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§1 Triplet (M,DM ,∆M)

In this talk, triplet (M,DM ,∆M) introduced in the following definition plays a
fundamental role.

Definition 1. A triplet (M,DM ,∆M) consists of

• M : an n-dimensional complex manifold,

• DM : a holomorphic vector field on M (called primitive vector field),

• ∆M : a free divisor on M (i.e., Der (− log ∆M) is a locally free sheaf),

which enjoy the following properties (i)-(iv):

(i) ∃ a projection π : M → M ′ for an (n− 1)-dimensional complex manifold M ′

such that π−1(U ′
α)

∼= U ′
α × C for an open cover {U ′

α}α∈I of M ′.

(ii) Let x′α = (x1, . . . , xn−1) be a local coordinate system on U ′
α and x

α = (x′α, xn)
be one on π−1(U ′

α). Then the coordinate transformation on π−1(U ′
α)∩π−1(U ′

β)
has the form

x′α = f (x′β), xαn = cxβn + g(x′β)

where c is a non-zero constant.
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(iii) The primitive vector field DM is represented as DM = dα∂xαn (dα ∈ C×) on
π−1(U ′

α).

(iv) A defining function hα of the divisor ∆M on π−1(U ′
α) is a monic polynomial of

degree n w.r.t. xαn:

hα(x
α) = (xαn)

n − sα1 (x
α
n)

n−1 + · · · + (−1)nsαn, sαi = sαi (x
′α) ∈ OM ′(U ′

α)

and satisfies

(1)

∣∣∣∣∣∣∣∣∣∣

∂sα1
∂xα1

∂sα2
∂xα1

· · · ∂sαn
∂xα1... ... . . . ...

∂sα1
∂xαn−1

∂sα2
∂xαn−1

· · · ∂sαn
∂xαn−1

−n −(n− 1)sα1 · · · −sαn−1

∣∣∣∣∣∣∣∣∣∣
̸= 0 ∈ OM ′(U ′

α)
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Remark 1. By the conditions (i) and (ii), π : M → M ′ is a fiber bundle whose fibers
are isomorphic to an affine line C. This fiber bundle structure π : M → M ′ can be
specified by the primitive vector field DM as

π−1OM ′ = {f ∈ OM | DMf = 0}
So, we call (M,DM) an affine line bunlde with a primitive vector field.

Remark 2. By the conditions (i)-(iv), we have

(2) ∀θ ∈ DerM(− log ∆M) s.t. [DM , θ] = 0 =⇒ θ = 0.
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Lemma 1. Let a triplet (M,DM ,∆M) be given. Then, φ∆M
∈ EndOM

(DerM)
satisfying the conditions

(i) Imφ∆ ⊂ DerM(− log ∆M),

(ii) (detφ∆M
) = ∆M ,

(iii) LieDM
φ∆M

= 1DerM

(if it exists) is unique for (M,DM ,∆M) and induces an isomorphism

φ∆M
: DerM

∼=−→ DerM(− log ∆M).

φ∆M
is called the canonical isomorphism associated with the triplet (M,DM ,∆M).

Proof. The lemma follows from (2) and the Saito criterion for free divisors.

Definition 2. Assume that the canonical isomorphism φ∆M
associated with a triplet

(M,DM ,∆M) exists. Then, E∆M
:= φ∆M

(DM) is a (global) holomorphic vec-
tor field on M . E∆M

is called the Euler vector field associated with the triplet
(M,DM ,∆M).
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The following proposition provides a typical situation where the canonical isomor-
phism φ∆M

exists.

