Flat structures on solutions to the sixth Painlevé equation

Toshiyuki Mano (University of the Ryukyus)

Web-seminar on Painlevé Equations and related topics (Feb. 1, 2023)

$\underline{\mathbf{Contents}}$

- **§1.** Triplet (M, D_M, Δ_M)
- §2. Flat structure (without metric) and space of Okubo-Saito potentials
- §3. Space of Okubo-Saito potentials associated with a triplet (M, D_M, Δ_M)
- §4. Flat structures on solutions to the sixth Painlevé equation

§1 Triplet (M, D_M, Δ_M)

In this talk, triplet (M, D_M, Δ_M) introduced in the following definition plays a fundamental role.

Definition 1. A triplet (M, D_M, Δ_M) consists of

- M: an *n*-dimensional complex manifold,
- D_M : a holomorphic vector field on M (called *primitive vector field*),
- Δ_M : a free divisor on M (i.e., $\mathcal{D}er(-\log \Delta_M)$ is a locally free sheaf),

which enjoy the following properties (i)-(iv):

- (i) \exists a projection $\pi : M \to M'$ for an (n-1)-dimensional complex manifold M' such that $\pi^{-1}(U'_{\alpha}) \cong U'_{\alpha} \times \mathbb{C}$ for an open cover $\{U'_{\alpha}\}_{\alpha \in I}$ of M'.
- (ii) Let $\mathbf{x}^{\prime \alpha} = (x_1, \ldots, x_{n-1})$ be a local coordinate system on U_{α}^{\prime} and $\mathbf{x}^{\alpha} = (\mathbf{x}^{\prime \alpha}, x_n)$ be one on $\pi^{-1}(U_{\alpha}^{\prime})$. Then the coordinate transformation on $\pi^{-1}(U_{\alpha}^{\prime}) \cap \pi^{-1}(U_{\beta}^{\prime})$ has the form

$$\boldsymbol{x}^{\prime \alpha} = \boldsymbol{f}(\boldsymbol{x}^{\prime \beta}), \quad x_n^{\alpha} = c x_n^{\beta} + g(\boldsymbol{x}^{\prime \beta})$$

where c is a non-zero constant.

- (iii) The primitive vector field D_M is represented as $D_M = d_\alpha \partial_{x_n^\alpha} (d_\alpha \in \mathbb{C}^{\times})$ on $\pi^{-1}(U'_{\alpha})$.
- (iv) A defining function h_{α} of the divisor Δ_M on $\pi^{-1}(U'_{\alpha})$ is a monic polynomial of degree n w.r.t. x_n^{α} :

$$h_{\alpha}(\boldsymbol{x}^{\alpha}) = (x_{n}^{\alpha})^{n} - s_{1}^{\alpha}(x_{n}^{\alpha})^{n-1} + \dots + (-1)^{n}s_{n}^{\alpha}, \quad s_{i}^{\alpha} = s_{i}^{\alpha}(\boldsymbol{x}'^{\alpha}) \in \mathcal{O}_{M'}(U_{\alpha}')$$

and satisfies

(1)
$$\begin{pmatrix} \frac{\partial s_1^{\alpha}}{\partial x_1^{\alpha}} & \frac{\partial s_2^{\alpha}}{\partial x_1^{\alpha}} & \cdots & \frac{\partial s_n^{\alpha}}{\partial x_1^{\alpha}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial s_1^{\alpha}}{\partial x_{n-1}^{\alpha}} & \frac{\partial s_2^{\alpha}}{\partial x_{n-1}^{\alpha}} & \cdots & \frac{\partial s_n^{\alpha}}{\partial x_{n-1}^{\alpha}} \\ -n & -(n-1)s_1^{\alpha} & \cdots & -s_{n-1}^{\alpha} \end{vmatrix} \neq 0 \in \mathcal{O}_{M'}(U'_{\alpha})$$

Remark 1. By the conditions (i) and (ii), $\pi: M \to M'$ is a fiber bundle whose fibers are isomorphic to an affine line \mathbb{C} . This fiber bundle structure $\pi: M \to M'$ can be specified by the primitive vector field D_M as

$$\pi^{-1}\mathcal{O}_{M'} = \{ f \in \mathcal{O}_M \mid D_M f = 0 \}$$

So, we call (M, D_M) an affine line bundle with a primitive vector field.

