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Motivation part 1: Joyce structures

Joyce structures were introduced by T. Bridgeland in the context of the space of
stability conditions of a 3d CY category and its DT invariants.

Roughly:

Let X denote a 3d Calabi-Yau category. For example, X = Db(X ) where X is
a 3d CY.

Associated to X is a C-manifold M = Stab(X), and Donaldson-Thomas
invariants DTσ(γ) ∈ Q, σ ∈ M, γ ∈ Γ = K0(X).

DTσ(γ) satisfy the Kontsevich-Soibelman wall-crossing formula.

Joyce structures describe a conjectural geometric structure on T (Stab(X)),
encoded by DTσ(γ).

Joyce structures can be formulated on holomorphic symplectic manifolds (M,Ω)
(or more generally holomorphic Poisson). They involve a certain C∗-family of flat
and symplectic non-linear connections on TM → M.
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Motivation part 1: Joyce structures

There are two features of Joyce structures that are important for our motivation:

In the setting if 3d CY categories X, constructing the (conjectural) Joyce
structure involves solving a family of non-linear Riemann-Hilbert (RH)
problems determined by DTσ(γ). The family is parametrized by
σ ∈ M = Stab(X), and for fixed σ ∈ M the RH problem involves finding
piece-wise holomorphic functions

Xγ(σ,−) : C∗ → C∗, γ ∈ Γ .

T. Bridgeland and I. Strachan showed that Joyce structures over a
holomorphic symplectic manifold (M,Ω) encodes a
complex Hyperkähler structure (C-HK) on TM.
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Motivation part 2: SUSY gauge theories and HK manifolds

Now we explain the second source of motivation.

There is a class of physical theories T , called 4d N = 2 gauge theories, which
gives rise to (real) hyperkähler manifolds. More specifically:

Each such T has an associated complex integrable system π : X → B.

Compactifying T on S1 gives a hyperkähler (HK) structure on X ,
compatible with the previous integrable system structure.

An important class of such theories T are called Class S-theories. In that case,
the HK structure of X is conjectured to match the hyperkähler structure of a
Hitchin moduli space, and π : X → B is the Hitchin fibration.

Remark:
In the setting of Joyce structures, the simplest “class S” case has M equal to a
moduli space of Riemann surfaces of fixed genus and with a quadratic differential.
Fixing the complex structure of the Riemann surface gives a Lagrangian B ⊂ M.
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Motivation part 2: SUSY gauge theories and HK manifolds

In analogy to the C-HK structure appearing in Joyce structures, the HK structure
is determined by two inputs:

The special Kähler structure of B (analogous to M = Stab(X)).

The BPS indices Ωb(γ) of T (analogous to DTσ(γ)), satisfying the
Kontsevich-Soibelman wall-crossing formula.

As explained by the work of Gaiotto-Moore-Neitzke, the HK structure on X is
obtained by solving a family of non-linear Riemann-Hilbert problems,
determined by Ωb(γ), and parametrized by b ∈ B.

This family of RH problems is related, but different, to the ones appearing in
Joyce structures.

Problem:
Given an HK metric with compatible integrable system structure, can we describe
it in a way similar to Joyce structures?
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Non-linear connections

Consider a submersion π : X → M. We then have the short exact sequence

0 → V
i−→ TX

π∗−→ π∗(TM) → 0

where:

V = Ker(dπ) → X is the vertical bundle and i : V → TX is the inclusion.

π∗ is the natural map π∗(Wp) = (p,dπp(Wp)).

A non-linear connection on π is a splitting h : π∗(TM) → TX of the short
exact sequence (i.e. π∗ ◦ h = idπ∗(TM)). Setting H = Im(h) we therefore have

TX = H ⊕ V .

The connection h is flat if
[H,H] ⊂ H .
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Non-linear connections

We will frequently consider the case X = TM and π : TM → M the canonical
projection.

In this case, if (x i ) are local coordinates for M and (x i , θi ) the induced
coordinates on TM, a non-linear connection has the local form

h ∂

∂xi
:= h

(
∂

∂x i

)
=

∂

∂x i
+ f ki

∂

∂θk
.

Furthermore, we have a natural identification ν : π∗(TM) → V given by

ν(Wp, W̃p) =
d

dt

(
Wp + tW̃p

) ∣∣∣∣∣
t=0

∈ VWp ⊂ TWp (TM) .

Non-linear connections h, together with the map ν will play an important role in
what follows.



