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An ODE on the complex plane.

d
d—z =y sye i e O,

A study of singularities of solutions.
fixed sing. m=) sing of f
movable sing. mm) sing depending on initial condition.

Painleve property:
ODE is said to have the Painleve property if any
movable singularities are poles.
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Thm. (Poincare, Fuchs)
If a first order ODE has the Painleve property,
it is equivalent to one of
(i) Solvable.
(ii) Riccati.
(iii) Weierstrass.
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Thm. (Painleve, Gambier, 1900)

If a second order ODE has the Painleve property,
it is equivalent to one of
(i) Solvable.
(ii) Linear.
(iii) Weierstrass.
(iv) the Painleve equations P1 to P6.
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Painleve equations are written as Hamiltonian systems.
dx g 8HJ dy - 8HJ
deii. Ayt dzT iOr

Hamiltonian functions are given by

1
0

2
1 1 1
Hy = 533‘2 — 594 = 5292 = oY

Hyy = —zy° + 2%y — 2zyz — 20z + 28y
zHm = 2°y* — 2y* + 2z + (o + B)zy — oy
zHy =x(x+ 2)y(y — 1) + asyz — agzy — ayx(y — 1)

2(z — 1)Hvi = y(y — 1)(y — 2)x* + aa(aq + a2)(y — 2)

oy = Dy 2} Losuly =2 taoyly = 1))z



The space of initial conditions.

Riccati equation. Any solution is meromorphic.

(Putting ¢y = ¢/ /u, u satisfies a linear equation.)

dy
T a(z)y” + b(z)y +

lyzl/ﬁ

d§
T —c(2)€ — b(2)¢

[y:C—>CP1 is

holomorphic.

CPlis called the
space of initial conditions.
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The space of initial conditions ...
A fiber sp. of a fiber bundle, on which any solutions
have analytic continuations for any 2.
1-dim:
Riccati «—> CP' (¢ =0)
Weierstrass <— torus (g = 1)
Solvable «—> (9 > 2)
2-dim:
(P1) ~ (Pyvi) <«—> a certain class of alg. surfaces
characterized by the nine points blowup
of CP? and the Dynkin diagrams D.

(Py) |(Prp)| Pov)|(Prn)| (Pv)|{(Pvr)
D |Es | Er | Eg| Dg| Ds| Dy
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Newton diagram of ODEs.

Ex: The first Painleve equation.

(-1,2,1) (-1,0,2)
S meudiade

=Gy

dy _HVGTG')' (11_111)
— =

"Newton diagram is the convex )
hull of these points in R”.

In this example, they lie on the
plane

W 3r+2y+4z=>5 )

Newton diagram === Toric variety
In this example, the associated toric variety is

the weighted projective space CP3(3,2,4,5).
This space provides a suitable compactification of
the natural phase space;

C’ = {(z,y,2)} C CP’(3,2,4,5)



The weighted C* action:

2 o) =\ ey e A .
The quotient space is called the weighted
projective space C;/~ = CP?(3,2,4,5).

KA weighted projective space is an orbifold
\(algebraic variety) with singularities.

orbifold: M ~ UUa/Fa.

U, : manifold
I's : finite group



CP*(3,2,4,5)is defined by [z, y, z,&] ~ [Nz, Ny, \*z, Ne],

(i) When = # 0,
Y 2 3

ARSI RN ST

~ [1,WY1,W2Z1,6051].

[z,y,2,€] ~ |1 |:=1[1,Y1, Z1,&].

The subset {x # 0} is homeo. to C*/Zs;.

(ii) When ¥ # 0,
4 = e -
[mjy,z,e] ~ [— 1 5/2] g _X27 1722752]

yoLZe =2y _
~ _—XQ, 1, ZQ, —62].

The subset {y # 0} is homeo. to C?/Z,.



(i) The subset {z # 0} is homeo. to C3/Z,.
(iv) The subset {¢ # 0} is homeo. to C*/Zs.

We obtain

[CP3(3,2,4,5) = 27 G /75 - Co AR C3/Z5J

Inhomogeneous coordinates:
(Yl, Zl,El), (XQ, Zg, 62), (Xg, Y3,€3), (X4, Y4, Z4)

In what follows, (X4, Y, Z4) = (2, ¥, 2)

( SR 81—3/5 = X282_3/5 £ X3€;3/5
e s Y151_2/5 i 52_2/5 i Y36;2/5
| 2= 2151_4/5 = Z282_4/5 :554/5




4 =
P(3,2,4,5) = C°/Z; U'C /7 U C° [ 7, U C E
U NV, Ny U
(Ya,Z1,¢e1); (X2, 29,2, (X3,Ys,€3), (&, Uyel

