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jointly begun with Alberto Parmeggiani (Bologna, 1998) and later with Takashi
Ichinose (Kanazawa, 2003).
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Part I: Quantum Rabi model and asymmetric
quantum Rabi model

I 1936: I.I. Rabi introduced the semi-classical Rabi model to study the effect
of a weak magnetic field on an oriented atom possessing nuclear spin.

I 1963: E. Jaynes and F. Cummings considered the fully quantized version of
the Rabi model (= QRM). Jaynes-Cummings’ model, the rotating wave
approximation of QRM, was also introduced.

I 2011: D. Braak proved “integrability" of the QRM using the Z2-symmetry.
Breakthrough!

I 2018: F. Yoshihara, et al. confirmed that the experimental measurements
matched the theoretical values predicted by the QRM & AQRM (using
superconducting artificial atoms.
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QRM

The Hamiltonian of quantum Rabi model (QRM):

HRabi = ωa†a +∆σz + gσx(a† + a)

acting on L2(R;C2) = L2(R)⊗ C2, where
I 2∆ > 0: the energy difference between the two levels system,
I g > 0: the coupling strength between the two-level system and

the bosonic mode with frequency ω (may assume ω = 1),
I σx = ( 0 1

1 0 ), σz =
( 1 0

0 −1
)
: the Pauli matrices,

I a† and a: the creation and annihilation operators; [a, a†] = 1.
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AQRM

The Hamiltonian H ε
Rabi of the asymmetric QRM i :

H ε
Rabi = ωa†a +∆σz + gσx(a† + a) + εσx ,

where ε ∈ R (may assume ω = 1)

I is a self-adjoint unbounded operator,
I has only a discrete spectrum with uniformly bounded (with

multiplicity ≤ 2), and
I does not have the Z2-symmetry (parity) except when ε = 0 (i.e.

HRabi = H+ ⊕ H−).

iJaynes-Cummings’ model (the RWA of QRM) has a U(2)-symmetry.
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Classification of spectrum

Classification of eigenvalues λ of the AQRM:

1. Exceptional: if λ = N ± ε− g2 for N ∈ Z≥0.
2. Regular: if λ is not exceptional. Regular eigenvalues are known

to be non-degenerate.

Exceptional eigenvalues λ are
1. Juddian: Exceptional eigenvalues with polynomial solutions

(eigenfunctions), i.e. terminating power series.
2. Non-Juddian exceptional: Exceptional eigenvalues that are

not Juddian.
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Degeneracy on the spectrum of AQRM

The picture illustrates how exceptional solutions appear in the spectral
curves of the AQRM.

I 2ε /∈ Z ⇒ No apparent degeneracy (Left)
I 2ε ∈ Z ⇒ Exist an apparent degeneracy (Right).

g

E

N + `− ε− g2

N + ε− g2

λ(g)

λ′(g)

g

E

N + `/2− g2

λ(g)

λ′(g)

◦: Juddian
�: non-Juddian

7



Constraint polynomials

Constraint polynomials P(N,ε)
N (x, y)ii associated to the Juddian solutions

defined by the following recurrence relation (k = N ) gives the clear
description of the degeneracy of the spectrum of AQRM.

The recurrence relation {P(N,ε)
k (x, y)}k≥0:

P(N ,ε)
0 (x, y) = 1,

P(N ,ε)
1 (x, y) = x + y − 1 − 2ε,

P(N ,ε)
k (x, y) = (kx + y − k2 − 2kε)P(N ,ε)

k−1 (x, y)

− k(k − 1)(N − k + 1)xP(N ,ε)
k−2 (x, y).

iiDerived by the confluent Heun picture or U(sl2) pictures of AQRM.
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Constraint polynomials and relations

How to get Juddian solutions?

Juddian solutions via constraint relationiii

If g and ∆ satisfy
P(N ,ε)

N ((2g)2,∆2) = 0

then λ = N + ε− g2 is a Juddian eigenvalue.

iiiZ.M. Li, M. Batchelor: J. Phys. A: Math. Theor. 48 (2015). Add. 49 (2016).
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Divisibility of constraint polynomials
What was remarkable is there exists a crossing (i.e. degeneracy)! It
was not expected before (Li-Batchelor’s numerical observation for
ε = 1 in 2015-16), but when ε = `

2 ∈ 1
2Z≥0

Theoremiv

For `,N ∈ Z≥0, ∃A`
N (x, y) ∈ Z[x, y] s.t.