Remark 2. By the conditions (i)-(iv), we have

(2)
$$\forall \theta \in \mathcal{D}er_M(-\log \Delta_M) \text{ s.t. } [D_M, \theta] = 0 \implies \theta = 0.$$

Lemma 1. Let a triplet (M, D_M, Δ_M) be given. Then, $\varphi_{\Delta_M} \in \operatorname{End}_{\mathcal{O}_M}(\mathcal{D}er_M)$ satisfying the conditions

(i) Im
$$\varphi_{\Delta} \subset \mathcal{D}er_{M}(-\log \Delta_{M})$$
,
(ii) $(\det \varphi_{\Delta_{M}}) = \Delta_{M}$,
(iii) $\operatorname{Lie}_{D_{M}}\varphi_{\Delta_{M}} = 1_{\mathcal{D}er_{M}}$
(if it exists) is unique for (M, D_{M}, Δ_{M}) and induces an isomorphism
 $\varphi_{\Delta_{M}} : \mathcal{D}er_{M} \xrightarrow{\cong} \mathcal{D}er_{M}(-\log \Delta_{M})$.

 φ_{Δ_M} is called the <u>canonical isomorphism</u> associated with the triplet (M, D_M, Δ_M) . *Proof.* The lemma follows from (2) and the Saito criterion for free divisors.

Definition 2. Assume that the canonical isomorphism φ_{Δ_M} associated with a triplet (M, D_M, Δ_M) exists. Then, $E_{\Delta_M} := \varphi_{\Delta_M}(D_M)$ is a (global) holomorphic vector field on M. E_{Δ_M} is called the *Euler vector field associated with the triplet* (M, D_M, Δ_M) .

The following proposition provides a typical situation where the canonical isomorphism φ_{Δ_M} exists.

Proposition 1. Consider the case of $M = \mathbb{C}^n = \{ \mathbf{x} = (\mathbf{x}', x_n) \}$ and $D_M = \partial_{x_n}$. (In this case, $M' = \mathbb{C}^{n-1} = \{ \mathbf{x}' = (x_1, \dots, x_{n-1}) \}$.) Let the defining polynomial of Δ_M

$$h(\boldsymbol{x}) = x_n^n - s_1(\boldsymbol{x}')x_n^{n-1} + \dots + (-1)^n s_n(\boldsymbol{x}') \in \mathbb{C}[\boldsymbol{x}]$$

be weighted homogenious w.r.t. the (usual) Euler operator

$$E = \sum_{i=1}^{n} w_i x_i \partial_{x_i}$$

with $w_i \in \mathbb{R}_{>0}$ $(1 \le i \le n)$ in order of

$$0 < w_1 \le w_2 \le \dots \le w_{n-1} < w_n = 1,$$

i.e., $Eh(\boldsymbol{x}) = nh(\boldsymbol{x})$.

Then, there exists the canonical isomorphism φ_{Δ_M} associated with the triplet (M, D_M, Δ_M) and $E_{\Delta_M} = \varphi_{\Delta_M}(D_M) = E$.

Example 1 (Canonical triplet (M_G, D_G, Δ_G) associated with a well-generated u.g.g.r. G).

 $G \subset U(V)$: an irreducible well-generated (finite) unitary reflection group of rank n

(i.e., G is a finite subgroup of U(V) generated by n reflections.)

Then, we can construct a triplet (M_G, D_G, Δ_G) canonically from G in the following manner.

 $\cdot \mathcal{F} = (F_1, \ldots, F_n)$: a set of basic invariants (i.e., a system of homogeneous generaters of the ring of *G*-invariant polynomial functions on *V*)

•
$$\boldsymbol{d} = (d_1, \dots, d_n)$$
: the degrees of G (i.e., $d_i = \deg F_i$) in order of
 $0 < d_1 \le d_2 \le \dots \le d_{n-1} < d_n$

d is uniquely determined by G (i.e., does not depend on the choise of \mathcal{F}).

- $M_G = V/G$: the orbit space of GWe have an isomorphism $M_G \cong \mathbb{C}^n = \{ \boldsymbol{x} = (\boldsymbol{x}', x_n) \}$ via $\boldsymbol{x} = (F_1, \ldots, F_n)$.
- · $D_G := \partial_{x_n}$ is uniquely determined (up to non-zero constant multiplicity) by G.
- · $h_{G,\mathcal{F}}(\boldsymbol{x})$: the disciriminant of G $h_{G,\mathcal{F}}(\boldsymbol{x})$ is a monic polynomial of degree n w.r.t. x_n :

$$h_{G,\mathcal{F}}(\boldsymbol{x}) = x_n^n - s_1(\boldsymbol{x}')x_n^{n-1} + \dots + (-1)^n s_n(\boldsymbol{x}') \in R_G$$

and weighted homogenious w.r.t. $E = \sum_{i=1}^{n} w_i x_i \partial_{x_i}$, where $w_i := d_i/d_n$.