Proposition 1. Consider the case of M = Cn = {x = (x′, xn)} and DM = ∂xn.
(In this case, M ′ = Cn−1 = {x′ = (x1, . . . , xn−1)}.) Let the defining polynomial
of ∆M

h(x) = xnn − s1(x
′)xn−1

n + · · · + (−1)nsn(x
′) ∈ C[x]

be weighted homogenious w.r.t. the (usual) Euler operator

E =

n∑
i=1

wixi∂xi

with wi ∈ R>0 (1 ≤ i ≤ n) in order of

0 < w1 ≤ w2 ≤ · · · ≤ wn−1 < wn = 1,

i.e., Eh(x) = nh(x).
Then, there exists the canonical isomorphism φ∆M

associated with the triplet
(M,DM ,∆M) and E∆M

= φ∆M
(DM) = E.
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Example 1 (Canonical triplet (MG, DG,∆G) associated with a well-generated u.g.g.r.
G).

G ⊂ U(V ): an irreducible well-generated (finite) unitary reflection group of rank
n

(i.e., G is a finite subgroup of U(V ) generated by n reflections.)

Then, we can construct a triplet (MG, DG,∆G) canonically from G in the following
manner.
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· F = (F1, . . . , Fn): a set of basic invariants (i.e., a system of homogeneous gener-
aters of the ring of G-invariant polynomial functions on V )

· d = (d1, . . . , dn): the degrees of G (i.e., di = degFi) in order of

0 < d1 ≤ d2 ≤ · · · ≤ dn−1 < dn

d is uniquely determined by G (i.e., does not depend on the choise of F).

· MG = V/G: the orbit space of G
We have an isomorphism MG

∼= Cn = {x = (x′, xn)} via x = (F1, . . . , Fn).

· DG := ∂xn is uniquely determined (up to non-zero constant multiplicity) by G.

· hG,F(x): the disciriminant of G
hG,F(x) is a monic polynomial of degree n w.r.t. xn:

hG,F(x) = xnn − s1(x
′)xn−1

n + · · · + (−1)nsn(x
′) ∈ RG

and weighted homogenious w.r.t. E =
∑n

i=1wixi∂xi, where wi := di/dn.
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Let ∆G be a divisor on MG defined by the discriminant hG,F(x).
(∆G ⊂ MG agrees with the branch locus of the quotient mapping V → V/G = MG.)

It is known that the divisor ∆G is free and it can be confirmed that the triplet
(MG, DG,∆G) satisfies the conditions (i)-(iv) in Definition 1.

Definition 3. (MG, DG,∆G) is called the canonical triplet associated with G.

In virtue of Proposition 1, the canonical triplet (MG, DG,∆G) associated with G
admits the canonical isomorphism φ∆G

. In particular, we have E∆G
= φ∆G

(DG) = E.
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§2 Flat structure (without metric) and space of Okubo-Saito poten-
tials

M : an n-dimensional complex manifold

TM : the (holomorphic) tangent bundle of M

ΘM(= DerM): the sheaf of holomorphic sections of TM

Definition 4 (C. Sabbah). A flat structure (or Saito structure) (without metric)
on M is a 5-tuple (M,

△

,Φ, E, e) which consists of

(i)

△

is a flat and torsion-free connection on TM ,

(ii) Φ is a symmetric Higgs field on TM ,

(iii) E and e are global sections on TM (called Euler field and unit field
respectively)

and satisfies certain integrability condition (this integrability condition will be stated
later in a concrete form).
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Remark 3. The symmetric Higgs field Φ provides a commutative and associative
OM -algebra structure with the unit e on ΘM by

u ◦ v := Φu(v) (u, v ∈ ΘM).

Remark 4. A metric ⟨−,−⟩ onM (i.e., a nondegenerate symmetric OM -bilinear form
on ΘM) is called Frobenius metric if ∃r ∈ C such that ⟨−,−⟩ satisfies

⟨u ◦ v, w⟩ = ⟨u, v ◦ w⟩
d⟨u, v⟩ − ⟨∇u, v⟩ − ⟨u,∇v⟩ = 0

E⟨u, v⟩ − ⟨[E, u], v⟩ − ⟨u, [E, v]⟩ = r⟨u, v⟩
for ∀u, v, w ∈ ΘM . When a flat structure (M,∇,Φ, e, E) is equipped with a Frobe-
nius metric ⟨−,−⟩, (M, ⟨−,−⟩,Φ, e, E) forms a Frobenius manifold (in the sense of
B. Dubrovin).