P(N+`,−`/2)
N+` (x, y) = A`

N (x, y)P(N ,`/2)
N (x, y).

The polynomial A`
N (x, y)v is positive for any x, y > 0.

ivKK, CRB, MW: IMRN 2021-12. Conjectured in MW: J. Phys. A: Math.
Theor. 50 (2017).

vFor a fixed degree ` ∈ Z≥0, the polynomial equation A`
N (x, y) = 0 defines

certain algebraic curve depending on the parameter N : the case ` = 2 is parabolic,
` = 3 gives an elliptic curve and ` = 4 super elliptic curve, etc.
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Degeneracy on the spectrum of AQRM

Theoremvi

The degeneracy of the spectrum of H ε
Rabi occurs only when ε = `/2 for

` ∈ Z≥0. Furthermore, in this case
I all degenerate eigenvalues are Juddian and any Juddian

eigenvalue is degenerate,
I any non-Juddian exceptional solution is non-degenerate.

viKK, CRB, MW: IMRN 2021-12.
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Illustration of degeneracy
The constraint relation

P(N,ε)
N ((2g)2,∆2) = 0

describes a curve in the g,∆-plane:

ε = 0.3 ε = 1 ε = 3/2

Curves: P(5,ε)
5 ((2g)2,∆2) = 0 and P(8,−ε)

8 ((2g)2,∆2) = 0.
Eigenvalues: λ = 5 + ε− g2 and λ = 8 − ε− g2.

When ε → 3/2 the curves are going to be identical.
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“Hidden symmetry” in the AQRM
“It has been observed that the AQRM, which does not possess any obvious
symmetry, exhibits energy level crossings, which are often associated with
symmetries. ... even though simple inspection of the model and its Hamiltonian
does not reveal the nature of this symmetry..." S. Ashhab: Attempt to find the
hidden symmetry in the asymmetric quantum Rabi model, Phys. Rev. A 101
(2020).

P := exp(iπa†a): the photon number parity operator (P2 =id).

Theoremvii viii

∃Q(`)
0 (/∈ C[H `/2

Rabi]) ∈ Mat2(Q[a, a†])(unique up to const.) satisfying

1. J` := PQ(`)
0 (self-adjoint) ⇒ [H `/2

Rabi, J`] = 0,

2. J 2
` = p`(H `/2

Rabi; g,∆) for ∃p` ∈ R[x, g,∆] of degree ` w.r.t. x,

3. [H `/2
Rabi,PQ] = 0 (Q ∈ Mat2(C[a, a†])) ⇒ Q = Q(`)

0 p(H `/2
Rabi) for

∃p ∈ C[x].

viiV. Mangazeev, M. Batchelor, V. Bazhanov: J. Phys. A: Math. Theor. 54
(2021) shows the statements 1 and 2 (` ≤ 2).

viiiCRB, D. Braak, MW: J. Phys. A: Math. Theor. 54 (2021).
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ℓ ∈ ℤ!", 𝑁 ≥ ℓ ⇒

The main 
conjecture is 

true ⇒

◯, □: exceptional eigenvalue

Grey: spectral curve on
(g,E)-plane

Dotted line: the baseline curve 𝐸 = 𝑖 − ℓ
"
− 𝑔"(𝑖 = 0,1,2)

Δ = 4, ℓ = 3

Red: curve 𝑝ℓ 𝑥, 𝑔, Δ = 0

Main conjecture

The degenerate eigenvalues may know the entire spectrum of the system.

Note: 1. The main conjectureix is described also by an (explicit)
determinant expression of p`(x, g,∆).
2. (Generalized) adiabatic approximation of the spectrum is known to be
given by the constraint polynomials (or degeneration).

ixCRB, MW: Comm. Numb. Theor. Phys. 16 (2022).
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Points in the elliptic curve given by y２ = p３(x; g, Δ) for  Δ = 3/7 and g ≈ 0.899.

x=E (eigen), y= the eigen. of JE (JE２=

Conjecture: 𝒑ℓ(E)>0, 
if E is not a non-Juddian exceptional

𝛲ℓ(E; g, Δ) )