Let Δ_G be a divisor on M_G defined by the discriminant $h_{G,\mathcal{F}}(\boldsymbol{x})$. $(\Delta_G \subset M_G \text{ agrees with the branch locus of the quotient mapping <math>V \to V/G = M_G$.)

It is known that the divisor Δ_G is free and it can be confirmed that the triplet (M_G, D_G, Δ_G) satisfies the conditions (i)-(iv) in Definition 1.

Definition 3. (M_G, D_G, Δ_G) is called the *canonical triplet associated with G*.

In virtue of Proposition 1, the canonical triplet (M_G, D_G, Δ_G) associated with G admits the canonical isomorphism φ_{Δ_G} . In particular, we have $E_{\Delta_G} = \varphi_{\Delta_G}(D_G) = E$.

§2 Flat structure (without metric) and space of Okubo-Saito potentials

M: an *n*-dimensional complex manifold

TM: the (holomorphic) tangent bundle of M

 $\Theta_M (= \mathcal{D}er_M)$: the sheaf of holomorphic sections of TM

Definition 4 (C. Sabbah). A flat structure (or Saito structure) (without metric) on M is a 5-tuple (M, ∇, Φ, E, e) which consists of

- (i) ∇ is a flat and torsion-free connection on TM,
- (ii) Φ is a symmetric Higgs field on TM,
- (iii) E and e are global sections on TM (called *Euler field* and *unit field* respectively)

and satisfies certain integrability condition (this integrability condition will be stated later in a concrete form).

Remark 3. The symmetric Higgs field Φ provides a commutative and associative \mathcal{O}_M -algebra structure with the unit e on Θ_M by

$$u \circ v := \Phi_u(v) \quad (u, v \in \Theta_M).$$

Remark 4. A metric $\langle -, - \rangle$ on M (i.e., a nondegenerate symmetric \mathcal{O}_M -bilinear form on Θ_M) is called *Frobenius metric* if $\exists r \in \mathbb{C}$ such that $\langle -, - \rangle$ satisfies

$$\begin{aligned} \langle u \circ v, w \rangle &= \langle u, v \circ w \rangle \\ d\langle u, v \rangle - \langle \nabla u, v \rangle - \langle u, \nabla v \rangle &= 0 \\ E\langle u, v \rangle - \langle [E, u], v \rangle - \langle u, [E, v] \rangle &= r \langle u, v \rangle \end{aligned}$$

for $\forall u, v, w \in \Theta_M$. When a flat structure (M, ∇, Φ, e, E) is equipped with a Frobenius metric $\langle -, - \rangle, (M, \langle -, - \rangle, \Phi, e, E)$ forms a Frobenius manifold (in the sense of B. Dubrovin).

In what follows, we assume the following conditions on (M, ∇, Φ, e, E) :

Semisimplicity condition (SS): $\Phi(E) \in \text{End}_{\mathcal{O}_M}(\Theta_M)$ is diagonalizable at any point on M. The eigenvalues (z_1, \ldots, z_n) of $\Phi(E)$ are mutually distinct at generic points on M.

Nonresonance condition (NR): $\nabla(E) \in \operatorname{End}_{\mathcal{O}_M}(\Theta_M)$ is diagonalizable at any point on M. The eigenvalues (w_1, \ldots, w_n) of $\nabla(E)$ satisfy $w_n = 1$ and $w_i - w_j \notin \mathbb{Z} \setminus \{0\}$ for $i \neq j$.

Remark 5. By the condition (SS), the \mathcal{O}_M -algebra structure \circ decomposes into the direct product of 1-dimensional simple \mathcal{O}_M -algebras

$$\partial_{z_i} \circ \partial_{z_j} = \delta_{ij} \partial_{z_i}, \qquad (1 \le i, j \le n)$$

by taking (z_1, \ldots, z_n) as a local coordinate. So, (z_1, \ldots, z_n) is called a *canonical* coordinate of the flat structure (M, ∇, Φ, e, E) .

Definition 5. The discriminant locus Δ of (M, ∇, Φ, e, E) is the divisor on M defined by det $\Phi(E) = 0$.

Proposition 2. Let a flat structure (M, ∇, Φ, e, E) be given. Then, (M, e, Δ) forms a triplet in Definition 1. Moreover, the triplet (M, e, Δ) admits the canonical isomorphism φ_{Δ} associated with (M, e, Δ) and we have $\varphi_{\Delta} = \Phi(E)$. In particular, we have $E_{\Delta} = \varphi_{\Delta}(e) = \Phi_e(E) = E$.