11



In what follows, we assume the following conditions on (M,∇,Φ, e, E):

Semisimplicity condition (SS): Φ(E) ∈ EndOM
(ΘM) is diagonalizable at any

point on M . The eigenvalues (z1, . . . , zn) of Φ(E) are mutually distinct at generic
points on M .

Nonresonance condition (NR): ∇(E) ∈ EndOM
(ΘM) is diagonalizable at

any point on M . The eigenvalues (w1, . . . , wn) of ∇(E) satisfy wn = 1 and
wi − wj ̸∈ Z \ {0} for i ̸= j.

Remark 5. By the condition (SS), the OM -algebra structure ◦ decomposes into the
direct product of 1-dimensional simple OM -algebras

∂zi ◦ ∂zj = δij∂zi, (1 ≤ i, j ≤ n)

by taking (z1, . . . , zn) as a local coordinate. So, (z1, . . . , zn) is called a canonical
coordinate of the flat structure (M,∇,Φ, e, E).

Definition 5. The discriminant locus ∆ of (M,∇,Φ, e, E) is the divisor on M
defined by det Φ(E) = 0.
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Proposition 2. Let a flat structure (M,∇,Φ, e, E) be given. Then, (M, e,∆)
forms a triplet in Definition 1. Moreover, the triplet (M, e,∆) admits the canon-
ical isomorphism φ∆ associated with (M, e,∆) and we have φ∆ = Φ(E). In
particular, we have E∆ = φ∆(e) = Φe(E) = E.

Corollary 1. Let two flat structures (M,∇k,Φk, ek, Ek) (k = 1, 2) be given on M .
Assume the equality (M, e1,∆1) = (M, e2,∆2) holds for the triplets underlying the
respective (M,∇k,Φk, ek, Ek) (k = 1, 2). Then, we have e1 = e2, E1 = E2,Φ1 =
Φ2.

Proof. By the assumption and Proposition 2, we have e1 = e2, E1 = E2,Φ1(E1) =
Φ2(E2). Then, by the condition (SS), we see that Φ1 = Φ2 at generic points on
M because the canonical coordinate (z1, . . . , zn) is given by the set of eigenvalues
of Φ1(E1) = Φ2(E2). Therefore, Φ1 = Φ2 holds at any point of M by the identity
theorem.

Remark 6. In virtue of Corollary 1, the OM -algebra structure ◦ and the Euler field
E of (M,∇,Φ, e, E) are uniquely determined by its underlying triplet (M, e,∆).

(In other words, the “F -manifold structure with the Euler field” underlying a flat
structure (M,∇,Φ, e, E) is uniquely determined by its triplet (M, e,∆).)
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Definition 6. For a flat structure (M,∇,Φ, e, E), a local coordinate system t =
(t1, . . . , tn) on an open set U ⊂ M is said to be a flat coordinate if ∇(∂ti) = 0 holds
for any i ∈ {1, . . . , n}.

By the conditioin (NR), we may take a flat coordinate t = (t1, . . . , tn) s.t.

(3) e = ∂tn, E =

n∑
i=1

witi∂ti.

In the sequel, we take a flat coordinate t as satisfying (3).
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We introduce (local) representation matrices of −Φ(E),∇(E) ∈ EndOM
(ΘM) and

Φ ∈ Ω1(EndOM
(ΘM)) by taking (∂t1, . . . , ∂tn) as a basis of ΘM(U):

(i) T = (Tij)1≤i,j≤n ∈ OM(U)n×n is defined by

−Φ∂ti
(E) =

n∑
j=1

Tij∂tj.

