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The Painlevé VI
• The nonlinear differential equation
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, α, β, γ, δ ∈ C.

• A solution y(x) of PVI has 0, 1,∞ as critical points, is

meromorphic on ˜P1 \ {0, 1,∞}. Following the book of
Fokas-Its-Kapaev-Novokshenov, ”Solving” PVI means

a. to find the explicit asymptotics of y(x) at critical points:

y(x) ∼ yp(x; ap, σp), as x → p, p ∈ {0, 1,∞},
ap, σp are asymptotic parameters/integration constants;

b. to find the explicit connection formula of y(x) between two
different critical points p ̸= q ∈ {0, 1,∞},

ap = ap(aq, σq), σp = σp(aq, σq).

• Solved by Jimbo (generic cases) and by Shimomura, Dubrovin,
Mazzocco, Guzzetti, Boalch, Kaneko,Bruno-Goryuchkina...
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The isomonodromy equation ISOn

• hreg the set of diagonal matrices u with distinct eigenvalues,
write u = diag(u1, ..., un).
• Consider the nonlinear differential equation for a n× n matrix
valued function Φ(u) : hreg → gl(n)

∂Φ

∂uk
= [Φ, ad−1

u adEkk
Φ], for all k = 1, ..., n.

where ad−1
u adEkk

Φ is the unique off-diagonal matrix satisfying

[u, ad−1
u adEkk

Φ] = [Ekk,Φ].

• In terms of components Φ = (Φij(u1, ..., un))i,j=1,...,n,

∂Φij

∂ul
=

ΦinΦnj

ui − ul
+

ΦinΦnj

ul − uj
, for i, j ̸= l;

∂Φlj

∂ul
=

ΦllΦlj

ul − uj
+
∑
k ̸=l

ΦlkΦkj

uk − ul
, for j ̸= l.

• time (u1, ..., un)-dependent Hamiltonian equations.
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The ISO3

• By Harnad, if there exists parameters θ1, θ2, θ3, θ∞

diag(Φ(u)) = diag(θ1, θ2, θ3),

eigenvaluesΦ(u) = 0, (θ1 + θ2 + θ3 − θ∞), (θ1 + θ2 + θ3 + θ∞),

ISO3 for Φ(u) is equivalent to the Painlevé VI y(x) with

x =
u2 − u1
u3 − u1

and the parameters

2α = (θ∞ − 1)2, 2β = −θ21, 2γ = −θ23, 2δ = −θ22.

The asymptotics [a] and connection problem [b] of Painlevé VI
amounts to the study of asymptotics of Φ(u) of ISO3 as

u2 − u1
u3 − u1

→ ∞,
u3 − u1
u2 − u1

→ ∞,
u2 − u1
u2 − u3

→ ∞,

respectively, and the connection problem between them.
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Asymptotics and connection problems of ISOn

• Following Miwa, the solutions Φ(u) have the Painlevé
property: they are multi-valued meromorphic functions of
u1, ..., un and the branching occurs when u moves along a loop
around the fat diagonal

∆ = {(u1, ..., un) ∈ Cn | ui = uj , for some i ̸= j}.

According to Painlevé, they can be a new class of special
functions.

• Analog to PVI,

(a). The parametrization of solutions by their asymptotic
behaviour at critical points;

(b). The explicit connection formula from one critical point to
another.
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Part I: problem (a)

The asymptotics at a critical point

• u3−u2
u2−u1

→ ∞, u4−u3
u3−u2

→ ∞, . . . , un−un−1

un−1−un−2
→ ∞

• u3−u2
u2−u1

→ 0, u4−u3
u3−u2

→ 0, . . . , un−un−1

un−1−un−2
→ 0

u6u1 u3 u4 u5u2

Figure: A planar binary rooted tree with 6 leaves colored by u1, ..., u6.

• u2−u1
u3−u2

→ 0, u5−u4
u6−u5

→ 0, u6−u5
u4−u3

→ 0, u4−u3
u3−u2

→ 0
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Hamiltonian description

• The isomonodromy equation with respect to the derivation of
uj is generated by the time dependent quadratic Hamiltonian

Hj :=
∑
k ̸=j

ΦkjΦjk

uk − uj
,

where Φij ’s are the entry functions on gln.

• As u3−u2
u2−u1

→ ∞, u4−u3
u3−u2

→ ∞, . . . , un−un−1

un−1−un−2
→ ∞, the

Hamiltonians behave like

H0
j = −

∑
k<j

ΦkjΦjk

uj − uj−1
, for j = 2, ..., n.

Given any matrix A, {H0
j } generate a Hamiltonian flow

Ad(
(u2−u1)δ1(A)×

−−−−−−−→∏
k=2,...,n−1

(
uk+1−uk
uk−uk−1

)δk(A)
)A.