Corollary 1. Let two flat structures $(M, \nabla^k, \Phi^k, e^k, E^k)$ (k = 1, 2) be given on M. Assume the equality $(M, e^1, \Delta^1) = (M, e^2, \Delta^2)$ holds for the triplets underlying the respective $(M, \nabla^k, \Phi^k, e^k, E^k)$ (k = 1, 2). Then, we have $e^1 = e^2, E^1 = E^2, \Phi^1 = \Phi^2$.

Proof. By the assumption and Proposition 2, we have $e^1 = e^2$, $E^1 = E^2$, $\Phi^1(E^1) = \Phi^2(E^2)$. Then, by the condition (SS), we see that $\Phi^1 = \Phi^2$ at generic points on M because the canonical coordinate (z_1, \ldots, z_n) is given by the set of eigenvalues of $\Phi^1(E^1) = \Phi^2(E^2)$. Therefore, $\Phi^1 = \Phi^2$ holds at any point of M by the identity theorem.

Remark 6. In virtue of Corollary 1, the \mathcal{O}_M -algebra structure \circ and the Euler field E of (M, ∇, Φ, e, E) are uniquely determined by its underlying triplet (M, e, Δ) . (In other words, the "F-manifold structure with the Euler field" underlying a flat structure (M, ∇, Φ, e, E) is uniquely determined by its triplet (M, e, Δ) .) **Definition 6.** For a flat structure (M, ∇, Φ, e, E) , a local coordinate system $\boldsymbol{t} = (t_1, \ldots, t_n)$ on an open set $U \subset M$ is said to be a *flat coordinate* if $\nabla(\partial_{t_i}) = 0$ holds for any $i \in \{1, \ldots, n\}$.

By the condition (NR), we may take a flat coordinate $\mathbf{t} = (t_1, \ldots, t_n)$ s.t.

(3)
$$e = \partial_{t_n}, \quad E = \sum_{i=1}^n w_i t_i \partial_{t_i}.$$

In the sequel, we take a flat coordinate \boldsymbol{t} as satisfying (3).

We introduce (local) representation matrices of $-\Phi(E), \nabla(E) \in \operatorname{End}_{\mathcal{O}_M}(\Theta_M)$ and $\Phi \in \Omega^1(\operatorname{End}_{\mathcal{O}_M}(\Theta_M))$ by taking $(\partial_{t_1}, \ldots, \partial_{t_n})$ as a basis of $\Theta_M(U)$:

(i) $\mathcal{T} = (\mathcal{T}_{ij})_{1 \le i,j \le n} \in \mathcal{O}_M(U)^{n \times n}$ is defined by

$$-\Phi_{\partial_{t_i}}(E) = \sum_{j=1}^n \mathcal{T}_{ij} \partial_{t_j}$$

(ii)
$$\mathcal{B}_{\infty} = ((\mathcal{B}_{\infty})_{ij})_{1 \leq i,j \leq n} \in \mathcal{O}_{M}(U)^{n \times n}$$
 is defined by

$$\nabla_{\partial_{t_{i}}}(E) = \sum_{j=1}^{n} (\mathcal{B}_{\infty})_{ij} \partial_{t_{j}}.$$

By (3), we see that \mathcal{B}_{∞} is a constant diagonal matrix: $\mathcal{B}_{\infty} = \operatorname{diag}(w_1, \dots, w_n)$. (iii) $\tilde{\Phi} = (\tilde{\Phi}_{ij})_{1 \leq i,j \leq n} \in \Omega^1_M(U)^{n \times n}$ is defined by $\Phi(\partial_{t_i}) = \sum_{i=1}^n \tilde{\Phi}_{ij} \partial_{t_j}.$

$$j=1$$
 $j=1$

In terms of the matrices $\mathcal{T}, \mathcal{B}_{\infty}, \tilde{\Phi}$, the integrability condition required in Definition 4 is equivalent to that of the following linear Pfaffian system

(4)
$$\mathcal{T}dY = \tilde{\Phi}\mathcal{B}_{\infty}Y.$$

Remark 7. By fixing the variables $\mathbf{t}' = (t_1, \ldots, t_{n-1}), (4)$ reduces to an ordinary Fuchsian differential equation (called *Okubo normal form*)

(5)
$$\mathcal{T}\frac{dY}{dt_n} = \mathcal{B}_{\infty}Y$$

w.r.t. the variable t_n . (Note that the variable t_n is specified by the unit field (=primitive vector field) $e = \partial_{t_n}$.) The completely integrable Pfaffian system (4) is equivalent to an isomonodromic deformation of (5). **Lemma 2.** Let a flat structure (M, ∇, Φ, e, E) be given and $\mathbf{t} = (t_1, \ldots, t_n)$ be a flat coordinate on an simply-connected open set $U \subset M$.