9/24

Non-linear connections

We will frequently consider the case X = TM and π : TM → M the canonical
projection.
In this case, if (x i ) are local coordinates for M and (x i , θi ) the induced
coordinates on TM, a non-linear connection has the local form

h ∂

∂xi
:= h

(
∂

∂x i

)
=

∂

∂x i
+ f ki

∂

∂θk
.

Furthermore, we have a natural identification ν : π∗(TM) → V given by

ν(Wp, W̃p) =
d

dt

(
Wp + tW̃p

) ∣∣∣∣∣
t=0

∈ VWp ⊂ TWp (TM) .

Non-linear connections h, together with the map ν will play an important role in
what follows.



9/24

Non-linear connections

We will frequently consider the case X = TM and π : TM → M the canonical
projection.
In this case, if (x i ) are local coordinates for M and (x i , θi ) the induced
coordinates on TM, a non-linear connection has the local form

h ∂

∂xi
:= h

(
∂

∂x i

)
=

∂

∂x i
+ f ki

∂

∂θk
.

Furthermore, we have a natural identification ν : π∗(TM) → V given by

ν(Wp, W̃p) =
d

dt

(
Wp + tW̃p

) ∣∣∣∣∣
t=0

∈ VWp ⊂ TWp (TM) .

Non-linear connections h, together with the map ν will play an important role in
what follows.



9/24

Non-linear connections

We will frequently consider the case X = TM and π : TM → M the canonical
projection.
In this case, if (x i ) are local coordinates for M and (x i , θi ) the induced
coordinates on TM, a non-linear connection has the local form

h ∂

∂xi
:= h

(
∂

∂x i

)
=

∂

∂x i
+ f ki

∂

∂θk
.

Furthermore, we have a natural identification ν : π∗(TM) → V given by

ν(Wp, W̃p) =
d

dt

(
Wp + tW̃p

) ∣∣∣∣∣
t=0

∈ VWp ⊂ TWp (TM) .

Non-linear connections h, together with the map ν will play an important role in
what follows.



10/24

Joyce structures
In what follows, all objects are holomorphic and all morphisms either holomorphic
or meromorphic.

Consider a holomorphic symplectic manifold (M,Ω).

Definition

A (pre-)Joyce structure on (M,Ω) is a holomorphic or meromorphic non-linear
connection h : π∗(TM) → T (TM) such that

Aϵ := h + ϵ−1ν, ϵ ∈ C∗ ,

is a flat and symplectic non-linear connection on π : TM → M for all ϵ ∈ C∗.

The condition of being symplectic means the following:

Ω induces a symplectic structure Ωv on the bundle V → TM by

Ωv (W , W̃ ) := Ω(p2 ◦ ν−1(W ), p2 ◦ ν−1(W̃ ))

where p2 : π
∗(TM) → TM is the projection of the second component.

Then Aϵ is symplectic if the induced parallel transport preserves Ωv .
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Joyce structures

An actual Joyce structure is a pre-Joyce structure (M,Ω, h) with some additional
data. We will not mention the full additional data, except for one:

(M,Ω) has a flat, torsion free, (linear) connection ∇, such that ∇Ω = 0.

∇ induces a horizontal splitting H : π∗(TM) → T (TM) on π : TM → M,
and hence we can write

h = H+ hv

where hv : π∗(TM) → V .

For a holomorphic vector field X on M one can show

hv (X ) = Hamv (ν(X )W )

for some W : TM → C and where Hamv denote the Hamiltonian vector field
with respect to Ωv .

Hence, locally we have

Aϵ
X = HX +Hamv (νXW ) +

1

ϵ
νX .
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HK vs C-HK structures
Recall that a hyperkähler (HK) structure is a tuple (M, g , I1, I2, I3) such that:

(M, g) is a Riemannian manifold.

I1, I2, I3 are complex structures that preserve g and are parallel with respect
to the Levi-Civita connection of g .

I1, I2, I3 satisfy the imaginary quaternion relations.

In particular, if
ωi := g(Ii−,−)

then (M, g , Ii ) is Kähler with Kähler form ωi .
To (M, g , I1, I2, I3) HK, we can associate a CP1-family of complex structures I ζ

and holomorphic symplectic forms ϖζ (w.r.t. I ζ): for ζ ∈ C ⊂ CP1

I ζ =
i(−ζ + ζ)I1 − (ζ + ζ)I2 + (1− |ζ2|)I3

1 + |ζ|2
,

and

ϖζ = − i

2ζ
(ω1 + iω2) + ω3 −

iζ

2
(ω1 − iω2) .

