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y What are (meromorphic) projective structures?

y Does the monodromy data of a (meromorphic) projective
structure characterizes it?

y Theorem (Hejhal, 1975): Locally, yes (non-singular cases).

y Theorem (T.S.): Locally, yes (meromorphic cases).
Under suitable assumptions.
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Definitions

P

UjUi

ϕi
ϕj

ϕijP1

P1

Definition
A complex projective structure P is a Riemann surface such that
ϕij := ϕi ◦ ϕ−1

j = a restriction of a gij ∈ Aut(P1) ' PGL(2,C).
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Definitions

P

U0γ

Un

The monodromy representation of P w.r.t. ϕ0:

π1(P, •) −→ PGL(2,C)

γ 7−→ ρϕ0(γ) = gn,(n−1) ◦ · · · ◦ g2,1 ◦ g1,0
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Definitions

Fix S an infinitely differentiable compact real oriented surface.

P(S) := {isomorphism classes of marked proj. structures on S}

P1 ∼ P2 ⇔∃Φ : S → S a C∞-diffeomorphism isotopic to idS

pulling back any chart of P2 to a chart of P1

R(S) := Hom(π1(S),PGL(2,C))/PGL(2,C)

Definition (Monodromy map):

MonS : P(S) −→ R(S)
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Definitions

Fix S an infinitely differentiable compact real oriented surface.

P(S) := {isomorphism classes of marked proj. structures on S}
R(S) := Hom(π1(S),PGL(2,C))/PGL(2,C)

Definition (Monodromy map):

MonS : P(S) −→ R(S)

Two natural questions:

y Is it injective?

y Is it surjective?

y Same questions locally?
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Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on C is an affine space for the
vector space H0(C , (T ∗C )⊗2) of quadratic differentials.

y P1,P2 projective structures on C
(z1, z2 corresponding projective coordinates, ψ := z2 ◦ z−1

1 )

P1 − P2 = φ :=
Sz1(ψ)

2
dz⊗2

1 (Schwarzian derivative)

y P1 projective structure on C , and φz1 := q(z1)
2 dz⊗2

1

P1 + φ : charts are the solutions of Sz1(ϕ) = q(z1)

⇔ charts are the quotients of independent solutions

of y ′′ +
q(z1)

2
y = 0.
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The theorem of Hejhal

P(S) −→ T (S) is an affine bundle for the vector bundle
Q(S) −→ T (S) of quadratic differentials.

Theorem (Hejhal 1975, Earle, Hubbard 1981)
If g ≥ 2, Mong≥2

S : P(S)→ Rnc(S) is a local biholomorphism.

y What about projective structures with poles?
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Definition

C a complex curve.

Definition
A meromorphic projective structure on C is a projective
structure P∗ on the complement C ∗ = C r Σ of a finite subset
Σ ⊂ C , such that given a holomorphic projective structure P0 on
C , the quadratic differential φ = P∗ − P0|C∗ on C ∗ extends to a
meromorphic quadratic differential on C .

y Pole orders are well-defined (do not depend on P0).
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Relation to Painlevé VI equation

The space of projective structures on P1 with 5 singularities of
orders ≤ 2, with exactly 1 apparent singularity, and fixed residues,
is of dimension 3.

The associated isomonodromic foliation in this space is the
Painlevé VI foliation.
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PGL(2,C)-opers on C

P a (non-singular) projective structure on C , with atlas (Ui , ϕi ).

gij : Ui ∩ Uj −→ PGL(2,C)

x 7−→ gij(x) whose restriction equals ϕij

Ui

ϕi

−→ −→

Ui × P1

Uj

ϕj

Uj × P1

7−→
(x , gji (x) · y)
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PGL(2,C)-opers on C

C

Q σ

−→

F

π

This defines a PGL(2,C)-oper (π : Q → C ,F , σ) on C :

π : Q → C is a holomorphic P1-bundle,

F is a Riccati foliation on Q,

σ : C → Q is a holomorphic section of π, transverse to F .

And vice versa.
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Meromorphic PGL(2,C)-opers on C

C

σ

−→

Q

π

F

meromorphic proj. structure 7−→ meromorphic oper

(without apparent sing.) (unique minimal birational model)
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Moduli space of rank 2 meromorphic connections

y (π : Q → C ,F , σ) lifts to a GL(2,C)-oper (E ,∇, L) on C .

y Oper condition + no apparent singularities ⇒ opers belong to
the smooth locus of the moduli space of (Inaba 2016, 2021)

Mα,◦
C ,D,Λ.

y Thanks to the wild Riemann-Hilbert correspondence

Mα,◦
C ,D,Λ

1:1−−→ R(S , (ni ))

we get a smooth wild character variety R∗(S , (ni ), (λ
(i)
−1)).

y Projectivized version: R̄∗(S , (ni ), (λ
(i)
−1)).
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The generalized monodromy map

Fix S , (ni ) and the residues (λ
(i)
−1).

(Residues are defined up to ×(−1); we make a choice).

P◦(S , (ni ), (λ
(i)
−1))

Mon
S,(ni ),(λ

(i)
−1

) ++

//M(S , (ni ), (λ
(i)
−1)) = R̄∗(S , (ni ), (λ

(i)
−1))× T

��

R̄∗(S , (ni ), (λ
(i)
−1))

y The monodromy map is holomorphic (Allegretti/Bridgeland
2020).
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A generalization of Hejhal’s theorem

Theorem (T.S.)
Assume that we are not in one of the special cases listed below.
Then, the monodromy map

Mon
S ,(ni ),(λ

(i)
−1)

: P◦(S , (ni ), (λ
(i)
−1)) −→ R̄∗(S , (ni ), (λ

(i)
−1))

is a local biholomorphism.

Special cases:

• g = 0, (ni ) = (1), (2), (3), (4), (1, 1), (1, 2), (2, 2), (1, 3) or
(2, 3) (up to a permutation of its entries)

• g = 1, (ni ) = ∅
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Local injectivity of the monodromy map

P◦(S , (ni ), (λ
(i)
−1))

M(S , (ni ), (λ
(i)
−1))

R̄∗(S , (ni ), (λ
(i)
−1))

T

I × U

Mon
S ,(ni ),(λ

(i)
−1)

z

y0

y2

y1

t0

t1

t2

Local injectivity ⇔ transversality.
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Local injectivity of the monodromy map

σ1

−→

−→

σ2

UC1

C2

Isomonodromic deformations are induced by a codimension one
foliation (Heu, 2010).

This allows to lift the C∞ trivialization of the family of curves
(Ehresmann).
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Local injectivity of the monodromy map

S

σ̃2

−→

σ1
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Existing works

This theorem was already proven in special cases via different
techniques:

all poles have order ≤ 2 with non-trivial and non-parabolic
local monodromy (Luo 1993);

all poles have order ≤ 2 with parabolic local monodromy and
some specific residues (Hussenot Desenonges 2019);

all poles have order ≥ 3 (Gupta/Mj 2021).
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Thank you for your attention!

21/21