\
Cellular decomposition

J

[ EBP(3,2,4:5)= C?/Zs U CP(3,2,4) ]

The first Painleve equation will be given on C?/Z; .
2-dim weighted proj. space CPQ(S, 2,4) is attached

at “infinity” . ,
A study of a singularity B @
(z =oc0c0r y=o0c0r z =00). Mh
=) A study of the behavior v’
around CP*(3,2,4). ‘

. /




4 -
EP°(3,2.4,5) =C° /%5 U CY /2 U C i F ColFE
Ny Ny Ny Ny
(Y1, Z1,€1), (X2, Z2,€2), (X3,Y3,€3), (mayaz))

-
Give the (P1) on the fourth coord (z, v, 2) .

In the other coordinates,

dx ; (o dYa = 200 (20 Zi3 )=
E = 6y PELY < deq 3 561(2Y12 = Z1/3)
dys 3 dZ, _ 4Z,(2Y2 + Z1/3) — e
dz B | dey Deq (2Y12 s 21/3) ’
(dX, 3X3-12-2Z, [ dX3 _4-—4Y5+3Xze;
< deo A 9 X5 < d€3 56%
dZ2 = 4X2Z2 o5 262 dﬁ 18 _4X3 o 2Y353
\ dEQ i3 5€2X2 : ¢ d53 55% :

(P1) is a rational ODE on CP?(3,2,4,5).
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Thm. Any solutions of (P;) are meromorphic.
For the proof, suppose that a sol. of (P;)has a singularity
at finite £ = Zx;
z(z) > 00 ory(z) > ¢ as z = z,
The coordinate change

Xg xy_g/z X2 — 2
€9 y_5/2 go — 0

It is convenient to rewrite as a 3-dim dynamical system as

2 :
( ddX2=3X2g1§(_2ZQ )(2:%)(22_6_22
< €9 €219 _ ZQ Y QZQXQ =T
@:4X2Z2—2€2 8 ZEEX
\ d€2 5€2X2 ’ . 2 - -

This system has a fixed point (X2, Z2,e2) = (2,0,0).



The solution converges to the fixed point:

(e ()
(ngzg,ég) — (2,0,0) J 0 4 —1
0O O 5

Poincare’s linearization theorem.

d2y S XZZ%XQQ_G_ZQ
@ZG?J P - — Lo = 245X5 — €9

s =S
Eo — 582X2

dQ_y — Gy*

dz? I 1 X

[ %= 6u—v ( X = 6X — Z + (nonlinear)
§ v=4v—w <ummmm <{ 7, =475 — e5+ (nonlinear)
3 =" Hw Linearization £o9 = DEy + (nonlinear)

\



Normal form theory of dynamical systems

ﬁnearization Theorem.(Poincare) \
Holomorphic vec. field on C"

Jz+ f(z), [~ O(|z]]%)

with the fixed point £ = 0.
If eigenvalues of the Jacobi matrix .J satisfy a certain algebraic
condition, then Jlocal analytic coord. transformation near x = ()

@. Jx + f(x)is transformed into the linear vec. field JZ . /

Remark. Among eigenvalues 6, 4, 5 at the singularity, 4 and 5 are the
same as the last two of the weight CP3(3,2,4,5) (not new information) .

(the eigenvalue 6) = The weighted degree of the Hamiltonian
= The Kovalevskaya exponent of (P1)
= The place of a free parameter of the Laurent
series solution of (P1).



7

Thm. Zlocal analytic transformation defined near each R

movable singularity s.t.
(Pr) is transformed into the integrable Hamiltonian system

Ues 6 2
k- b
[ Cor. Any solutions of (Pr) are meromorphic. ]

All Painleve equations are locally transformed
into integrable equations near poles.
(necessary condition for the Painleve property)
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The fixed point (X3, Z,,22) = (2,0,0) is a singularity of
the foliation defined by (7).

mmm) resolution of sing. by a blow-up.

NIER(ON
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d—$:6y2+z fX2:%X§—6—22
dz ) { /> =2/5X>5 — &5
@:x L 2= 22Xy

dz

(1, = 6u + (nonlinear)

: ' { ¥ = 4v + w + (nonlinear)
affine i = 5w,

We introduce the weighted blow-up by

e =t = Do e — oW
DET= ) S = Uy = w33
T — e e e

The exceptional divisor is CP*(6,4,5)

¢ d 1
ST~ (’Ugwg JE 3'1)3’w§ + 2fw§’ — 8u3'03'w§ — 1Ofu,3’w§ + 12u§w§)
| < d’Ug 8
% — 1 (4+U3’£U§ —|—wg o 2U3w6) 2
\ d’Ug 4




= 1
A (UQw + 3vw? + 2w’ — Suvw® — 10uw* + 12u2w5)

dv ~ 8
(Pr) e 4
filn (4 + vw* + w° — 2uw®).

