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§]_ Triplet (M, DM, AM)

In this talk, triplet (M, Dys, Ay) introduced in the following definition plays a
fundamental role.
Definition 1. A triplet (M, Dy, Ay) consists of
e M: an n-dimensional complex manifold,
e D), a holomorphic vector field on M (called primitive vector field),
e Ay afree divisor on M (i.e., Der(—log Ayy) is a locally free sheaf),
which enjoy the following properties (i)-(iv):

(i) 3 a projection m : M — M’ for an (n — 1)-dimensional complex manifold M’
such that 7=1(U!) = U’ x C for an open cover {U!},e; of M’
e

(ii) Let '* = (x1, ..., x,_1) be alocal coordinate system on U/ and x® = (x'*, x,)
be one on 7~ (U,). Then the coordinate transformation on 7~ (U, ) N~ (U})
has the form

2 = f(@"), a2} =cx, +g(a")

where ¢ is a non-zero constant.



(iii) The primitive vector field D)y is represented as Dy = dqOpo (do € C*) on
o1 U!).

iv) A defining function A, of the divisor Ay; on 7~1(U) is a monic polynomial of
degree n w.r.t. z:

ha(2®) = (z)" — sT(ap)" ™ + -+ (=1)"sy, s =50 (a') € Opp(U))
and satisfies

(9:U‘f‘ 636‘13‘ (93:%
E E t. . E /
(1) ds{ 0sg o s 7é 0 € OM’(Ua)
0z, 0,1 0z,
« «
—n —(n—1)sf - —sy,



Remark 1. By the conditions (i) and (ii), 7 : M — M" is a fiber bundle whose fibers
are isomorphic to an affine line C. This fiber bundle structure = : M — M’ can be
specified by the primitive vector field D, as

7T_1(9M/ = {f € Ou | Dyf = 0}

So, we call (M, Dyy) an affine line bunlde with a primitive vector field.

Remark 2. By the conditions (i)-(iv), we have
(2) VO € Dery(—logAyy) st. [Dy, 0] =0 = 6 =0.



Lemma 1. Let a triplet (M, Dy, Ayr) be given. Then, pa,, € Endp, (Dery)
satisfying the conditions

(i) Im pa C Derp(—log Ay,
() (det pa) = Aur,
(iii) Liep,,on,, = 1pery,
(if it exists) is unique for (M, Dyr, Apr) and induces an isomorphism
on,, - Deryy = Dery(—log Apy).

o, s called the canonical isomorphism associated with the triplet (M, Dy, Apy).

Proof. The lemma follows from (2) and the Saito criterion for free divisors. ]

Definition 2. Assume that the canonical isomorphism @a,, associated with a triplet
(M, Dy, Ayr) exists. Then, Ea,, = @a,,(Dym) is a (global) holomorphic vec-
tor field on M. Ea,, is called the Euler vector field associated with the triplet
(M, Dy, App).



The following proposition provides a typical situation where the canonical isomor-
phism pp,, exists.

Proposition 1. Consider the case of M = C" = {x = (x',z,)} and Dy = 0,, .
(In this case, M' = C" ' = {x' = (z1,...,2,-1)}.) Let the defining polynomial
Of AM

hx) =z — syl + -+ (=1)"s,(z') € Clx]

be weighted homogenious w.r.t. the (usual) Euler operator

n
E = E W;T;0y,
i=1

with w; € Rog (1 <4 < n) in order of
O<w Swy < -+ <wp <wy, =1,
i.e., Eh(x) =nh(x).

Then, there exists the canonical isomorphism @na,, associated with the triplet
(M, DM, AM) and EAM — SOAM(DM> = K.



Example 1 (Canonical triplet (Mg, Dg, Ag) associated with a well-generated u.g.g.r.
G).

G C U(V): an irreducible well-generated (finite) unitary reflection group of rank
n

(i.e., G is a finite subgroup of U(V') generated by n reflections.)