From ϖζ one can recover the original data: g , I1, I2, I3.
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HK structures vs C-HK structures

A C-HK structure is an holomorphic analog of a usual HK structure: it is a tuple
(M, g , I1, I2, I3) such that:

M is a C-manifold. We call the complex structure S .

g a non-degenerate holomorphic section of Sym2(T ∗M) → M.

I1, I2, I3 are holomorphic sections of End(TM) → M, parallel with respect to
the Levi-Civita connection of g .

I1, I2, I3 preserve g and satisfy the imaginary quaternion relations.

Instead of Kähler forms, we have the holomorphic (w.r.t. S) symplectic forms

Ωi := g(Ii−,−)

and we have a CP1-family of complex structures I ϵ and of holomorphic (w.r.t. S)
closed 2-forms

I ϵ = I3 −
i

ϵ
(I1 + iI2) ,

and
Ωϵ = ϵ−2(Ω1 + 2Ω2) + 2iϵ−1Ω3 + (Ω1 − iΩ2) .

As before, from Ωϵ we can recover g ,I1, I2, I3.
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C-HK structures from Joyce structures
Why does a (pre)-Joyce structure on (M,Ω) gives rise to a C-HK structure on
TM? Roughly:

For each ϵ ∈ C ⊂ CP1, one can define I ϵ a holomorphic section of
End(TM) → M such that (I ϵ)2 = −1 and

T 0,1
I ϵ M = Im(Aϵ) .

From this, one can extract I1, I2, I3 almost complex structures satisfying
imaginary quaternion relations.

Furthermore, we can define Ωϵ by the condition

Ker(Ωϵ) = Im(Aϵ), Ωϵ(W , W̃ ) = Ωv (W , W̃ ) for W , W̃ ∈ V .

It can be shown that Ωϵ has the form

Ωϵ = ϵ−2(Ω1 + iΩ2) + 2iϵ−1Ω3 + (Ω1 − iΩ2) .

The integrability of I1, I2, I3 follows from the flatness of Aϵ, while the
closedness of Ωϵ follows from the fact that Aϵ is symplectic.
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HK metrics and integrable systems

We would like to mimic the construction of C-HK metrics from Joyce structures
to obtain real HK structures.

Assumption: now all objects and morphisms will be smooth, unless otherwise
stated.

In what follows, given a submersion π : X → M, we will consider “complexified”
non-linear connections. This means a splitting of the following short exact
sequence

0 → V ⊗ C i−→ TX ⊗ C π∗−→ π∗(TM)⊗ C → 0 .

A usual non-linear connection gives rise to complexified one, but the converse is
not true.
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not true.



18/24

Initial data
Consider a symplectic fiber bundle π : X → M over a complex manifold (M, I ).
Namely, we have a fiberwise symplectic form ωv ∈ Γ(X ,Λ2V ∗), where
V = Ker(dπ).

To this data, we assume that there exists a pair of maps (h, v) such that

h is a bundle map
h : π∗(T 1,0M) → TX ⊗ C

such that dπ ◦ h = Idπ∗(T 1,0M), and

v : π∗(T 1,0M) → V ⊗ C
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We have
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The C∗-family of complexified non-linear connections
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is flat and symplectic with respect to (π : X → M, ωv ).
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HK metrics and integrable systems

Theorem part 1 (I.T., to appear):

Given (π : X → M, ωv , h, v) as before, there is a (pseudo)-HK structure on X .
The CP1-family of complex structures I ζ is such that

T 0,1
Iζ

X = Im(Aζ) . (1)

The Kähler forms ωi satisfy

ω3(hX , hY ) = ω3(vY , vX ) = ωv (vX , vY ) , (ω1 + iω2)(hX , vY ) = 2iω3(vX , vY ) ,

(2)

and they give 0 when evaluated on other combinations of h and v (and their
conjugates).

Finally, if the fibers of π are compact and connected, then
(π : (X , I3) → (M, I ), ω1 + iω2) has the structure of a complex integrable system
(up to the data of polarizations of the fibers).
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HK metrics and integrable systems
There is also a converse:

Theorem part 2 (I.T, to appear):

Consider a HK manifold (X , g , I1, I2, I3) with complex integrable system structure
(π : (X , I3) → (M, I ), ω1 + iω2). Then for the symplectic fiber bundle
(π : X → M, ω3|V ) there are maps (h, v) such that Aζ is flat and symplectic, and
such that (1) and (2) hold.