Elliptic curve
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Part II: Heat kernel of the quantum Rabi model

The heat kernel KRabi(x, y, t) of HRabi is the (matrix valued) function
satisfyingx

I ∂
∂t KRabi(x, y, t) = −HRabiKRabi(x, y, t) for all t > 0,

I limt→0 KRabi(x, y, t) = δx(y)I2 for x, y ∈ R.

xNote:

e−tHRabiφ(x) =
∫ ∞

−∞
KRabi(x, y, t)φ(y)dy (φ ∈ C∞

c (R;C2))
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Analytical formula of the heat kernel

Theoremxi(Uniformly convergent series of iterated integrals)

The heat kernel of the QRM is given by

KRabi(t, x, y) = K̃0(x, y, g, t)
∞∑

λ=0

(t∆)λΦλ(x, y, g, t).

For λ ≥ 0 the 2 × 2 matrix-valued function Φλ(g, t) is given by

Φλ(x, y, g, t) =
∫

· · ·
∫

0≤µ1≤···≤µλ≤1

eφ(µλ,t)+ξλ(µλ,t)
[
(−1)λ cosh (−1)λ+1 sinh

− sinh cosh

]
× (θλ(x, y,µλ, t)) dµλ.

Here µλ = (µ1, µ2, · · · , µλ) and dµλ = dµ1dµ2 · · · dµλ, (µ0 = 0, dµ0 = 1).
K̃0(x, y, g, t) = etg2

K(x, y, t), K(x, y, t) being Mehler’s kernel of the
harmonic oscillator.

xiCRB, MW: ATMP (To appear), J. Phys. A: Math. Theor. 54 (2021).
17



Small history

I for the Kondo model (a model for a quantum impurity coupled to a
large reservoir of non-interacting electrons), a special matrix coefficient
of the heat kernel was obtained by Anderson, Yuval and Hamann
(Phys. Rev. B 1, (1970)), Very similar to the above!

I the expression for the average of the Heisenberg operator at time t for
the Spin-Boson model was computed Legget et al. (Rev. Mod. Phys.
59 (1987)), sm

I the expression of the heat kernel by a Feynman-Kac formula was given
by Hirokawa and Hiroshima (Comm. Stoch. Anal. 8 (2014)).

Note: The methods above are based on path-integral or probabilistic techniques,
but no analytical formula has been known (at least now).
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Heat Kernel Formula ‒ Geometrical Interpretation

(length ・ = 𝔖!-invariant)

[equivalence class of paths]

𝐾"#$ 𝑡

= %
%&'

!

(𝑡Δ)(%)
𝒪!

exp 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑔, 𝑡, 𝑥, 𝑦, 𝜇% 𝑑𝜇%

𝜆 ( 1,1, … , 1 = (1,1, … , 1,0,0, …… ) ∈ ℤ(!)

𝜆 𝜆
ℤEF = ∐GHI

F 𝒪G (the orbital decomposition of ℤEF)

(Orbital integral can be regarded as an integral over 𝜆 − simplex)

𝒪G: = ℴ ∈ ℤEF: ℴ = 𝜆 = 𝔖F 1,1,… , 1 (𝔖!- orbit）
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Heat Kernel Formula ‒ Algebraic (Group Theoretic Interpretation)

Irreducible decomposition of ℤ!" 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝔖":

𝔖! ℤ"! =⊕#$%
! Ind𝔖∏"

𝔖# 1

𝔖∏!︓Young subgroup 𝔖! corresponding to the partition

(Young diagram) ∏" =

There is an idea (due to Ludvig Faddeev) that the construction of any irreducible 
representation can be obtained by Feynman path integrals for a Lie group via co-adjoint orbits.
This is reminiscent of our analytical formula of the heat kernel. 
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Derivation process of the analytical formula

Product Formulas of Trotter-Kato ➡Heat Kernel, Propagator

ℤ!": = lim
→$

ℤ!$

𝔊": infinite symmetric 
group

(No suitable additive measure)

Clifford group, 
quantum error 
correcting code 

construction

{Feynman Path}/〜 ≈｛ Discrete Path ｝
（equivalence classes by some infinite dimensional 

algebraic system e.g. group）

Conjecture

𝐴, 𝐵: Bounded operators from below ➡

Graph Theory

Representation Theory of
𝑆𝐿!(𝔽!)"
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Part III: Heun pictures for the QRM and NCHO