Then, we can construct a triplet (Mg, Dg, Ag) canonically from G in the following
manner.



- F = (F1, ..., F,): aset of basic invariants (i.e., a system of homogeneous gener-
aters of the ring of G-invariant polynomial functions on V')

-d = (dy,...,d,): the degrees of G (i.e., d; = deg F;) in order of
0<di <doy <---<dp1 <d,

d is uniquely determined by G (i.e., does not depend on the choise of F).

- Mg = V/G: the orbit space of G
We have an isomorphism Mg = C" ={x = (&', x,)} viax = (F1,..., F,).

- D¢ := 0,, is uniquely determined (up to non-zero constant multiplicity) by G.

- hg r(x): the disciriminant of G
he () is a monic polynomial of degree n w.r.t. x,:
hor(x) =2 —si(x)a! "+ + (=1)"s,(2) € Rg

and weighted homogenious w.r.t. E =>"" | w;x;0,., where w; := d;/d,.



Let A be a divisor on M defined by the discriminant hg z().
(Ag C Mg agrees with the branch locus of the quotient mapping V- — V/G = Mg.)

[t is known that the divisor Ag is free and it can be confirmed that the triplet
(Mg, Dg, Aq) satisfies the conditions (i)-(iv) in Definition 1.
Definition 3. (Mg, D, Ag) is called the canonical triplet associated with G.

In virtue of Proposition 1, the canonical triplet (Mg, Da, Ag) associated with G
admits the canonical isomorphism ¢, .. In particular, we have Ea, = ¢oa.(Dg) = E.



§2 Flat structure (without metric) and space of Okubo-Saito poten-
tials

M : an n-dimensional complex manifold

TM: the (holomorphic) tangent bundle of M

On (= Derys): the sheaf of holomorphic sections of T'M
Definition 4 (C. Sabbah). A flat structure (or Saito structure) (without metric)
on M is a 5-tuple (M, V,®, F, e) which consists of

(i) V is a flat and torsion-free connection on T'M
(ii) @ is a symmetric Higgs field on T'M,

(iii) £ and e are global sections on T'M (called Fuler field and unit field
respectively)

and satisfies certain integrability condition (this integrability condition will be stated
later in a concrete form).



Remark 3. The symmetric Higgs field ® provides a commutative and associative
O-algebra structure with the unit e on ©,; by

uov:=d,(v) (u,v € Oyp).

Remark 4. A metric (—, —) on M (i.e., a nondegenerate symmetric Oy-bilinear form
on O)y) is called Frobenius metric if 3r € C such that (—, —) satisfies

(wowv,w)y = (u,vow)
d{u,v) — (Vu,v) — (u, Vo) =0
E<U,’U> o <[E,U],’U> o <U, [E7U]> = T<U,U>
for Vu,v,w € ©y,. When a flat structure (M, V, ®, e, F') is equipped with a Frobe-

nius metric (—, —), (M, (—, =), ®, e, F) forms a Frobenius manifold (in the sense of
B. Dubrovin).



In what follows, we assume the following conditions on (M, V,®, e, E):

Semisimplicity condition (SS): &(£) € Endp,,(0)/) is diagonalizable at any
point on M. The eigenvalues (21, . . ., z,) of ®(£) are mutually distinct at generic
points on M.

Nonresonance condition (NR): V(E) € Endp, (0)) is diagonalizable at
any point on M. The eigenvalues (wq,...,w,) of V(F) satisfy w, = 1 and

w; —w; & Z\ {0} for i # j.

Remark 5. By the condition (SS), the Oy-algebra structure o decomposes into the
direct product of 1-dimensional simple O,;-algebras

azl. o azj = 52-3-822., (1 S Z,j S n)

by taking (z1,...,2,) as a local coordinate. So, (z1,...,2,) is called a canonical
coordinate of the flat structure (M,V,d, e, F).

Definition 5. The discriminant locus A of (M,V,®, e, E) is the divisor on M
defined by det ®(F) = 0.