7 / 19



Asymptotics of the solutions of isomonodromy equations

• skew-Hermitian valued solution Φ(u) of ISOn is real analytic
on connected component Uid = (u1 < u2 < · · · < un) of hreg(R).
• z1 = u2 − u1, z2 =

u3−u2
u2−u1

, . . . , zn−1 =
un−un−1

un−1−un−2

Theorem (Xu)

For any skew-Hermitian valued solution Φ(u) of ISOn on Uid,
there exists a unique constant skew-Hermitan matrix Φ0 such
that as zk → ∞ for all k = 2, ..., n− 1,

Φ(u) =Ad(
z
δ1(Φ0)
1 ×

−−−−−−−→∏
k=2,...,n−1

z
δk(Φ0)

k

)Φ0 +O
(
z−1
2 , ..., z−1

n−1

)
,

where

δk(Φ0)ij =

{
(Φ0)ij , if 1 ≤ i, j ≤ k, or i = j
0, otherwise.

The converse is also true. 8 / 19



Parametrization of solutions in generic complex case

Theorem (Tang-X)

For any generic solution Φ(u) of ISOn, ∃ n× n matrix-valued
functions Φ0, Φ1(z1),... Φn−2(z1, ..., zn−2) such that

lim
zk→∞

z
δk−1Φk−1

k Φkz
−δk−1Φk−1

k = Φk−1, k = 1, ..., n− 1

and there exists real numbers εk > 0 such that

sup{|Re(λ(k)
i (Φ0)− λ

(k)
j (Φ0))| : 1 ⩽ i, j ⩽ k} = 1− εk,

(λ
(k)
i eigenvalues of left-top k × k submatrix) and as zk → ∞,

Φ(u) =Ad(
z
δ1(Φ0)
1 ×

−−−−−−−→∏
k=2,...,n−1

z
δk(Φk−1)

k

)Φ0 +O
(
z−ε2
2 , ..., z

−εn−1

n−1

)
.

Converse is true. By Φ(u; Φ0) solution with asymtotoics Φ0.
Relation with works of Mochizuki, Guest-Its-Lin. 9 / 19



Parametrization at another asymptotic zone

Theorem (Tang-X)

For any generic solution Φ(u) of ISOn, ∃ n× n matrix-valued
functions Φ̃0, Φ̃1(z1),... Φ̃n−2(z1, ..., zn−2) such that

lim
zk→0

z
ηk−1Φ̃k−1

k Φ̃kz
−ηk−1Φ̃k−1

k = Φ̃k−1, k = 1, ..., n− 1

and there exists real numbers εk > 0 such that

sup{|Re(ζ(k)i (Φ̃0)− ζ
(k)
j (Φ̃0))| : 1 ⩽ i, j ⩽ k} = 1− εk,

(ζ
(k)
i eigenvalues of right-bottom k submatrix) and as zk → 0,

Φ(u) =Ad(
z
η1(Φ̃0)
1 ×

−−−−−−−→∏
k=2,...,n−1

z
ηk(Φ̃k−1)

k

)Φ̃0 +O
(
zε22 , ..., z

εn−1

n−1

)
.

The converse is also true. Denote by Φ(u; Φ̃0) the solution with
prescribed asymtotoics Φ̃0.
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Part II: problem (b)

The connection formula between two critical
points
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The connection problem

• Given any fixed generic solution Φ(u) of ISOn, we have

Φ0, the boundary value zk → ∞;

Φ̃0, the boundary value zk → 0.

• The connection problem is to find the explicit expression of
Φ0 as a function of Φ̃0.

• From local analysis to global analysis. As n = 3, it was solved
by Jimbo as the connection formula for Painlevé VI.

{
Solutions Φ(u)

} as
uk+1−uk
uk−uk−1

→ ∞
−−−−−−−−−−−−−−→

{
Φ0 ∈ gln

}
as

uk+1−uk
uk−uk−1

→ 0

y y{
Φ̃0 ∈ gln

}
−−−−−→

{
monodromy of linear problem

}
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The linear Riemann-Hilbert problem

• The isomonodromy equation ISOn is compatibility condition
of the equation for a function F (z;u1, ..., un) ∈ GLn

∂F

∂z
=

(
u+

Φ(u)

z

)
· F,

∂F

∂uk
=

(
Ekkz + ad−1

u adEkk
Φ(u)

)
· F, k = 1, ..., n.

• For fixed u, the ODE has a unique formal solution F̂ at
z = ∞. ∃ sectorial regions around z = ∞, such that on each
sector there is a unique holomorphic solution with prescribed
asymptotics F̂ . The transition between the solutions are
measured by upper and lower triangular matrices S±(u,Φ(u)).

• Varying u, the Stokes matrices S±(u,Φ(u)) of linear system
are locally constant (independent of u), and are first integrals.

• The Riemann-Hilbert problem is to express explicitly of
S±(u,Φ(u; Φ0)) via the boundary value Φ0 of Φ(u; Φ0).
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The explicit Stokes matrices via Φ0

• {λ(k)
i }i=1,...,k eigenvalues of left-top k × k submatrix of Φ0.