The maps h and v are defined in this case as follows:

Consider the vertical bundle V = Ker(dπ) → X . It can be shown that
I1(V ) = H satisfies

TX = H ⊕ V .

Then map h : π∗(T 1,0M) → TX ⊗ C is then defined by

h(x,X ) := (dπ|Hx )
−1(X ) .

The antilinear map v : π∗(T 1,0M) → V is then defined by

v(x,X ) := I1(h(x,X )) .
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To make the previous story even more similar to Joyce structures, let us take
X = TM and π : TM → M the canonical projection.

Recall the natural identification of vector bundles:

ν : π∗(TM) → V = Ker(dπ) .

We assume that M has an affine special Kähler structure (M, I , ω,∇) . From this:

We have an induced symplectic structure on the fiber bundle π : TM → M,
ωv ∈ Γ(TM,∧2V ∗).

We also have an induced (flat) horizontal splitting H : π∗(TM) → T (TM)
induced from ∇.

Proposition

For a tuple (π : TM → M, ων , h, v) and a local holomorphic section X of
TM → M, h and v admit the decomposition

hX = HX +Hamv (fX ), vX = νX +Hamv (gX )

for locally defined functions fX and gX on TM.
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Example 1
We will give two explicit examples, where the analogy with Joyce structures
becomes even stronger.

Given an affine special Kähler manifold (M, I , ω,∇), we take the induced
symplectic fiber bundle (π : TM → M, ων) and the maps

hX := HX , vX := νX , X ∈ π∗(T 1,0M).

Then (π : TM → M, ων , h, v) satisfies the conditions of the theorem, and we
obtain a pseudo-HK structure on TM. This metric is well-known, and is called the
rigid c-map or semi-flat HK metric. Here the family of flat symplectic
non-linear connections is given by

Aζ
X = HX − 1

ζ
νX , Aζ

X
= HX + ζνX , X ∈ π∗(T 1,0M) .

The analogous case in Joyce structures is to start with the flat holomorphic
symplectic manifold (M,Ω,∇) and consider the Joyce structure given by

Aϵ
X = HX +

1

ϵ
νX .
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Example 2
We start again with an affine special Kähler manifold (M, I , ω,∇) and the induced
symplectic fiber bundle (π : TM → M, ων).

We assume that over M we have an uncoupled variation of BPS structures
(M, Γ,Z ,Ω) with BPS indices Ωp(γ). Here “uncoupled” refers to the fact that
the Ωp(γ) have trivial wall-crossing and hence are locally independent of p ∈ M
and monodromy invariant in γ (e.g. the DT theory of the A1 quiver or the
resolved conifold).

We can then write a global function on TM by the formula

J = i
∑
γ

Ω(γ)
∑
n>0

einθγ

n2
K0(n|Zγ |) ,

where K0 is a modified Bessel function of the second kind.

We then consider

hX := HX +Hamv (HX J), vX = νX +Hamv (νX J) .

It turns out that the tuple (π : TM → M, ων , h, v) also satisfies the requirements
of the theorem, and defines an HK structure on TM. This recovers the GMN HK
metric in the case of uncoupled BPS indices.
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the Ωp(γ) have trivial wall-crossing and hence are locally independent of p ∈ M
and monodromy invariant in γ (e.g. the DT theory of the A1 quiver or the
resolved conifold).

We can then write a global function on TM by the formula

J = i
∑
γ

Ω(γ)
∑
n>0

einθγ

n2
K0(n|Zγ |) ,

where K0 is a modified Bessel function of the second kind.

We then consider

hX := HX +Hamv (HX J), vX = νX +Hamv (νX J) .

It turns out that the tuple (π : TM → M, ων , h, v) also satisfies the requirements
of the theorem, and defines an HK structure on TM. This recovers the GMN HK
metric in the case of uncoupled BPS indices.
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Example 2 continued

The resulting C∗-family of complexified, flat, symplectic connections then has the
form

Aζ
X = HX +Hamv (HX J)−

1

ζ
(νX +Hamv (νX J))

Aζ

X
= HX +Hamv (HX J) + ζ(νX +Hamv (νX J)) .

This should be compared to the analogous case in Joyce structures, where

Aϵ
X = HX +Hamv (νXW ) +

1

ϵ
νX .

The function W has a simple form when the BPS indices are uncoupled and finite:

W =
∑
γ

Ω(γ)

Zγ
Li3(e

θγ ) .
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Thanks!
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