(ii) B∞ = ((B∞)ij)1≤i,j≤n ∈ OM(U)n×n is defined by

∇∂ti
(E) =

n∑
j=1

(B∞)ij∂tj.

By (3), we see that B∞ is a constant diagonal matrix: B∞ = diag(w1, . . . , wn).

(iii) Φ̃ = (Φ̃ij)1≤i,j≤n ∈ Ω1
M(U)n×n is defined by

Φ(∂ti) =

n∑
j=1

Φ̃ij∂tj.
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In terms of the matrices T ,B∞, Φ̃, the integrability condition required in Definition 4
is equivalent to that of the following linear Pfaffian system

(4) T dY = Φ̃B∞Y.

Remark 7. By fixing the variables t′ = (t1, . . . , tn−1), (4) reduces to an ordinary
Fuchsian differential equation (called Okubo normal form)

(5) T dY

dtn
= B∞Y

w.r.t. the variable tn. (Note that the variable tn is specified by the unit field (=primi-
tive vector field) e = ∂tn.) The completely integrable Pfaffian system (4) is equivalent
to an isomonodromic deformation of (5).
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Lemma 2. Let a flat structure (M,∇,Φ, e, E) be given and t = (t1, . . . , tn) be a
flat coordinate on an simply-connected open set U ⊂ M .
For λ ∈ C s.t. det(B∞ − 1 + λ) ̸= 0, we consider the following completely

integrable Pfaffian system

(6) T dY = Φ̃B∞Y,

where we put B∞ := B∞ − 1 + λ. Then, there exists an n-dimensional C-vector
space P (λ) ⊂ OM(U) s.t. any solution to (6) on U is given as

Y = −B−1
∞

θt1(p)
...

θtn(p)

 , p ∈ P (λ),

where θti = φ∆(∂ti) = Φ∂ti
(E) ∈ DerM(− log ∆)(U), (1 ≤ i ≤ n).

Definition 7. For a flat structure (M,∇,Φ, e, E), the n-dimensional C-vector space
P (λ) in Lemma 2 is called the space of Okubo-Saito potentials of weight λ associated
with (M,∇,Φ, e, E).
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Properties of P (λ) associated with (M,∇,Φ, e, E)

· For any p ∈ P (λ), Ep = λp holds.

· P (λ) is uniquely determined by (M,∇,Φ, e, E), (i.e., does not depend on t).

· Every p ∈ P (λ) can be analytically continued over M̃ \∆, where M̃ \∆ denotes
the universal covering space of M \∆.

· Define a connection ∇̃(λ) on ΘM\∆ by

∇̃(λ)
u v := ∇uv −∇E−1◦u◦vE + λE−1 ◦ u ◦ v, u, v ∈ ΘM\∆.

Take a basis (p1, . . . , pn) of P (λ). Then ∇̃(λ)(∂pi) = 0 (1 ≤ i ≤ n),
i.e., (p1, . . . , pn) forms a flat coordinate system w.r.t. the connection ∇̃(λ).

· Let P (λi) (i = 1, 2) be two spaces of Okubo-Saito potentials of weight λi (i = 1, 2)
associated with (M,∇,Φ, e, E). Then, they are transformed to each other by

the Riemann-Liouville integrals:

p(1)(t) ∈ P (λ1) → p(2)(t) :=

∫
∆

(tn − sn)
λ1−λ2−1p(1)(t′, sn)dsn ∈ P (λ2)
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§3 Space of Okubo-Saito potentials associated with a triplet (M,DM ,∆M)

In this section, we DO NOT assume the existence of a flat structure (M,∇,Φ, e, E).
Instead, we start from a triplet (M,DM ,∆M) with the canonical isomorphism φ∆M

.

