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Motivation part 1: Joyce structures

Joyce structures were introduced by T. Bridgeland in the context of the space of
stability conditions of a 3d CY category and its DT invariants. Roughly:
@ Let X denote a 3d Calabi-Yau category. For example, X = D?(X) where X is
a 3d CvV.
@ Associated to X is a C-manifold M = Stab(X), and Donaldson-Thomas
invariants DT,(y) € Q, 0 € M, v € T = Kp(X%).
e DT, () satisfy the Kontsevich-Soibelman wall-crossing formula.
@ Joyce structures describe a conjectural geometric structure on T (Stab(X)),
encoded by DT, (7).
Joyce structures can be formulated on holomorphic symplectic manifolds (M, Q)
(or more generally holomorphic Poisson). They involve a certain C*-family of flat
and symplectic non-linear connections on TM — M.
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Motivation part 1: Joyce structures

There are two features of Joyce structures that are important for our motivation:

@ In the setting if 3d CY categories X, constructing the (conjectural) Joyce
structure involves solving a family of non-linear Riemann-Hilbert (RH)
problems determined by DT, (). The family is parametrized by
o € M = Stab(X), and for fixed o € M the RH problem involves finding
piece-wise holomorphic functions

X, (0,=):C*"=C", ~erl.

o T. Bridgeland and I. Strachan showed that Joyce structures over a
holomorphic symplectic manifold (M, Q) encodes a
complex Hyperkahler structure (C-HK) on TM.
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Now we explain the second source of motivation.
There is a class of physical theories T, called 4d N' = 2 gauge theories, which
gives rise to (real) hyperk3hler manifolds. More specifically:

@ Each such T has an associated complex integrable system 7 : X — B.

e Compactifying T on S! gives a hyperkahler (HK) structure on X,
compatible with the previous integrable system structure.

An important class of such theories T are called Class S-theories. In that case,
the HK structure of X is conjectured to match the hyperkahler structure of a
Hitchin moduli space, and 7 : X — B is the Hitchin fibration.

Remark:

In the setting of Joyce structures, the simplest “class S” case has M equal to a
moduli space of Riemann surfaces of fixed genus and with a quadratic differential.
Fixing the complex structure of the Riemann surface gives a Lagrangian B C M.
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Motivation part 2: SUSY gauge theories and HK manifolds

In analogy to the C-HK structure appearing in Joyce structures, the HK structure
is determined by two inputs:

@ The special Kahler structure of B (analogous to M = Stab(X)).

@ The BPS indices Q(7) of T (analogous to DT, (7)), satisfying the
Kontsevich-Soibelman wall-crossing formula.

As explained by the work of Gaiotto-Moore-Neitzke, the HK structure on X is
obtained by solving a family of non-linear Riemann-Hilbert problems,
determined by Q4(), and parametrized by b € B.

This family of RH problems is related, but different, to the ones appearing in
Joyce structures.

Problem:

Given an HK metric with compatible integrable system structure, can we describe
it in a way similar to Joyce structures?
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Consider a submersion 7 : X — M. We then have the short exact sequence
0— VL4 TX 5 7% (TM) = 0

where:
e V = Ker(dw) — X is the vertical bundle and i : V — TX is the inclusion.
e m, is the natural map m,(W,) = (p, dmp,(W,)).

A non-linear connection on 7 is a splitting h: 7*(TM) — TX of the short
exact sequence (i.e. T, 0 h=id-(Tm)). Setting H = Im(h) we therefore have

TX=HoV.

The connection h is flat if
[H,H]C H.
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Non-linear connections

We will frequently consider the case X = TM and «w : TM — M the canonical
projection.

In this case, if (x') are local coordinates for M and (x',6) the induced
coordinates on TM, a non-linear connection has the local form

. ag\ 0 K 0
he '_h(ax’) _8x"+fi o0k

Furthermore, we have a natural identification v : 7*(TM) — V given by

€ Vi, C Tw,(TM).

t=0

v(Wp, Wp) = % (Wp + th)

Non-linear connections h, together with the map v will play an important role in
what follows.
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Joyce structures

In what follows, all objects are holomorphic and all morphisms either holomorphic
or meromorphic.

Consider a holomorphic symplectic manifold (M, Q).

Definition

A (pre-)Joyce structure on (M, Q) is a holomorphic or meromorphic non-linear
connection h: 7*(TM) — T(TM) such that

A :=h+ely, eeCr,

is a flat and symplectic non-linear connection on 7w : TM — M for all e € C*.