Theorem

The sub-diagonals of the Stokes matrices S±(u,Φ(u; Φ0)) are

(S+)k,k+1 =
k∑

i=1

∏k
l=1,l ̸=i Γ(1 + λ

(k)
l − λ

(k)
i )∏k+1

l=1 Γ(1 + λ
(k+1)
l − λ

(k)
i )

∏k
l=1,l ̸=i Γ(λ

(k)
l − λ

(k)
i )∏k−1

l=1 Γ(1 + λ
(k−1)
l − λ

(k)
i )

·∆1,...,k−1,k
1,...,k−1,k+1,

where k = 1, ..., n− 1 and ∆1,...,k−1,k
1,...,k−1,k+1(λ

(k)
i − Φ0) is the k by k

minor of the matrix λ
(k)
i − Φ0 formed by the first k rows and

1, ..., k − 1, k + 1 columns. Furthermore, the other entries are
given by explicit expressions via the sub-diagonal ones.
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The explicit Stokes matrices via Φ̃0

• {ζ(k)i }i=1,...,k eigenvalues of right-bottom k submatrix of Φ̃0.

Theorem

The (k, k + 1) entry of the Stokes matrix S+(u,Φ(u; Φ̃0)) is

k∑
i=1

∏k
l=1,l ̸=i Γ(1 + ζ

(k)
l − ζ

(k)
i )∏k+1

l=1 Γ(1 + ζ
(k+1)
l − ζ

(k)
i )

∏k
l=1,l ̸=i Γ(ζ

(k)
l − ζ

(k)
i )∏k−1

l=1 Γ(1 + ζ
(k−1)
l − ζ

(k)
i )

·∆n−k+1,...,n
n−k,n−k+2,...,n,

where k = 1, ..., n− 1 and ∆n−k+1,...,n
n−k,n−k+2,...,n(ζ

(k)
i − Φ̃0) is the k by

k minor of the matrix ζ
(k)
i − Φ̃0 formed by the last k rows and

n− k, n− k + 2, ..., n columns. Furthermore, the other entries
are given by explicit expressions via the sub-diagonal ones.

• Motivated by the theory of Gelfand-Tsetlin and KZ equation,
the quantization of ISOn equation introduced by Reshetikhin.
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Explicit Riemann-Hilbert and connection problems

From the space of Φ0 with the boundary condition to the space
of Stokes matrices via the equivalences{

Φ0 | sup{|Re(λ(k)
i (Φ0)− λ

(k)
j (Φ0))| : 1 ⩽ i, j ⩽ k} < 1

}
⇐⇒

{
solutions Φ(u; Φ0) of the isomonodromy equation

}
⇐⇒

{
meromorphic linear system of PDEs

}
⇐⇒

{
space of Stokes matrices S±(u,Φ(u; Φ0)) = S±(u,Φ(u; Φ̃0))

}
⇐⇒

{
Φ̃0 | sup{|Re(ζ(k)i (Φ̃0)− ζ

(k)
j (Φ̃0))| : 1 ⩽ i, j ⩽ k} < 1

}
Diagram:

{
Solutions Φ(u)

} as
uk+1−uk
uk−uk−1

→ ∞
−−−−−−−−−−−−−−→

{
Φ0 ∈ gln

}
as

uk+1−uk
uk−uk−1

→ 0

y y{
Φ̃0 ∈ gln

}
−−−−−→

{
S±(u,Φ(u; Φ0)) = S±(u,Φ(u; Φ̃0))

}
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Other asymptotic zones

u6u1 u3 u4 u5u2

As u2−u1
u3−u2

→ 0, u5−u4
u6−u5

→ 0, u6−u5
u4−u3

→ 0, u4−u3
u3−u2

→ 0, there exists
a boundary value A of a generic solution Φ(u). However, to
write down explicitly S±(u,Φ(u;A)), one needs to compute the
Stokes matrices of

dF

dz
=

((
0m 0
0 Idn−m

)
+

1

z

(
A B
C D

))
F.

• Branching rules of glm × gln−m ⊂ gln.
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Remained questions

• None generic boundary value Φ0, i.e.,

sup{|Re(λ(k)
i (Φ0)− λ

(k)
j (Φ0))| : 1 ⩽ i, j ⩽ k} = 1,

should relate to the resonant cases. From explicit expression,
the Stokes matrices S±(u,Φ(u; Φ0)) have poles as

|λ(k)
i (Φ0)− λ

(k)
j (Φ0)| = 1.

• Algebraic solutions.
• The space of initial values.
• The WKB approximation (joint with A. Alekseev, A. Neitzke
and Y. Zhou).
• Quantization, relations with quantum groups and crystal
basis and so on (Chekhov, M. Mazzocco and V. Rubtsov).
• Difference analog, relations with elliptic quantum groups.
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Thank you very much!
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