Definition 8. Let a triplet (M,DM ,∆M) with the canonical isomorphism φ∆M
be

given. Let P (λ)
(M,DM ,∆M ) be an n-dimensional C-vector space of holomorphic functions

on M̃ \∆M for λ ∈ C \ {0}.
P (λ)

(M,DM ,∆M ) is said to be a space of Okubo-Saito potentials associated with (M,DM ,∆M)

if it satisfies the following conditions (i)-(iii):

(i) P (λ)
(M,DM ,∆M ) is a linear representation space of π1(M \∆M) via the covering

transformations of M̃ \∆M → M \∆M .

(ii) E∆M
p = λp holds for any p ∈ P (λ)

(M,DM ,∆M ), where E∆M
= φ∆M

(DM).
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(iii) For any m ∈ M , take a simply-connected neighbourhood Um and a local
coordinate system x = (x1, . . . , xn) on Um s.t. ∂xn = DM .

Then, there exists R ∈ GL(n,OM(Um)) satisfying

DMR = O, Rnj = λ−1δnj

s.t., for any p ∈ P (λ)
(M,DM ,∆M ),

Y := R

φ∆M
(∂x1)p
...

φ∆M
(∂xn)p


gives a solution to a completely integrable Pfaffian system of rank n in the
form

(7) TdY = Φ̃B∞Y

where T ∈ OM(Um)
n×n and Φ̃ ∈ Ω1

M(Um)
n×n satisfy

DMT = −In, (detT ) = ∆M ,

DMΦ̃ = O, Φ̃DM
= In

and B∞ is a constant diagonal matrix.
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Theorem 1. Let P (λ)
(M,DM ,∆M ) satisfying the conditions (i)-(iii) in Definition 8

be given. Then, there exists uniquely a flat structure (M,∇,Φ, e, E) whose un-
derlying triplet (M, e,∆) satisfies (M, e,∆) = (M,DM ,∆M) and whose space of

Okubo-Saito potentials P (λ) satisfies P (λ) = P (λ)
(M,DM ,∆M ).

Moreover, two spaces of Okubo-Saito potentials P (λ1)
(M,DM ,∆M ) and P (λ2)

(M,DM ,∆M )

induce the identical flat structure (M,∇,Φ, e, E)

⇐⇒ P (λ1)
(M,DM ,∆M ) and P (λ2)

(M,DM ,∆M ) are transformed to each other by use of the
Riemann-Liouville integrals.

Corollary 2. A flat structure (M,∇,Φ, e, E) can be equipped with a Frobenius
metric ⟨−,−⟩ if and only if the space of Okubo-Saito potentials P (λ) admits a
monodromy invariant non-degenerate symmetric C-bilinear form for some value
of λ.
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Properties of the monodromy of P (λ)
(M,DM ,∆M )

· The monodromy group is generated by n generalized reflections {R1, . . . , Rn}:

Ri ∼ diag(e2π
√
−1ri, 1, . . . , 1), ri ∈ C.

· P (λ)
(M,DM ,∆M ) has a “good basis” {a1, . . . , an} (called canonical system) which

consists of the “roots” for the generalized reflections {R1, . . . , Rn}.

· The local monodromy at xn = ∞ is given by

e2π
√
−1B∞ = diag(e2π

√
−1λ1, . . . , e2π

√
−1λn).

So, P (λ)
(M,DM ,∆M ) may be considered a generalization of “root system” with a pre-

scribed “root basis” {a1, . . . , an} (=canonical system) and “the conjugacy class of a

Coxeter element” e−2π
√
−1B∞ (∼ c := R1R2 · · ·Rn).
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Example 2 (Period integrals of K. Saito’s primitive form).

Consider a universal unfolding of a simple singularity of ADE type (for instance).
The parameter space M of the unfolding is naturally equipped with the structure of
a triplet (M,DM ,∆M). Let ζ(λ) be a primitive form (which is defined by use of the
higher residue pairings on the de Rham cohomology). Then,

Per
(λ)
(M,DM ,∆M ) =

{∫
γ

ζ(λ)
∣∣∣∣ γ ∈ H

}
is a space of Okubo-Saito potentials associated with (M,DM ,∆M), where H denotes
the local system which consists of the Milnor lattice on each fiber. (The Pfaffian system
(7) is deduced from the “Gauss-Manin connection” on the de Rham cohomorogy.)