Proposition 2. Let a flat structure (M,V,®, e, E) be given. Then, (M, e, A)
forms a triplet in Definition 1. Moreover, the triplet (M, e, A) admits the canon-
ical isomorphism pa associated with (M, e, A) and we have pn = O(E). In
particular, we have Ex = pa(e) = O(E) = F.

Corollary 1. Let two flat structures (M, V¥ dF e E¥) (k = 1,2) be given on M.
Assume the equality (M, e', AY) = (M, e, A?) holds for the triplets underlying the
respective (M, V¥ &% e EF) (k = 1,2). Then, we have et = €%, B! = E? &' =
P2,

Proof. By the assumption and Proposition 2, we have e! = ¢, B! = E? O} El) =
®*(E?). Then, by the condition (SS), we see that ®! = ®* at generic points on

M because the canonical coordinate (z1,...,z2,) is given by the set of eigenvalues
of ®Y(EY) = ®*(E?). Therefore, ®* = ®* holds at any point of M by the identity
theorem. ]

Remark 6. In virtue of Corollary 1, the Oy-algebra structure o and the Euler field
E of (M,V,®, e, F) are uniquely determined by its underlying triplet (M, e, A).

(In other words, the “F-manifold structure with the Euler field” underlying a flat
structure (M, V, @, e, F) is uniquely determined by its triplet (M, e, A).)



Definition 6. For a flat structure (M, V,®, e, E'), a local coordinate system ¢t =

(t1,...,t,) on an open set U C M is said to be a flat coordinate it V(0;,) = 0 holds
for any ¢ € {1,...,n}.

By the conditioin (NR), we may take a flat coordinate t = (1, ...,%,) s.t.

(3) € = (‘?tn, E = Z wztzﬁtl

1=1

In the sequel, we take a flat coordinate t as satisfying (3).



We introduce (local) representation matrices of —®(E), V(E) € Endp,,(©1r) and
d € O (Endp,,(On)) by taking (9y,, . ..,:,) as a basis of ©y(U):

(1) T = (Tij)1<ij<n € Op(U)™*" is defined by

~Dg, (E) = T;i0,.
j=1

(11) Boo = ((Boo)ij>1§i,j§n < OM(U>n><n 1S deﬁned by

n

Vati(E> — Z(B%)ijatj'

J=1

By (3), we see that By, is a constant diagonal matrix: By, = diag(wy, ..., w,).

(iii) & = (Dij)1<ijen € Q5 (U)™™ is defined by

J=1



In terms of the matrices 7, Boo, @, the integrability condition required in Definition 4
is equivalent to that of the following linear Pfaffian system

(4) TdY = OB.Y.

Remark 7. By fixing the variables t' = (¢1,...,t,-1), (4) reduces to an ordinary
Fuchsian differential equation (called Okubo normal form)

dY
(5) T = B.Y

w.r.t. the variable t,,. (Note that the variable t,, is specified by the unit field (=primi-
tive vector field) e = 0y .) The completely integrable Pfaffian system (4) is equivalent
to an isomonodromic deformation of (5).



Lemma 2. Let a flat structure (M,V,®, e, E) be given and t = (t1,...,t,) be a
flat coordinate on an simply-connected open set U C M.

For A € C s.t. det(By — 14+ \) # 0, we consider the following completely
integrable Pfaffian system

(6) TdY = dB.Y,

where we put By := By — 1+ A. Then, there exists an n-dimenstonal C-vector
space PN € Oy (U) s.t. any solution to (6) on U is given as

0i(p)
Y=-B] :
0,,(p)
where 0; = pa(0r,) = Py, (E) € Dery(—log A)(U), (1 <i<n).

. pePW

Definition 7. For a flat structure (M, V, ®, e, F), the n-dimensional C-vector space

PW in Lemma 2 is called the space of Okubo-Saito potentials of weight \ associated
with (M, V,® e, F).



Properties of P associated with (M, V,®, e, E)

. For any p € PW, Ep = Ap holds.

