
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h(z) = (z − t1)(z − t2)(z − t3)

∇0(a) := d+

 c11(z) c012(a)(z − t1)(z − t2) c013(a)(z − t1)(z − t2)

0 (z − t1)(z − t2) + c22(z) c023(t3 − t1)(z − t2)

c031h
′(t3) c032(a)(t3 − t2)(z − t1) (z − t1)(z − t2) + c33(z)

 dz

h(z)
,

Φ0(a) :=

 0 a(a+ 1)(z − t1)(z − t2) −a(a+ 1)(z − t1)(z − t2)

h′(t3) 0 −(a+ 1)(t3 − t1)(z − t2)

−ah′(t3) a(a+ 1)(t3 − t2)(z − t1) 0

 dz

h(z)
,

∇∞(b) := d+

 c11(z) c∞12(b)(z − t1)(z − t2) c∞13(b)(z − t1)(z − t2)

c∞21h
′(t3) (z − t1)(z − t2) + c22(z) c∞23(b)(t3 − t1)(z − t2)

0 c∞32(t3 − t2)(z − t1) (z − t1)(z − t2) + c33(z)

 dz

h(z)
,

Φ∞(b) :=

 0 b(1 + b)(z − t1)(z − t2) −b(1 + b)(z − t1)(z − t2)

bh′(t3) 0 −b(1 + b)(t3 − t1)(z − t2)

−h′(t3) (1 + b)(t3 − t2)(z − t1) 0

 dz

h(z)
.
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App× Bun

◦ V0 := Pw(−2) \ {(1 : 0), (1 : 1), (0 : 1)}
◦ Bun: Mw

3 (t,ν)0 → Pw(−2), (λ,E,∇, l∗) 7→ (E, l∗)

Proposition

Assume 2/9 < w < 1/3 and ν1,0 + ν2,0 + ν3,0 6= 0. Then the morphism

App× Bun: Bun−1(V0) −→ P1 × V0

is finite and its generic fiber consists of three points.

Sketch of proof

Bun−1((E, la,∗)) = P(C∇0(a)⊕ CΦ0(a))

App(λ∇0(a) + µΦ0(a)) = (f1(a;λ, µ) + f2(a;λ, µ) : t1f1(a;λ, µ) + t2f2(a;λ, µ)),

where f1(a;λ, µ), f2(a;λ, µ) are homogeneous polynomials of degree 3 in variables

λ, µ.
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Relation between Mα
3 (t,ν) and Mw

3 (t,ν)
0

Takafumi Matsumoto moduli space of rank three logarithmic connections over the projective line with three poles2023/11/08 26 / 28



D. Arinkin and A. Borodin, Moduli spaces of d-connections and difference

Painleve equations, em Duke Math. J., 134(3):515–556, 2006.

Math/0411584.

P. Boalch, Quivers and difference Painlevé equations, Groups and symmetries,
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analytic aspects of integrable systems and Painlevé equations, Contemp.
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