In this case, Per
(λ)
(M,DM ,∆M ) admits a monodromy invariant C-bilinear form which is

induced from the intersection form of the Milnor lattice.
Hence, there exists a unique Frobenius structure (M, ⟨−,−⟩,Φ, e, E) induced by

Per
(λ)
(M,DM ,∆M ).
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Example 3 (Canonical flat structure on MG for a well-generated u.g.g.r. G).

LetG ⊂ U(V ) be an irreducible well-generated unitary reflection group. As described
in §1, there exists a triplet (MG, DG,∆G) obtained canonically from G.

The dual space V ∗ of V is a set of homogeneous linear functions on V , therefore
V ∗ may be considered an n-dimensional C-vector space of maulti-valued analytic
functions on MG \∆G via the natural quotient mapping πG : V → MG = V/G.

Actually, V ∗ is a space of Okubo-Saito potentials of weght 1/h associated with
(MG, DG,∆G), where h := dn is the Coxeter number of G. (dn is the highest degree
of G.)

Hence, there exists a flat structure onMG uniquely determined by ((MG, DG,∆G), V
∗),

which is called the canonical flat structure associated with G.

(This flat structure was constructed and studied by Kato-Mano-Sekiguchi, Arsie-
Lorenzoni and Konishi-Minabe-Shiraishi.)
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§4 Flat structures on solutions to the sixth Painlevé equation

In the case of n = 3, an isomonodromic deformation of (5) is governed by a solution
to the sixth Painlevé equation (PVI).

Theorem 2 (Dubrovin (1-parameter case), Arsie-Lorenzoni, Kato-Mano-Sekiguchi).
There exists a correspondence between 3-dimensinal generically semisimple flat
structures and solutions to the sixth Painlevé equation

y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − t

)
y′2 −

(
1

t
+

1

t− 1
+

1

y − t

)
y′

+
y(y − 1)(y − t)

t2(t− 1)2

(
α + β

t

y2
+ γ

(t− 1)

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
.

In particular, 3-dimensinal generically semisimple Frobenius manifolds corre-
spond to solutions to certain 1-parameter family of PVI.
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Remark 8. The correspondence stated in Theorem 2 is not one-to-one but many-to-
many:

Given a 3-dimensinal semisimple flat structure, the corresponding solution to PVI

is determined up to Bäcklund transformations.

Oppositely, given a solution to PVI, many flat structures may correspond to it in
general. However, the underlying triplet (M, e,∆) is unique for a solution to PVI,
which means that the triplets (M, e,∆) provide an invariant of solutions to PVI.
(But this invariant is not complete.)
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Definition 9. Let y = y(t) be an algebraic solution to PVI. Then, a complete
algebraic curve Π over C is said to be a (minimal) Painlevé curve if there exist two
rational functions t, y on Π:

(8)

Π
t

↙
y

↘
P1 P1

satisfying the following conditions

(i) t is a Belyi function.

(ii) For every branch of t on a simply-connected open set U ⊂ P1 \ {0, 1,∞},
y = y(t) satisfies PVI for some value of the parameter θ = (θ0, θ1, θt, θ∞).

(iii) Let C(Π) denotes the field of rational functions on Π. Then C(t, y) = C(Π)
holds.
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Example 4 (Algebraic solutions (H3) and (H3)
′ by Dubrovin-Mazzocco).