By the correspondence (to the Bargmann space B picture)

a† → z and a → ∂z ,

the eigenvalue problem H ε
Rabiϕ = λϕ is equivalentxii to finding

ψ1, ψ2 ∈ B satisfying

(z∂z +∆)ψ1 + (g(z + ∂z) + ε)ψ2 = λψ1,

(g(z + ∂z) + ε)ψ1 + (z∂z −∆)ψ2 = λψ2.

xiiThe convergence condition of the (entire function) solution is automatically
satisfied for this type of differential equations.
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Confluent Heun picture for QRM

Appropriate change of the variable, the system can be transformed into the
2nd order (confluent Heun) ODE Hε

i (λ)f = 0, Hε
i (i = 1, 2) xiii, e.g., i = 1:

Hε
1(λ) =

d2

dy2 +

(
−4g2 +

a + 1
y +

a − 2ε
y − 1

)
d
dy +

−4g2ay + µ+ 4εg2 − ε2

y(y − 1) .

Here a := −(λ+ g2 − ε) and

µ := (λ+ g2)2 − 4g2(λ+ g2)−∆2 (in the accessory parameter).

xiiiD. Braak: PRL 107 (2011).
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NCHO

Hamiltonian of the non-commutative harmonic oscillatorxiv:

Q = Qα,β =

(
α 0
0 β

){
−1

2
d2

dx2 +
1
2x2

}
+

(
0 −1
1 0

){
x d

dx +
1
2

}
,

Assume α, β > 0 and αβ > 1.

I a positive self-adjoint unbounded operator on L2(R)⊗ C2

I Q has only a discrete spectrum with uniformly bounded
multiplicity (≤ 2)xv:

0 < λ1 < λ2 ≤ λ3 ≤ . . . (↑ ∞).

xivA. Parmeggiani, MW: PNAS 98 (2001).
xvMW: Proc. Japan Acad. 89 (2013).
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Eigenvalue problem

Oscillator (or Weil) representation (π′,C[y]) of sl2 = C[H ,E ,F ] :

π′(H ) = y∂y +
1
2 , π′(E) = y2/2, π′(F) = −∂2

y/2.

By an isometry L2(R) 3 ϕn 7→ yn ∈ C[y], ϕn being the nth Hermite
function, we have

Theoremxvi

There exists a quadratic element R ∈ U(sl2) (explicitly given by α, β
and λ) such that

Qϕ = λϕ ⇔ π′(R)u = 0 (u ∈ C[y]).

xviH. Ochiai: CMP 217 (2001).
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Heun picture via Laplace intertwiner

Define the representation $a (a ∈ C) of sl2:

$2(H ) = z∂z +
1
2 , $2(E) = z2(

1
2 z∂z + a), $2(F) = − 1

2z ∂z +
a − 1
2z2 ,

Define the modified Laplace transform La (<a ≥ 1):

(Lau)(z) =
∫ ∞

0
u(yz)e− y2

2 ya−1dy.

Theoremxviixviii

The restriction of L1 (resp. L2 ) to even (resp. odd) functions is an
intertwiner between the representations π′ and $1 (resp. $2).

xviiH. Ochiai: CMP 217 (2001): odd case.
xviiiMW: IMRN 2016:3: even case and a general principal series $a .
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Heun picture of the NCHO

Theorem xix

There exist linear bijections:

{ϕ ∈ L2(R,C2) | Qϕ = λϕ, ϕ(−x) = ±ϕ(x)} ∼−→ {f ∈ O(Ω) |H±
λ f = 0}.

◦ Ω: a simply-connected domain in C (0, 1 ∈ Ω, αβ 6∈ Ω)
◦ H±

λ = H+
λ (w, ∂w):

H+
λ (w, ∂w) :=

d2

dw2 +

( 1
2 − p

w
+

− 1
2 − p

w − 1
+

p + 1
w − αβ

)
d

dw
+

− 1
2
(
p + 1

2
)
w − q+

w(w − 1)(w − αβ)
,

H−
λ (w, ∂w) :=

d2

dw2 +

(
1 − p

w
+

−p
w − 1

+
p + 3

2
w − αβ

)
d

dw
+

− 3
2 pw − q−

w(w − 1)(w − αβ)
.