For $\lambda \in \mathbb{C}$ s.t. $det(\mathcal{B}_{\infty} - 1 + \lambda) \neq 0$, we consider the following completely integrable Pfaffian system

(6)
$$\mathcal{T}dY = \tilde{\Phi}B_{\infty}Y,$$

where we put $B_{\infty} := \mathcal{B}_{\infty} - 1 + \lambda$. Then, there exists an n-dimensional \mathbb{C} -vector space $\mathcal{P}^{(\lambda)} \subset \mathcal{O}_M(U)$ s.t. any solution to (6) on U is given as

$$Y = -B_{\infty}^{-1} \begin{pmatrix} \theta_1^t(p) \\ \vdots \\ \theta_n^t(p) \end{pmatrix}, \quad p \in \mathcal{P}^{(\lambda)},$$

where $\theta_i^t = \varphi_{\Delta}(\partial_{t_i}) = \Phi_{\partial_{t_i}}(E) \in \mathcal{D}er_M(-\log \Delta)(U), \ (1 \le i \le n).$

Definition 7. For a flat structure (M, ∇, Φ, e, E) , the *n*-dimensional \mathbb{C} -vector space $\mathcal{P}^{(\lambda)}$ in Lemma 2 is called *the space of Okubo-Saito potentials* of weight λ associated with (M, ∇, Φ, e, E) .

Properties of $\mathcal{P}^{(\lambda)}$ associated with (M, ∇, Φ, e, E)

- For any $p \in \mathcal{P}^{(\lambda)}$, $Ep = \lambda p$ holds.
- · $\mathcal{P}^{(\lambda)}$ is uniquely determined by (M, ∇, Φ, e, E) , (i.e., does not depend on \boldsymbol{t}).
- Every $p \in \mathcal{P}^{(\lambda)}$ can be analytically continued over $M \setminus \Delta$, where $M \setminus \Delta$ denotes the universal covering space of $M \setminus \Delta$.
- · Define a connection $\tilde{\nabla}^{(\lambda)}$ on $\Theta_{M \setminus \Delta}$ by

$$\tilde{\nabla}_{u}^{(\lambda)}v := \nabla_{u}v - \nabla_{E^{-1} \circ u \circ v}E + \lambda E^{-1} \circ u \circ v, \quad u, v \in \Theta_{M \setminus \Delta}.$$

Take a basis (p_1, \ldots, p_n) of $\mathcal{P}^{(\lambda)}$. Then $\tilde{\nabla}^{(\lambda)}(\partial_{p_i}) = 0$ $(1 \le i \le n)$, i.e., (p_1, \ldots, p_n) forms a flat coordinate system w.r.t. the connection $\tilde{\nabla}^{(\lambda)}$.

· Let $\mathcal{P}^{(\lambda_i)}$ (i = 1, 2) be two spaces of Okubo-Saito potentials of weight λ_i (i = 1, 2) associated with (M, ∇, Φ, e, E) . Then, they are transformed to each other by the Riemann-Liouville integrals:

$$p^{(1)}(\boldsymbol{t}) \in \mathcal{P}^{(\lambda_1)} \rightarrow p^{(2)}(\boldsymbol{t}) := \int_{\Delta} (t_n - s_n)^{\lambda_1 - \lambda_2 - 1} p^{(1)}(\boldsymbol{t}', s_n) ds_n \in \mathcal{P}^{(\lambda_2)}$$

§3 Space of Okubo-Saito potentials associated with a triplet (M, D_M, Δ_M)

In this section, we DO NOT assume the existence of a flat structure (M, ∇, Φ, e, E) . Instead, we start from a triplet (M, D_M, Δ_M) with the canonical isomorphism φ_{Δ_M} .

Definition 8. Let a triplet (M, D_M, Δ_M) with the canonical isomorphism φ_{Δ_M} be given. Let $\mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda)}$ be an *n*-dimensional \mathbb{C} -vector space of holomorphic functions on $\widetilde{M \setminus \Delta_M}$ for $\lambda \in \mathbb{C} \setminus \{0\}$.

 $\mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda)}$ is said to be a space of Okubo-Saito potentials associated with (M, D_M, Δ_M) if it satisfies the following conditions (i)-(iii):

(i) $\mathcal{P}^{(\lambda)}_{(M,D_M,\Delta_M)}$ is a linear representation space of $\pi_1(M \setminus \Delta_M)$ via the covering transformations of $\widetilde{M \setminus \Delta_M} \to M \setminus \Delta_M$.