It is known that there are the following two algebraic solutions (H3), (H3)
′ related to

the Coxeter group W (H3):

(H3): Π ∼= P1, θ = (0, 0, 0,−4/5).
A parameter representation is given by

y = (u−1)2(3u+1)2(u2+4u−1)(119u8−588u6+314u4−108u2+7)2

(u+1)3(3u−1)P (u)
,

t =
(u− 1)5(3u + 1)3(u2 + 4u− 1)

(u + 1)5(3u− 1)3(u2 − 4u− 1)
,

where P (u) is a polynomial defined by

P (u) =42483u18 − 719271u16 + 5963724u14 + 13758708u12 − 7616646u10

+ 1642878u8 − 259044u6 + 34308u4 − 2133u2 + 49.

Frobenius potential: w = (w1, w2, w3) = (1/5, 3/5, 1)

FH3 =
t1t

2
3 + t22t3
2

+
t21t

3
2

6
+
t51t

2
2

20
+

t111
3960
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(H3)
′: Π ∼= P1, θ = (0, 0, 0,−2/5).
A parameter representation is given by

y =
(u− 1)4(3u + 1)2(u2 + 4u− 1)(11u4 − 30u2 + 3)2

(u + 1)(3u− 1)(3u2 + 1)P ′(u)
,

t =
(u− 1)5(3u + 1)3(u2 + 4u− 1)

(u + 1)5(3u− 1)3(u2 − 4u− 1)
,

where P ′(u) is a polynomial defined by

P ′(u) = 121u12 − 1942u10 + 63015u8 − 28852u6 + 4855u4 − 342u2 + 9.

Frobenius potential: w = (w1, w2, w3) = (3/5, 4/5, 1)

FH ′
3
=

t1t
2
3 + t22t3
2

− t41z

18
− 7

72
t31z

4 − 17

105
t21z

7 − 2

9
t1z

10 − 64

585
z13

where z is a solution to an algebraic equation

z4 + t1z + t2 = 0.
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The algebraic solutions (H3) and (H3)
′ correspond to the common triplet

(MH3, DH3,∆H3)
∼= (MH ′

3
, DH ′

3
,∆H ′

3
)

which is isomorphic to the canonical triplet associated with W (H3). The Painlevé
curve Π of (H3) and (H3)

′ can be constructed from the canonical triplet (MH3, DH3,∆H3).
(C(Π) is isomorphic to a splitting field of the discriminant

hH3(x) =x
3
3 − s1(x

′)x23 + s2(x
′)x3 − s3(x

′)

=x33 +

(
x21x2 +

x51
10

)
x23 −

(
9

5
x1x

3
2 +

6

5
x41x

2
2 +

x101
100

)
x3

+
27

125
x52 +

23

25
x31x

4
2 +

x61x
3
2

50
+

2

25
x91x

2
2 −

x121 x2
100

− x151
1000

as a monic polynomial of degree 3 in x3.)

This is the reason why the parameter representations of t for (H3) and (H3)
′ mu-

tually coincide.
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The algebraic solution (H3) corresponds to the canonical flat structure associated
with W (H3), i.e., the space of Okubo-Saito potentials is V ∗ for a standard represen-
tation W (H3) ⊂ U(V ). The weight of V ∗ is 1/10.

Let S3(V
∗) denote the degree 3 part of the symmetric tensor poduct of V ∗. Then,

S3(V
∗) is a 10-dimensional representation space ofW (H3) but not irreducible. S3(V

∗)
includes an irreducible representation space of dimension 3 ofW (H3), which is denoted
by (V ∗)′. (V ∗)′ comes from an outer automorphism of W (H3) and is not equivalent
to V ∗.

(V ∗)′ forms a space of Okubo-Saito potentials of weight 3/10 associated with the
triplet (MH3, DH3,∆H3).

The algebraic solution (H3)
′ corresponds to the flat structure whose space of Okubo-

Saito potentials is (V ∗)′.

Problems.

• Classify triplets (M,DM ,∆M) corresponding to solutions to PVI.

•When two solutions to PVI correspond to a common triplet (M,DM ,∆M), does
any representation-theoritical relationship exist between their spaces of Okubo-
Saito potentials?
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