◦ p and q± are explicitly given by α, β and λ.

xixH. Ochiai (2001), MW (2016).
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NCHO（η-NCHO） &  QRM (Asymmetric QRM).
The Weil Representation

4 regular singular points
0,1, t(=αβ), ∞

NCHO is a covering model of QRM. 

Courtesy of APS/Alan Stonebraker (2011)
Light-matter interaction

Number theoretic structure behind NCHO

Special values of the 
spectral zeta function

Apéry-like numbers (and 
their generating functions)

Congruence relation
(with higher prime powers)

Fuchsian ordinary 
differential equation

Modularity (can be written in terms 
of automorphic form and Eichler 

integral, -cohomology)

Mahler 
measure

Discrete Dynamical 
Systems ??

Arithmetic geometry

Weighted Cayley graph

(𝜂 − 𝑁𝐶𝐻𝑂)

(AQRM)

◦ Hamiltonian Qη of η-NCHO :

Qη := Q + 2iη
√

αβ − 1
(

0 −1
1 0

)
(η ∈ R).
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Comparison between the η-NCHO and AQRM

η-NCHO AQRM

η /∈ 1
2Z η ∈ 1

2Z η /∈ 1
2Z η ∈ 1

2Z

Type λ ∈ Σ0 Exceptional eigenvalues
Form λ =

2
√

αβ(αβ−1)
α+β

(
L + 1

2 + 2η
)

E = N + η − g2

Multiplicity 1 2 1 1 or 2

Eigenfunction one poly-
nomial or
one Heun
polyno-
miala

one poly-
nomial
and one
Heun
polyno-
mial

one
Juddianb

or one
non-
Juddian
excep-
tionalc

one non-
Juddian
excep-
tional or
two
Juddian

Degeneracy same
parity

different
parityd

a Heun polynomial does not include usual polynomials.
b Juddian (or quasi-exact) solutions are given by the product of a polynomial

and an exponential factor.
c Non-Juddian exceptional solutions are eigenfunctions that are not Juddian.
d There remains a delicate point for the definition of parity except when η = 0. 29



Simple and rough illustration

𝐿 ∈ ℕ 𝜂 − NCHO

2𝑁 + 2

2𝑁 + 1

2𝑁

𝑦 =
1

𝛼𝛽 − 1

𝐶!" 𝑥, 𝑦 = 0

𝑥 =
𝛼
𝛽

𝑁 − 𝑔! + 𝜂 𝑁 + 1− 𝑔! − 𝜂AQRM

𝐶!"#! 𝑥, 𝑦 = 0

合流

𝐶!"#$ 𝑥, 𝑦 = 0

Observation of the Covering 
η-NCHO and Asymmetric quantum Rabi model

Confluent limit
１

〇 Confluence process：𝛼𝛽 → ∞, 𝛼𝛽 %&'
%#' → 0,

(particularly, %' → 1).

〇 On the algebraic curves 𝐶( 𝑥, 𝑦 = 0, the eigrnvalue
𝐿 + $

!
+ 2𝜂 of the η − NCHO is identical. 

〇 Along the curves 𝐶!" 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝐶!"#$ 𝑥, 𝑦 = 0, 
the eigenvalue 𝐿 + $

!+ 2𝜂 (𝐿 = 2𝑁, 2𝑁 + 1) is  
pushed down the same Juddian eigenvalue 
𝑁 − 𝑔! + 𝜂 of the AQRM by the confluence 
procedure. 

[Illustration]

xx
xxJoint work with CRB is in progress. 30



Part IV: Number theory behined the NCHO
Spectral zeta functionxxi for the NCHO:

ζQ(s) :=
∞∑

n=1
λ−s

n (<(s) > 1)

I is meromorphically continued to the whole C with a unique
simple pole at 1,

I has trivial zeros at the non-positive even integers, but no
(known) functional equation. xxii

The main interest is special values ζQ(k) (k ≥ 2).xxiii

xxiT. Ichinose, MW: CMP 258 (2005).
xxiiFor QRM: S. Sugiyama: Nagoya Math. J. (2018) & CRB, MW: J. Phys. A.