- PW is uniquely determined by (M, V, ®, e, E), (i.e., does not depend on #).

P g P g

. Every p € PW can be analytically continued over M \ A, where M \ A denotes
the universal covering space of M \ A.

. Define a connection V) on © M\A by

~

V&A)’U =V — Vi, E+AE touon, u,v € Oina-
Take a basis (py,...,p,) of PN, Then VN(9,) =0 (1 <i < n),

i

ie., (p1,...,pn) forms a flat coordinate system w.r.t. the connection \A

- Let P (4 = 1, 2) be two spaces of Okubo-Saito potentials of weight \; (i = 1, 2)
associated with (M,V,® e, F). Then, they are transformed to each other by
the Riemann-Liouville integrals:

pt) e PA 5 p(g) = / (tp — so) 2 D 5,)ds, € PP
A



§3 Space of Okubo-Saito potentials associated with a triplet (M, Dy, Ay)

In this section, we DO NOT assume the existence of a flat structure (M, V,®, e, F).
[nstead, we start from a triplet (M, Dy, Aps) with the canonical isomorphism ¢a,,,.

Definition 8. Let a triplet (M, Dy, Ajs) with the canonical isomorphism @a,, be
oiven. Let 7384) DarAsp) be an n-dimensional C-vector space of holomorphic functions

on M/\\KM for A € C\ {0}.

7384) DA, B said to bea space of Okubo-Saito potentials associated with (M, Dy, Ayr)

if it satisfies the following conditions (i)-(iii):

(i) 7384) Dyy.A,,) 18 @ linear representation space of w1 (M \ Ayy) via the covering
transformations of M \ Ay — M\ Ayy.

(ii) Ea,,p = Ap holds for any p € P((])\\f),DM,AMV where Ea,, = ¢a,, (D).



(iii) For any m € M, take a simply-connected neighbourhood U, and a local
coordinate system x = (:1:1, ..., xy) on Uy, st 0y, = Dy

Then, there exists R € GL(n, Oy (U,,)) satistying
DyR=0, R,j=M\"6,

(M)
s.t., for any p € P(M,DM,AM)7

SOAM(am)p
Y =R :
P24 (Or, )P
gives a solution to a completely integrable Pfaffian system of rank n in the
form
(7) TdY = dBY

where T € Oy (U,,)" and & € Qb (U,,)"" satisty
DMT = _In; (det T) = AM,
Dy® =0, &p, =1,

and B is a constant diagonal matrix.



Theorem 1. Let PMD A, Satisfying the conditions (i)-(iii) in Definition 8
be given. Then, there e:msts uniquely a flat structure (M,V,®, e, F) whose un-
derlying triplet (M, e, A) satisfies (M, e, A) = (M, Dy, Ay) and whose space of

Okubo-Saito potentials PV satisfies P = 7384) DupAnp)”

Moreover, two spaces of Okubo-Saito potentials P((j})DM Ay) and 77;42 Dy Asy)
induce the identical flat structure (M,V,®,e, F)

— PMD Ay 2 and P((J?;,)DM,AM) are transformed to each other by use of the
Rzemann Liouwille integrals.

Corollary 2. A flat structure (M,V,®,e, E) can be equipped with a Frobenius
metric (—, =) if and only if the space of Okubo-Saito potentials P admits a
monodromy tnvariant non-degenerate symmetric C-bilinear form for some value

of A.



Properties of the monodromy of 7784) Dy Ayy)

- The monodromy group is generated by n generalized reflections { Ry, ..., R,}:

R; ~ diag(e%\/__l”, L,....,1), reC.

: 77((;4) DyrAyy) has a “good basis” {aq,...,a,} (called canonical system) which
consists of the “roots” for the generalized reflections { Ry,..., R,}.

- The local monodromy at x,, = oo is given by

6277\/—1300 _ diag<e27r\/—1)\1’ . 627T\/—1)\n>.