(ii)
$$E_{\Delta_M} p = \lambda p$$
 holds for any $p \in \mathcal{P}^{(\lambda)}_{(M,D_M,\Delta_M)}$, where $E_{\Delta_M} = \varphi_{\Delta_M}(D_M)$.

(iii) For any $m \in M$, take a simply-connected neighbourhood U_m and a local coordinate system $\boldsymbol{x} = (x_1, \ldots, x_n)$ on U_m s.t. $\partial_{x_n} = D_M$. Then, there exists $R \in GL(n, \mathcal{O}_M(U_m))$ satisfying

$$D_M R = O, \quad R_{nj} = \lambda^{-1} \delta_{nj}$$

s.t., for any $p \in \mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda)}$,

$$Y := R \begin{pmatrix} \varphi_{\Delta_M}(\partial_{x_1})p \\ \vdots \\ \varphi_{\Delta_M}(\partial_{x_n})p \end{pmatrix}$$

gives a solution to a completely integrable Pfaffian system of rank n in the form

(7) $TdY = \tilde{\Phi}B_{\infty}Y$

where $T \in \mathcal{O}_M(U_m)^{n \times n}$ and $\tilde{\Phi} \in \Omega^1_M(U_m)^{n \times n}$ satisfy $D_M T = -I_n, \quad (\det T) = \Delta_M,$ $D_M \tilde{\Phi} = O, \quad \tilde{\Phi}_{D_M} = I_n$

and B_{∞} is a constant diagonal matrix.

Theorem 1. Let $\mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda)}$ satisfying the conditions (i)-(iii) in Definition 8 be given. Then, there exists uniquely a flat structure (M, ∇, Φ, e, E) whose underlying triplet (M, e, Δ) satisfies $(M, e, \Delta) = (M, D_M, \Delta_M)$ and whose space of Okubo-Saito potentials $\mathcal{P}^{(\lambda)}$ satisfies $\mathcal{P}^{(\lambda)} = \mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda)}$.

Moreover, two spaces of Okubo-Saito potentials $\mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda_1)}$ and $\mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda_2)}$ induce the identical flat structure (M, ∇, Φ, e, E)

 $\iff \mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda_1)} \text{ and } \mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda_2)} \text{ are transformed to each other by use of the Riemann-Liouville integrals.}$

Corollary 2. A flat structure (M, ∇, Φ, e, E) can be equipped with a Frobenius metric $\langle -, - \rangle$ if and only if the space of Okubo-Saito potentials $\mathcal{P}^{(\lambda)}$ admits a monodromy invariant non-degenerate symmetric \mathbb{C} -bilinear form for some value of λ .

Properties of the monodromy of $\mathcal{P}^{(\lambda)}_{(M,D_M,\Delta_M)}$

• The monodromy group is generated by n generalized reflections $\{R_1, \ldots, R_n\}$: $R_i \sim \operatorname{diag}(e^{2\pi\sqrt{-1}r_i}, 1, \ldots, 1), \quad r_i \in \mathbb{C}.$

• $\mathcal{P}^{(\lambda)}_{(M,D_M,\Delta_M)}$ has a "good basis" $\{a_1,\ldots,a_n\}$ (called *canonical system*) which consists of the "roots" for the generalized reflections $\{R_1,\ldots,R_n\}$.

• The local monodromy at $x_n = \infty$ is given by

$$e^{2\pi\sqrt{-1}B_{\infty}} = \operatorname{diag}(e^{2\pi\sqrt{-1}\lambda_1}, \dots, e^{2\pi\sqrt{-1}\lambda_n}).$$

So, $\mathcal{P}_{(M,D_M,\Delta_M)}^{(\lambda)}$ may be considered a generalization of "root system" with a prescribed "root basis" $\{a_1, \ldots, a_n\}$ (=canonical system) and "the conjugacy class of a Coxeter element" $e^{-2\pi\sqrt{-1}B_{\infty}}$ (~ $c := R_1R_2\cdots R_n$).

Example 2 (Period integrals of K. Saito's primitive form).

Consider a universal unfolding of a simple singularity of ADE type (for instance). The parameter space M of the unfolding is naturally equipped with the structure of a triplet (M, D_M, Δ_M) . Let $\zeta^{(\lambda)}$ be a primitive form (which is defined by use of the higher residue pairings on the de Rham cohomology). Then,

$$Per_{(M,D_M,\Delta_M)}^{(\lambda)} = \left\{ \int_{\gamma} \zeta^{(\lambda)} \, \middle| \, \gamma \in \mathcal{H} \right\}$$

is a space of Okubo-Saito potentials associated with (M, D_M, Δ_M) , where \mathcal{H} denotes the local system which consists of the Milnor lattice on each fiber. (The Pfaffian system (7) is deduced from the "Gauss-Manin connection" on the de Rham cohomorogy.) In this case, $Per_{(M,D_M,\Delta_M)}^{(\lambda)}$ admits a monodromy invariant \mathbb{C} -bilinear form which is induced from the intersection form of the Milnor lattice.