(2021) (different way).
xxiiiζQ(s) = 2(α2 − 1)−

s
2 (2s − 1)ζ(s) when α = β.
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Special values for k ≥ 2 (α 6= β)xxiv xxv xxvi

ζQ(k) = 2
(

α+ β

2
√

αβ(αβ − 1)

)k (
ζ(k, 1/2) +

∑
0<2j≤k

(
α− β

α+ β

)2j

Rk,j(κ)

)

with Rk,j(κ) :=
∑

1≤i1<i2<···<i2j≤k

∫
[0,1]k

2k du1 . . . duk√
Wk(u;κ; i1, . . . , i2j)

(κ :=
1

√
αβ − 1

),

Wk(u;κ; i1, . . . , i2j) := det
(
∆k(u) + κΞk(i1, . . . , i2j)

) k∏
r=1

(1 − u4
r ).

(∆k(u) + κΞk(i) ∈ Sym
×
k for u ∈ (0, 1)k : be explicitly given.)

Ex. R2,1(κ) =

∫
[0,1]2

4du1du2√
(1 − u2

1u2
2)

2 + κ2(1 − u4
1)(1 − u4

2)
,

R3,1(κ) = 3
∫
[0,1]3

8du1du2du3√
(1 − u2

1u2
2u2

3)
2 + κ2(1 − u4

1)(1 − u4
2u4

3)
.

xxivT. Ichinose, MW: Kyushu J. Math. 59 (2005).
xxvElliptic integral expression for ζQ(2) : H. Ochiai: Ramanujan J. 15 (2008),

Pfaff’s formula for 2F1 and Clausen’ identity between 2F1 and 3F2.
xxviKK, MW: Ann. Inst. Henri Poincaré - D (To appear).
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Apéry-like numbers for ζQ(k) (k ≥ 2)

Define the Apéry-like numbers Jk(n)xxvii associated to Rk,1(κ) of ζQ(k).

Rk,1(κ) =
k
2

∞∑
n=0

(
− 1

2
n

)
Jk(n)κ2n ,

with

Jk(n) =
k−1∑
r=1

2k
∫
[0,1]k

(1 − u4
1 · · · u4

r )
n(1 − u4

r+1 · · · u4
k )

n

(1 − u2
1 · · · u2

k )
2n+1 du1 · · · duk .

xxviiVarious congruence relations among Jk(n) hold similar to the original Apéry
numbers possesses. KK, MW: Kyushu J. Math. 60 (2006) (+ Elliptic integral
expression for ζQ(2).) L. Long, R. Osburn, H. Swisher: Proc. Amer. Math. Soc.
144 (2016), J.-C. Liu: J. Math. Anal. Appl. 467 (2018).
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Recurrence relations

The Apéry-like numbers Jk(n) satisfy

4n2Jk(n)− (8n2 − 8n + 3)Jk(n − 1)
+ 4(n − 1)2Jk(n − 2) = 4Jk−2(n − 1)

for k ≥ 2 and n ≥ 2.

Equivalently, wk(z) :=
∑∞

n=0 Jk(n)zn (w0(z) = 0) satisfies{
z(1 − z)2 d2

dz2 + (1 − 3z)(1 − z) d
dz + z − 3

4

}
wk(z) = wk−2(z).

Remark: The recurrence relation of Jk(n) (and the differential equation of wk(z))
has the same homogeneous part for all k.
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Family of Elliptic curves

Note that{
z(1 − z)2 d2

dz2 + (1 − 3z)(1 − z) d
dz + z − 3

4

}
w2(z) = 0

is the Picard-Fuchs equation for the universal family of elliptic curves
equipped with rational 4-torsion.

In fact, each elliptic curve in the family is birationally equivalent to
one of the curves

(1 − u2v2)2 + x2(1 − u4)(1 − v4) = 0

appearing in the denominator of the integrand of R2,1(x).
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Modular interpretation for w2(t)

Recall the elliptic theta functions

θ2(τ) =
∞∑

n=−∞
q(n+1/2)2/2, θ3(τ) =

∞∑
n=−∞

qn2/2, θ4(τ) =
∞∑

n=−∞
(−1)nqn2/2.