S0, 77((24) DypAyy) 0AY be considered a generalization of “root system” with a pre-

scribed “root basis” {ay,...,a,} (=canonical system) and “the conjugacy class of a
Coxeter element” e~ 27V 15 (~c:=RiRy - Ry).



Example 2 (Period integrals of K. Saito’s primitive form).
Consider a universal unfolding of a simple singularity of ADE type (for instance).
The parameter space M of the unfolding is naturally equipped with the structure of
a triplet (M, Dys, Ayr). Let ¢ be a primitive form (which is defined by use of the
higher residue pairings on the de Rham cohomology). Then,

PerV v e 7—[}

(M,Dpr,Anp) { / C
is a space of Okubo-Saito potentials associated with (M, Dy, Ayy), where H denotes
the local system which consists of the Milnor lattice on each fiber. (The Pfaffian system
(7) is deduced from the “Gauss-Manin connection” on the de Rham cohomorogy.)
In this case, Pe'rgﬁ DurAnp) admits a monodromy invariant C-bilinear form which is
induced from the intersection form of the Milnor lattice.

Hence, there exists a unique Frobenius structure (M, (—, —), ®, e, E') induced by

(A)
Pe'r(MD Ayp)




Example 3 (Canonical flat structure on Mg for a well-generated u.g.g.r. G).

Let G C U(V) be an irreducible well-generated unitary reflection group. As described
in §1, there exists a triplet (Mg, Dg, Ag) obtained canonically from G.

The dual space V* of V' is a set of homogeneous linear functions on V', therefore
V* may be considered an n-dimensional C-vector space of maulti-valued analytic
functions on Mg \ Ag via the natural quotient mapping 7g : V. — Mg = V/G.

Actually, V* is a space of Okubo-Saito potentials of weght 1/h associated with
(Mg, D¢, Ag), where h := d,, is the Coxeter number of G. (d,, is the highest degree
of G.)

Hence, there exists a flat structure on Mg uniquely determined by ((M¢q, Dg, Ag), V™),
which is called the canonical flat structure associated with G.

(This flat structure was constructed and studied by Kato-Mano-Sekiguchi, Arsie-
Lorenzoni and Konishi-Minabe-Shiraishi. )



§4 Flat structures on solutions to the sixth Painlevé equation

In the case of n = 3, an isomonodromic deformation of (5) is governed by a solution
to the sixth Painlevé equation (Pyy).

Theorem 2 (Dubrovin (1-parameter case), Arsie-Lorenzoni, Kato-Mano-Sekiguchi).
There exists a correspondence between 3-dimensinal generically semisimple flat
structures and solutions to the sixth Painlevé equation

//_1 l_l_ 1 4+ 1 12 l_l_ 1 + 1 /

Y 2\y y—1 y—t Y t t—1 y—t Y
— 1)y —t t t—1 t(t—1

SR UL Ty Ly 1)

t2(t —1)° (y—=17 (y—1)

In particular, 3-dimensinal generically semistmple Frobenius manifolds corre-
spond to solutions to certain 1-parameter family of Pyr.




Remark 8. The correspondence stated in Theorem 2 is not one-to-one but many-to-
many:

Given a 3-dimensinal semisimple flat structure, the corresponding solution to Py
is determined up to Backlund transformations.

Oppositely, given a solution to Py, many flat structures may correspond to it in
general. However, the underlying triplet (M, e, A) is unique for a solution to Py,

which means that the triplets (M, e, A) provide an invariant of solutions to Pyr.
(But this invariant is not complete.)



Definition 9. Let y = y(t) be an algebraic solution to Py;. Then, a complete
algebraic curve IT over C is said to be a (minimal) Painlevé curve if there exist two
rational functions ¢,y on II:

(8) soN

satistying the following conditions
(i) ¢ is a Belyi function.

(ii) For every branch of ¢ on a simply-connected open set U C P!\ {0,1, oo},
y = y(t) satisfies Py for some value of the parameter 8 = (6, 01, 6;,0).