Hence, there exists a unique Frobenius structure $(M, \langle -, - \rangle, \Phi, e, E)$ induced by $Per_{(M,D_M,\Delta_M)}^{(\lambda)}$.

Example 3 (Canonical flat structure on M_G for a well-generated u.g.g.r. G). Let $G \subset U(V)$ be an irreducible well-generated unitary reflection group. As described in §1, there exists a triplet (M_G, D_G, Δ_G) obtained canonically from G.

The dual space V^* of V is a set of homogeneous linear functions on V, therefore V^* may be considered an *n*-dimensional \mathbb{C} -vector space of maulti-valued analytic functions on $M_G \setminus \Delta_G$ via the natural quotient mapping $\pi_G : V \to M_G = V/G$.

Actually, V^* is a space of Okubo-Saito potentials of weight 1/h associated with (M_G, D_G, Δ_G) , where $h := d_n$ is the Coxeter number of G. $(d_n$ is the highest degree of G.)

Hence, there exists a flat structure on M_G uniquely determined by $((M_G, D_G, \Delta_G), V^*)$, which is called the *canonical flat structure associated with G*.

(This flat structure was constructed and studied by Kato-Mano-Sekiguchi, Arsie-Lorenzoni and Konishi-Minabe-Shiraishi.)

§4 Flat structures on solutions to the sixth Painlevé equation

In the case of n = 3, an isomonodromic deformation of (5) is governed by a solution to the sixth Painlevé equation (P_{VI}).

Theorem 2 (Dubrovin (1-parameter case), Arsie-Lorenzoni, Kato-Mano-Sekiguchi). There exists a correspondence between 3-dimensinal generically semisimple flat structures and solutions to the sixth Painlevé equation

$$\begin{split} y'' = & \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) y'^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) y' \\ & + \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{(t-1)}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right) \end{split}$$

In particular, 3-dimensional generically semisimple Frobenius manifolds correspond to solutions to certain 1-parameter family of P_{VI} .

Remark 8. The correspondence stated in Theorem 2 is not one-to-one but many-to-many:

Given a 3-dimensinal semisimple flat structure, the corresponding solution to P_{VI} is determined up to Bäcklund transformations.

Oppositely, given a solution to P_{VI} , many flat structures may correspond to it in general. However, the underlying triplet (M, e, Δ) is unique for a solution to P_{VI} , which means that the triplets (M, e, Δ) provide an invariant of solutions to P_{VI} . (But this invariant is not complete.)

Definition 9. Let y = y(t) be an algebraic solution to P_{VI} . Then, a complete algebraic curve Π over \mathbb{C} is said to be a *(minimal) Painlevé curve* if there exist two rational functions t, y on Π :



satisfying the following conditions

(i) t is a Belyi function.

- (ii) For every branch of t on a simply-connected open set $U \subset \mathbb{P}^1 \setminus \{0, 1, \infty\}$, y = y(t) satisfies P_{VI} for some value of the parameter $\boldsymbol{\theta} = (\theta_0, \theta_1, \theta_t, \theta_\infty)$.
- (iii) Let $\mathbb{C}(\Pi)$ denotes the field of rational functions on Π . Then $\mathbb{C}(t, y) = \mathbb{C}(\Pi)$ holds.

Example 4 (Algebraic solutions (H_3) and $(H_3)'$ by Dubrovin-Mazzocco).

It is known that there are the following two algebraic solutions $(H_3), (H_3)'$ related to the Coxeter group $W(H_3)$:

$$(H_3): \Pi \cong \mathbb{P}^1, \ \boldsymbol{\theta} = (0, 0, 0, -4/5).$$

A parameter representation is given by
$$y = \frac{(u-1)^2(3u+1)^2(u^2+4u-1)(119u^8-588u^6+314u^4-108u^2+7)^2}{(u+1)^3(3u-1)P(u)},$$

$$t = \frac{(u-1)^5(3u+1)^3(u^2+4u-1)}{(u+1)^5(3u-1)^3(u^2-4u-1)},$$

where P(u) is a polynomial defined by $P(u) = 42483u^{18} - 719271u^{16} + 5963724u^{14} + 13758708u^{12} - 7616646u^{10} + 1642878u^8 - 259044u^6 + 34308u^4 - 2133u^2 + 49.$