The condition of being symplectic means the following:
o Q induces a symplectic structure Q¥ on the bundle V — TM by

QUW, W) = Q(ps 0 v} (W), p2 o ™1 (W)

where p, : 7*(TM) — TM is the projection of the second component.
@ Then A€ is symplectic if the induced parallel transport preserves QV.
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Joyce structures

An actual Joyce structure is a pre-Joyce structure (M, Q, h) with some additional
data. We will not mention the full additional data, except for one:

e (M, Q) has a flat, torsion free, (linear) connection V, such that VQ = 0.

e V induces a horizontal splitting H : 7*(TM) — T(TM) on 7 : TM — M,
and hence we can write
h=H+ h"

where h¥ : 7*(TM) — V.
@ For a holomorphic vector field X on M one can show

h(X) = Ham" (1(X)W)

for some W : TM — C and where Ham" denote the Hamiltonian vector field
with respect to QV.

Hence, locally we have

1
S = Hx + Ham"(vx W) + VX
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HK vs C-HK structures

Recall that a hyperkahler (HK) structure is a tuple (M, g, I, , I5) such that:
e (M, g) is a Riemannian manifold.

@ h, b, I3 are complex structures that preserve g and are parallel with respect
to the Levi-Civita connection of g.

@ Iy, b, I3 satisfy the imaginary quaternion relations.
In particular, if
Wi = g(lifa 7)
then (M, g, I;) is Kahler with K&hler form w;.

To (M, g, I, h, I3) HK, we can associate a CP*-family of complex structures /¢
and holomorphic symplectic forms ¢ (w.r.t. I¢): for ( € C C CP!

o A=+ O = (C+ Dk + (L= |2
1+[C)2 ’

and ) ]
wc = 7%(&)1 + iw2) + w3 — %(wl — iwz) .

From w® one can recover the original data: g, h, b, k.
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A C-HK structure is an holomorphic analog of a usual HK structure: it is a tuple
(M, g, h, b, ) such that:

@ M is a C-manifold. We call the complex structure S.

@ g a non-degenerate holomorphic section of SymZ(T* M) — M.

@ Iy, b, 5 are holomorphic sections of End(TM) — M, parallel with respect to
the Levi-Civita connection of g.

@ Iy, b, I3 preserve g and satisfy the imaginary quaternion relations.

Instead of Kahler forms, we have the holomorphic (w.r.t. S) symplectic forms
Qi = g(li_7 _)

and we have a CP!-family of complex structures /¢ and of holomorphic (w.r.t. S)
closed 2-forms

F:@fgh+by

and
Q° = 672(91 + 292) + 2i€7193 + (Ql - IQQ) .

As before, from Q€ we can recover g,l, b, I.
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C-HK structures from Joyce structures
Why does a (pre)-Joyce structure on (M, Q) gives rise to a C-HK structure on
TM? Roughly:
@ For each e € C C CP?, one can define /¢ a holomorphic section of
End(TM) — M such that (/)2 = —1 and

TP M = Im(A°).

From this, one can extract /i, h, /5 almost complex structures satisfying
imaginary quaternion relations.

o Furthermore, we can define Q¢ by the condition
Ker(Q) = Im(A9), QY(W,W)=Q"(W,W) for W,WeV.
It can be shown that Q€ has the form

Q¢ = 6_2(91 + ng) + 216_193 + (Ql — iQ2) .

@ The integrability of Iy, I, l5 follows from the flatness of A, while the
closedness of Q€ follows from the fact that A is symplectic.
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HK metrics and integrable systems

We would like to mimic the construction of C-HK metrics from Joyce structures
to obtain real HK structures.

Assumption: now all objects and morphisms will be smooth, unless otherwise
stated.

In what follows, given a submersion 7 : X — M, we will consider “complexified”
non-linear connections. This means a splitting of the following short exact
sequence

05 VRCHTX®C I m*(TM)® C — 0.

A usual non-linear connection gives rise to complexified one, but the converse is
not true.
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To this data, we assume that there exists a pair of maps (h, v) such that
@ his a bundle map

h:m*(TM) = TX®C
such that dm o h = Id;«(71.0m), and
v (THYM) - VeC

is an anti-linear bundle map such that w(vx, vy) = 0.
o We have

TX ® C = Im(h) @ Im(h) @ Im(v) © Im(V).