\ dv 4
The coordinate transformation is given by
[ = uw? — 2w 3 — %zw — %w2
Eol= ey — W2
§ < =7
KThe independent value < is not transformed. \

(%) defines a fiber bundle over 2 -space.
@ (%) is symplectic —2du A dw = dz A dy
) C%u,w)/Zg is an algebraic surface M (z) given by
V2=UW?*+2:W° 4+ 4W

Q(*) defines an symplectic alg. surface C? | U M(z)/

(w,w)




ﬂm. The surface C(u w) Y M(z) is a space of initial \
conditions for (Py).

i.e. any solutions of (Pf)are holomorphic global sections
of the fiber bundle (C? (ww) Y M(2)) X Cyy .

Conversely, if a given ODE is polynomial on
\C(u wy UM(z) , thenitis (Pr). /

y C%uw)UM

Weighted compactlﬂcatlm
ﬂVelghted blowup

e
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Consider the n-dim polynomial system on C”

da?,,;

dZ '_'fkcxla"'7£Enaz)'+'gzcxla"'7£Unaz)
and the truncated one;

da:‘i

dZ ——&ﬂ(xl,'°',$n,Z)

QAl) The truncated system is quasi-homogeneous;
Jpositive integers (p1,- - ,pn,7) s.t.

PN R R N ) N N )\1+pif@-(:r;1, s g )

\_

Lemma. The truncated system is invariant
under the Z,action (s =r + 1),

(X1, ,Tm,2) = (WPrxy, -+ ,wWPme,,w'2), w=e
and has a solution

TR o P o et

271/ s



Consider the polynomial system

da?,,;

dZ o f’&(xla"' 95871,92) —1_92(3317"' 75871,?2)
and the truncated one;

da:‘i

dZ e fz(ajly epE ,.CUn,Z)

((Al) f’i()\plxla e 8 a)\pnxna)\rz) e Al_I_pif?l(ajla s 7$naz) 3

R2NE g O P ey, - o AP, D) — o( DI  y es

\(A3) The full system is also invariant under the Zsaction./

(p1,p2,7) = (2,3,4), (first Painlevé)
(1,2,2), (second Painlevé)
(1,1,1), (fourth Painlevé)




For the system with (A1) to (A3),
da?,,;
dz

assume the Laurent series solution

z:(2) =ci(z—20) P +a;1(z—20) Pt +az0(z — 20) P2+ .}

ot f’i(xla' T 75871,92) ‘1‘9@(331, e ,Zl?n,Z)

{c;}i*_1is a root of the equation —pici = fi(ci, - ,¢n,0).
Def, The Kovalevskaya matrix is defined by A
dfi )
o {8373 (Cla * 780 5-Cy 0) +p2523}i’j:1
Eigenvalues of K are called the Kovalevskaya exponents.

Q is always the eigenvalue of K. e/




Laurent series solution
z:(2) = ci(z — 20) P +aj1(z—20) P +az0(z— 29) P+ - -6

The coefficient a; = (a1, ,am ;)" satisfies

(K — jI)a; = (known number).

Case 1. If j is not K-exp, @; is uniquely determined.
Case 2. If 7 is one of the K-exp,
(2-a) no solution ™= no Laurent series sol.
(2-b) dsolution w=p GQ;includes an arbitrary parameter.

2

/CIassicaI Painleve test.

If a given n-dim ODE has the Painleve property, then
there exists a leading coeffi. {ci};—; s.t. all of the
associated K-exp are positive integers (except for -1).




Consider the system with (A1) to (A3).
da?,,;

dz
The system is well-defined on the weighted proj. sp.
M = CPn—I_l(pla "ty Pn,y T, 8) = Cn+1/ZS U CPn(pla e 7pnar)'
On each inhomogeneous coordinates, rewrite it as a
n + 1 dim autonomous vector field.

We will find fixed points on the “infinity” CP"(p1,- -, pn, 7).
~

ot f’i(xla' T 7'5871,92) ‘1‘9@(331, e ,Zl?n,Z)

-
Thm. The eigenvalues of the Jacobi matrix at the fixed
point are given by

\)\ =r,s and n — 1 Kovalevskaya exponents (except for -1).)

p
Cor. The Kovalevskaya exponents are invariant under the

action of Aut of the weighted proj. sp M.
\. Y,




Application: In Kawakami, Nakamura, Sakai (2018),

there is a list of 4-dim Painleve equations. Among them,

H?;Zi =3 p% —Plfﬁ + P2q1G2 —mq% + p1p2 + 2p1 — Bq1 + ago
1
o

HMat —p} — p1qi — 4p2q1q2 — 2p245 + pip2 + 2p1 — Ba1 + age.