Frobenius potential: $\boldsymbol{w} = (w_1, w_2, w_3) = (1/5, 3/5, 1)$ $F_{H_3} = \frac{t_1 t_3^2 + t_2^2 t_3}{2} + \frac{t_1^2 t_2^3}{6} + \frac{t_1^5 t_2^2}{20} + \frac{t_1^{11}}{3960}$ $(H_3)': \Pi \cong \mathbb{P}^1, \ \boldsymbol{\theta} = (0, 0, 0, -2/5).$

A parameter representation is given by

$$y = \frac{(u-1)^4 (3u+1)^2 (u^2 + 4u - 1)(11u^4 - 30u^2 + 3)^2}{(u+1)(3u-1)(3u^2 + 1)P'(u)},$$

$$t = \frac{(u-1)^5 (3u+1)^3 (u^2 + 4u - 1)}{(u+1)^5 (3u-1)^3 (u^2 - 4u - 1)},$$

where P'(u) is a polynomial defined by $P'(u) = 121u^{12} - 1942u^{10} + 63015u^8 - 28852u^6 + 4855u^4 - 342u^2 + 9.$

Frobenius potential: $\boldsymbol{w} = (w_1, w_2, w_3) = (3/5, 4/5, 1)$

$$F_{H_3'} = \frac{t_1 t_3^2 + t_2^2 t_3}{2} - \frac{t_1^4 z}{18} - \frac{7}{72} t_1^3 z^4 - \frac{17}{105} t_1^2 z^7 - \frac{2}{9} t_1 z^{10} - \frac{64}{585} z^{13}$$

where z is a solution to an algebraic equation

$$z^4 + t_1 z + t_2 = 0.$$

The algebraic solutions (H_3) and $(H_3)'$ correspond to the common triplet

$$(M_{H_3}, D_{H_3}, \Delta_{H_3}) \cong (M_{H'_3}, D_{H'_3}, \Delta_{H'_3})$$

which is isomorphic to the canonical triplet associated with $W(H_3)$. The Painlevé curve Π of (H_3) and $(H_3)'$ can be constructed from the canonical triplet $(M_{H_3}, D_{H_3}, \Delta_{H_3})$. $(\mathbb{C}(\Pi)$ is isomorphic to a splitting field of the discriminant

$$h_{H_3}(\boldsymbol{x}) = x_3^3 - s_1(\boldsymbol{x}')x_3^2 + s_2(\boldsymbol{x}')x_3 - s_3(\boldsymbol{x}')$$

= $x_3^3 + \left(x_1^2x_2 + \frac{x_1^5}{10}\right)x_3^2 - \left(\frac{9}{5}x_1x_2^3 + \frac{6}{5}x_1^4x_2^2 + \frac{x_1^{10}}{100}\right)x_3$
+ $\frac{27}{125}x_2^5 + \frac{23}{25}x_1^3x_2^4 + \frac{x_1^6x_2^3}{50} + \frac{2}{25}x_1^9x_2^2 - \frac{x_1^{12}x_2}{100} - \frac{x_1^{15}}{1000}$

as a monic polynomial of degree 3 in x_3 .)

This is the reason why the parameter representations of t for (H_3) and $(H_3)'$ mutually coincide.

The algebraic solution (H_3) corresponds to the canonical flat structure associated with $W(H_3)$, i.e., the space of Okubo-Saito potentials is V^* for a standard representation $W(H_3) \subset U(V)$. The weight of V^* is 1/10.

Let $S_3(V^*)$ denote the degree 3 part of the symmetric tensor poduct of V^* . Then, $S_3(V^*)$ is a 10-dimensional representation space of $W(H_3)$ but not irreducible. $S_3(V^*)$ includes an irreducible representation space of dimension 3 of $W(H_3)$, which is denoted by $(V^*)'$. $(V^*)'$ comes from an outer automorphism of $W(H_3)$ and is not equivalent to V^* .

 $(V^*)'$ forms a space of Okubo-Saito potentials of weight 3/10 associated with the triplet $(M_{H_3}, D_{H_3}, \Delta_{H_3})$.

The algebraic solution $(H_3)'$ corresponds to the flat structure whose space of Okubo-Saito potentials is $(V^*)'$.

Problems.

- Classify triplets (M, D_M, Δ_M) corresponding to solutions to P_{VI} .
- When two solutions to P_{VI} correspond to a common triplet (M, D_M, Δ_M) , does any representation-theoritical relationship exist between their spaces of Okubo-Saito potentials?