(iii) Let C(II) denotes the field of rational functions on II. Then C(t,y) = C(II)
holds.



Example 4 (Algebraic solutions (Hs) and (H3)" by Dubrovin-Mazzocco).

[t is known that there are the following two algebraic solutions (Hs), (Hs)' related to
the Coxeter group W (Hs3):

(H3): I=P 0 =(0,0,0,—4/5).
A parameter representation is given by

 (u=1)2(3u+1)2 (P +4u—1) (11968 —588u0+314u* —108u2+-7)2
o (u+1)3(3u—1)P(u) ?

C (u—1Bu+1)%(u?+4u —1)
(w4 1)53u — 1)3(u? — 4u — 1)’
where P(u) is a polynomial defined by

P(u) =42483u'® — 719271u'% 4- 5963724u'* 4- 137587081 — 76166461
+ 1642878u® — 2590444’ 4 34308u* — 2133u” + 49.

Frobenius potential: w = (wq, wy, w3) = (1/5,3/5,1)
tits +t5ts Gty 3t 4y
FH3:13 23+12+12Jr 1
2 § 20 3960




(H3): =P 6 =000 -2/5).
A parameter representation is given by
(w — 1)*3u + 1)*(u? + 4u — 1)(11u* — 30u? + 3)*
(u+1)Bu — 1)(3u? + 1)P'(u) ’
 (w—1°Bu+1)°(v® +4u —1)
(w4 1)53u — 1)3(u? — 4u — 1)’
where P'(u) is a polynomial defined by

P'(u) = 1216 — 1942u'% 4 63015u® — 28852u° + 4855u* — 342u® + 9.

’y:

Frobenius potential: w = (wq, wy, w3) = (3/5,4/5,1)

Lts+ 13t iz T Bt 1_775%27 _ gtlzm _ 6_4le
2 18 72 105 9 585

where z is a solution to an algebraic equation

F, =
Hy

z4+t1z+t2:().



The algebraic solutions (Hj) and (H3) correspond to the common triplet
(MH37 DH37 AH?)) = <MH§7 DHé? AHé)

which is isomorphic to the canonical triplet associated with W (H3). The Painlevé
curve II of (H3) and (H3)' can be constructed from the canonical triplet (Mg, Dy, Ap,)-
(C(IT) is isomorphic to a splitting field of the discriminant

hi,(x) =x5 — 51(2) 25 + so(x') T3 — S3()

az? 5 9 6 4 9[;%0
—:c3 -+ 51315172 +— | T3 — :1:1:172 + xle +— | X3

10 5 5 100
27 23 N3 2 4, 33%25132 r7’
T 13582 T 350 123+ 50 2572 T 00 T 1000

as a monic polynomial of degree 3 in x3.)

This is the reason why the parameter representations of ¢ for (Hs) and (Hj)" mu-
tually coincide.



The algebraic solution (H3) corresponds to the canonical flat structure associated
with W (Hj3), i.e., the space of Okubo-Saito potentials is V* for a standard represen-
tation W (H3) C U(V). The weight of V* is 1/10.

Let S3(V*) denote the degree 3 part of the symmetric tensor poduct of V*. Then,
S3(V*) is a 10-dimensional representation space of W (Hs) but not irreducible. S3(V*)
includes an irreducible representation space of dimension 3 of W ( Hs), which is denoted
by (V*)'. (V*) comes from an outer automorphism of W (Hj3) and is not equivalent

to V'*.

(V*) forms a space of Okubo-Saito potentials of weight 3/10 associated with the
triplet <MH3, DHS’ AH3>

The algebraic solution (H3)" corresponds to the flat structure whose space of Okubo-
Saito potentials is (V*)'.

Problems.
e Classify triplets (M, Dy, Ayy) corresponding to solutions to Pyr.

e When two solutions to Pyy correspond to a common triplet (M, Dy, Ayr), does
any representation-theoritical relationship exist between their spaces of Okubo-
Saito potentials?