Theoremxxviii

Set t = t(τ) = − θ2(τ)
4

θ4(τ)4 , then

w2(t) =
J2(0)
1 − t 2F1

(
1
2 ,

1
2 ; 1;

t
t − 1

)
= J2(0)

θ4(τ)
4

θ3(τ)2 = J2(0)
η(2τ)22

η(τ)12η(4τ)8 ,

is a Γ(2)-modular form of weight 1.

xxviiiKK, MW: Proc. Conf. L-functions, World Scientific (2007).
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Modular interpretations for w4(t)

T :=

[
1 1
0 1

]
, S :=

[
0 −1
1 0

]

Proposition

w4(t) = π2w2(t) + W1(t), W1(t) =
2πi

16π2 w2(t)G′
1(τ).

Here G′
1(τ) is the derivative of an automorphic integral (Eichler form)

for G(2) := 〈T2,S〉 ⊂ Γ(2) of weight −2.

The automorphic integral Gk(τ) is given by

Gk(τ) =

∫ q

0
· · ·
∫ q

0︸ ︷︷ ︸
4k−1

f (τ)k dq
q · · · dq

q , where f (τ) = θ2(τ)
4θ4(τ)

4.
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Differential Eisenstein series

We fix the branch −π ≤ arg z < π for z ∈ C. Recall the generalized
Eisenstein series for s ∈ C s.t. <(s) > 2 and a, b ∈ {0, 1, . . . ,N − 1}:

G(s, x, τ) :=
∑′

m,n∈Z

(mτ + n + x)−s, G(s, τ) := G(s, 0, τ),

G(N;a,b)(s, τ) :=
∑′

m,n∈Z
m≡a (mod N)
n≡b (mod N)

(mτ + n)−s.

The differential Eisenstein series are defined by

dGm(τ) :=
∂

∂s G(s, τ)
∣∣∣∣
s=m

, dG(N;a,b)
m (τ) :=

∂

∂s G(N;a,b)(s, τ)
∣∣∣∣
s=m

.
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Eichler forms (slightly extended)
Differential Eisenstein series are Eichler forms (or automorphic integrals):

dG−2k(τ) ∈ M−2k(SL2(Z),C(τ)), dG(2;1,1)
−2k (τ) ∈ M−2k(G(2),C(τ)).

Theoremxxix

The generating function w4(t) of Apéry-like numbers J4(n) is given by

w4(t) =
π4

2
θ4(τ)

4

θ3(τ)2

[
1 +

1
πi

d
dτ

{
7dG−2(τ) + 2dG(2;1,1)

−2 (τ)
}]
,

where t = t(τ) = −θ2(τ)
4θ4(τ)

−4.

Differential of the generalized Eisenstein series are regarded as slightly extended
elements of nearly holomorphic modular forms. xxx

xxix KK, MW: Ann. Inst. Henri Poincaré - D (To appear).
xxx G. Shimura: Ann. Math. 123 (1986), S. Horinaga: J. Numb. Theo. 219

(2021).
39



Thank you very much for your attention!

Eigenvalue (integer) contractions: integer divisors 
of constrained polynomials

Polynomial Integral and Integer Store Reduction in 
Diophantine Geometry

(Deeply related to Vojta forecast)
P. Corvaja and U. Zannier, Adv. Math., 225 (2010)

Using the idea of adiabatic approximation using 
Constraint polynomials, an approximation of the 

general spectral curve can be obtained.
Zi-Min Li et al, J. Phys. A: Math. Theor., 54, 405201 (2021)

Assuming the expectation, the first ℓ spectral 
curves of 𝐻ℓ

𝟐
are very well approximated by 𝛲ℓ

Constraint polynomials can be said that the 
degenerate eigenvalues know the entire system.

Clarification of the underlying fundamental reason is expected

(𝜺 =
ℓ
𝟐
∈ ℤ)Hidden symmetry ‒ Degeneracy in AQRM 

Constraint Polynomials 𝑃$ℓ(𝑔, ∆) = 0
⇨
Juddian exceptional eigenvalue 𝑁 − 𝑔% + ℓ

% exists

Eigenvalue degeneracy Hidden symmetry

Constraint polynomial 
Description by 

hyperelliptic surfaces

Quotient of Constraint 
Polynomials

(Polynomials)
defined by the generators of 
the commutative operators

=expectation Quadratic relation

Eigenvalues are 
essentially integers and 
parametrized.

What physicists believe
(long unknown)

Concrete description

Gray: Energy and spectral curves

Red：𝜬ℓ=0

resemble
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