We can conclude that they are actually different ODEs
because K-exponents of them are different.

Both of them have 8 types of Laurent series. K-exp are

For H:M!, For Hj7,
(4,2,1) x 3 (principle Laurent sol) (4- 2eliise 3
(5,4, —2) x 5 (nhon-principle) (5,4,—2) x 2

(8,4, =5) x 2

(44—Ux1



@ The system has n-para family of Laurent series som

iff there exists a singularity on the infinity set s.t.

(i) All e.values are positive integers (classical Painleve test).

(ii) The Jacobi matrix at the fixed point is semi-simple.

(iii) The system is locally linearizable via the normal form
theory of dynamical systems.

If (i),(ii),(iii) hold, the singularity of the foliation is
resolved by the weighted blow-up,

whose weight is given by K-exp. On the blow-up space,
%system is again a polynomial system. /

Conjecture. 1 to 1 correspondence:
Painleve equations «== (weight) + (K-exp)




I N I
P1(E8) | CP3(3,2,4,5) 6
P2(E7) | CP3(2,1,2,3) 4
Pa(Es) | cP3(1,1,1,2) 3
P3(Ds) |CP3(-1,2,4,1) | 2
P3(D7) |CP3(-1,2,3,1) | 2
P3(Ds) | CP3(0,1,2,1) 2
Ps(Ds) | cp3(1,0,1,1) 2
Ps(Da) | CP3(1,0,0,1) 2

h : The weighted degree of the Hamiltonian.




E Weights K-exp h
g.
(pla 41y s PnsQn,T, 3)

(P1)1| cp3(3,2,4,5) 6 6

(P1)2| CP(5,2,3,4,6,7) 8,5,2 8

10,7,5,4,2 10

(P1)3| cP7(7,2,5,4,3,6,8,9)

(P1)nis the n-th member of the first Painleve hierarchy.
(2n-dim Hamiltonian system).
Since r = s — 1 = h — 2, minimal data for a weight is
80101, P, 05 0.
(p,q;h) = (2,3;6) (first Painlevé)
= (1,2;4) (second Painlevé)
= (1,1;3) (fourth Painlevé)
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(a1, ,an,b1, -+ ,by;h) Integerss.t. 1 <a;,b; <h,
Characteristic function

@ - DT oD s S e

x(T) = (To1— 1)(T% —1)--- (1% — 1)(L% = 1)

Consider the following conditions:
(B1) x(7T) is polynomial.

(B2) a; +b; = h —1 forany ;.
(33)1111111 tan.b, F = 1ior2

<i<n

Lemma. When n=1, the weights satisfying
the condition (B) are only (2,3;6), (1,2;4)(1,1;3).

\They are weights for (P1),(P2),(P4), respectively. F




@ When n=2, the weights satisfying

(a17a27 b27 bla h)

the condition (B) are only

(2,3,4,5;8
(1,2,3,4:6
(22336
(
(
(

,

. g e L B g S g L
~

1717 ]‘7 17 )7

9/2
Gar’ HCOsgrovea

Ay
HNY

Gre are corresponding 4-dim Painleve equaions.

(not unique because K-exp is not considered)

e

4

Properties of their weights and K-exp are studied
in Chiba (arXiv:2010.05559).



Weight to Painleve (only 2-dim).

Step 1. Given (2,3;6), (1,2;4), (1,1;3), consider the
generic quasi-homogeneous polynomials

H — Clp2 + 62q3a
e — clp2 + Czq2p I C3q4;
H = ci1¢°+ copg® + eap’q + eap?,

Step 2. Simplify by the symplectic transformations.
1

o 0
2p QJ
1 1

Hi == toe
2p 2Q7

H = -pg¢°+pq,



Weight to Painleve (only 2-dim).

Step 3. Versal deformation.
|

H = Zp°—2¢ + 049+ as
1 2 1 4 2
H = 5P — 59 t229" +asq+ oy,
H = —pg* +p°q+ oypq+ asp + Baq + as,

Step 4. Replace the parameter & by 2 if
deg(a) = deg(H) — 2

Result. Hamiltonians of (P1), (P2) and (P4).

I
T — §p2—2q3+zq+oz6,
(g 12_14 2
s %= 2p 2q + 2q° + aszq + ay,

15 —pq2 +p2q + 2pq + asp + B2q + as,
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