@ The C*-family of complexified non-linear connections
A 7*(TM) ® C — TX ® C defined by

1 _
Aizhx—ZW, Acy:hx-l-CVm X en*(THM),

is flat and symplectic with respect to (7 : X — M, w").
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Given (7 : X — M,w", h, v) as before, there is a (pseudo)-HK structure on X.
The CP*-family of complex structures /< is such that
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The Kahler forms w; satisfy
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and they give 0 when evaluated on other combinations of h and v (and their
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Finally, if the fibers of 7 are compact and connected, then
(m: (X, ) = (M, ),w; +iw,) has the structure of a complex integrable system
(up to the data of polarizations of the fibers).
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HK metrics and integrable systems
There is also a converse:

Theorem part 2 (I.T, to appear):

Consider a HK manifold (X, g, h1, b, l5) with complex integrable system structure
(m: (X, ) = (M, ),w; +iw,). Then for the symplectic fiber bundle

(7 : X = M,ws|y) there are maps (h, v) such that A is flat and symplectic, and
such that (1) and (2) hold.

The maps h and v are defined in this case as follows:

o Consider the vertical bundle V = Ker(dn) — X. It can be shown that
(V) = H satisfies
TX=HoV.

Then map h: 7*(T*°M) — TX @ C is then defined by

iy o= (dr|w,) TH(X).

@ The antilinear map v : 7*(T19M) — V is then defined by

Vix,x) = hi(hxx)) -
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To make the previous story even more similar to Joyce structures, let us take
X = TM and w: TM — M the canonical projection.

Recall the natural identification of vector bundles:
v:m*(TM) — V = Ker(dn).

We assume that M has an affine special Kahler structure (M, !, w, V) . From this:
@ We have an induced symplectic structure on the fiber bundle 7 : TM — M,
wY € T(TM, A2V*).
@ We also have an induced (flat) horizontal splitting H : 7*(TM) — T(TM)
induced from V.
Proposition
For a tuple (w: TM — M,w", h,v) and a local holomorphic section X of
TM — M, h and v admit the decomposition
hx = Hx +Ham"(fx), vx = v+ Ham"(gx)

for locally defined functions fx and gx on TM.
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We will give two explicit examples, where the analogy with Joyce structures
becomes even stronger.

Given an affine special K&hler manifold (M, I,w, V), we take the induced
symplectic fiber bundle (7 : TM — M, w") and the maps
hx ==Hx, vx:=vg, Xen(T''M).

Then (7 : TM — M,w", h, v) satisfies the conditions of the theorem, and we
obtain a pseudo-HK structure on TM. This metric is well-known, and is called the
rigid c-map or semi-flat HK metric. Here the family of flat symplectic
non-linear connections is given by

1 _
ACZ"HX—EVX, Ay =Hx +(Tx, Xen (THM).

The analogous case in Joyce structures is to start with the flat holomorphic
symplectic manifold (M, 2, V) and consider the Joyce structure given by

1
,43(:7-[X+ny.
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(M, T, Z,Q) with BPS indices Q,(vy). Here "uncoupled” refers to the fact that
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We can then write a global function on TM by the formula
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where Ky is a modified Bessel function of the second kind.

We then consider
hx := Hx + Ham"(HxJ), vx =vx + Ham"(vxJ).

It turns out that the tuple (7 : TM — M,w"”, h, v) also satisfies the requirements
of the theorem, and defines an HK structure on TM. This recovers the GMN HK
metric in the case of uncoupled BPS indices.



Example 2 continued

The resulting C*-family of complexified, flat, symplectic connections then has the
form

1 _
A, = Hx + Ham"(HxJ) — E(VX + Ham" (vxJ))

ASe = Hx + Ham" (HxJ) + ¢(7x + Ham"(7xJ)) .
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Example 2 continued

The resulting C*-family of complexified, flat, symplectic connections then has the
form

AS, = Hyx + Ham" (Hx J) — %(VX + Ham" (x 7))
ASe = Hx + Ham" (HxJ) + ¢(7x + Ham"(7xJ)) .
This should be compared to the analogous case in Joyce structures, where
A5 = Hx + Ham"(vx W) + %zxx )

The function W has a simple form when the BPS indices are uncoupled and finite:

w=>" Qg)Lg(e%) :



Thanks!
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