The monodromy of meromorphic projective structures

Titouan Sérandour

Université de Rennes 1/ENS de Lyon

12 October 2022 Web-seminar on Painlevé Equations and related topics

What are (meromorphic) projective structures?

Does the monodromy data of a (meromorphic) projective structure characterizes it?

<u>Theorem</u> (Hejhal, 1975): Locally, yes (non-singular cases).

<u>Theorem</u> (T.S.): Locally, yes (meromorphic cases). Under suitable assumptions.

Definition A **complex projective structure** *P* is a Riemann surface such that $\varphi_{ij} := \varphi_i \circ \varphi_j^{-1} = a$ restriction of a $g_{ij} \in Aut(\mathbb{P}^1) \simeq PGL(2, \mathbb{C}).$

The monodromy representation of *P* w.r.t. φ_0 :

$$\pi_1(P, \bullet) \longrightarrow \mathsf{PGL}(2, \mathbb{C})$$

$$\gamma \longmapsto \rho_{\varphi_0}(\gamma) = g_{n,(n-1)} \circ \cdots \circ g_{2,1} \circ g_{1,0}$$

Fix S an infinitely differentiable *compact* real oriented surface. $\mathcal{P}(S) := \{\text{isomorphism classes of marked proj. structures on } S\}$

 $P_1 \sim P_2 \Leftrightarrow \exists \Phi : S \to S \text{ a } C^{\infty}\text{-diffeomorphism isotopic to id}_S$ pulling back any chart of P_2 to a chart of P_1

 $\mathcal{R}(S) := \operatorname{Hom}(\pi_1(S), \operatorname{PGL}(2, \mathbb{C})) / \operatorname{PGL}(2, \mathbb{C})$

Definition (Monodromy map):

 $\operatorname{Mon}_{S}: \mathcal{P}(S) \longrightarrow \mathcal{R}(S)$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○

5/21

Fix S an infinitely differentiable *compact* real oriented surface.

 $\begin{aligned} \mathcal{P}(S) &:= \{ \text{isomorphism classes of marked proj. structures on } S \} \\ \mathcal{R}(S) &:= \operatorname{Hom}(\pi_1(S), \operatorname{PGL}(2, \mathbb{C})) / \operatorname{PGL}(2, \mathbb{C}) \end{aligned}$

Definition (Monodromy map):

$$\operatorname{Mon}_{S}: \mathcal{P}(S) \longrightarrow \mathcal{R}(S)$$

Two natural questions:

► Is it injective?

Is it surjective?

Same questions locally?

Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on *C* is an affine space for the vector space $H^0(C, (T^*C)^{\otimes 2})$ of **quadratic differentials**.

Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on *C* is an affine space for the vector space $H^0(C, (T^*C)^{\otimes 2})$ of **quadratic differentials**.

► P_1, P_2 projective structures on C(z_1, z_2 corresponding projective coordinates, $\psi := z_2 \circ z_1^{-1}$)

$$P_1-P_2=\phi:=rac{\mathcal{S}_{z_1}(\psi)}{2}dz_1^{\otimes 2}$$
 (Schwarzian derivative)

(日)

Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on C is an affine space for the vector space $H^0(C, (T^*C)^{\otimes 2})$ of **quadratic differentials**.

P₁, P₂ projective structures on C (z_1 , z_2 corresponding projective coordinates, $\psi := z_2 \circ z_1^{-1}$)

$$P_1-P_2=\phi:=rac{\mathcal{S}_{z_1}(\psi)}{2}dz_1^{\otimes 2}$$
 (Schwarzian derivative)

 \blacktriangleright P_1 projective structure on C, and $\phi_{z_1} := \frac{q(z_1)}{2} dz_1^{\otimes 2}$

 $P_1 + \phi$: charts are the solutions of $S_{z_1}(\varphi) = q(z_1)$

 \Leftrightarrow charts are the quotients of independent solutions

of
$$y'' + \frac{q(z_1)}{2}y = 0.$$

 $\mathcal{P}(S) \longrightarrow \mathcal{T}(S)$ is an affine bundle for the vector bundle $\mathcal{Q}(S) \longrightarrow \mathcal{T}(S)$ of quadratic differentials.

Theorem (Hejhal 1975, Earle, Hubbard 1981) If $g \geq 2$, $\operatorname{Mon}_{S}^{g \geq 2} : \mathcal{P}(S) \to \mathcal{R}^{\operatorname{nc}}(S)$ is a local biholomorphism.

What about projective structures with poles?

C a complex curve.

Definition

A meromorphic projective structure on *C* is a projective structure *P*^{*} on the complement $C^* = C \setminus \Sigma$ of a finite subset $\Sigma \subset C$, such that given a holomorphic projective structure *P*₀ on *C*, the quadratic differential $\phi = P^* - P_{0|C^*}$ on *C*^{*} extends to a meromorphic quadratic differential on *C*.

Pole orders are well-defined (do not depend on P_0).

The space of projective structures on \mathbb{P}^1 with 5 singularities of orders ≤ 2 , with exactly 1 apparent singularity, and fixed **residues**, is of dimension 3.

The associated isomonodromic foliation in this space is the Painlevé VI foliation.

$\mathsf{PGL}(2,\mathbb{C})$ -opers on C

P a (non-singular) projective structure on *C*, with atlas (U_i, φ_i) .

$$egin{array}{lll} g_{ij}: U_i \cap U_j \longrightarrow \mathsf{PGL}(2,\mathbb{C}) \ & x \longmapsto g_{ij}(x) ext{ whose restriction equals } arphi_{ij} \end{array}$$

$\mathsf{PGL}(2,\mathbb{C})$ -opers on C

This defines a PGL(2, \mathbb{C})-oper ($\pi : Q \to C, \mathcal{F}, \sigma$) on C:

- $\pi: Q \to C$ is a holomorphic \mathbb{P}^1 -bundle,
- \mathcal{F} is a Riccati foliation on Q,

• $\sigma: C \to Q$ is a holomorphic section of π , transverse to \mathcal{F} . And vice versa.

Meromorphic $PGL(2, \mathbb{C})$ -opers on *C*

meromorphic proj. structure →meromorphic oper(without apparent sing.)(unique minimal birational model)

Moduli space of rank 2 meromorphic connections

- \blacktriangleright $(\pi: Q \to C, \mathcal{F}, \sigma)$ lifts to a GL $(2, \mathbb{C})$ -oper (E, ∇, L) on C.
- \blacktriangleright Oper condition + no apparent singularities \Rightarrow opers belong to the smooth locus of the moduli space of (Inaba 2016, 2021)

 $\mathcal{M}^{\alpha,\circ}_{CD\Lambda}$.

Thanks to the wild Riemann-Hilbert correspondence

$$\mathcal{M}_{C,D,\Lambda}^{\alpha,\circ} \xrightarrow{1:1} \mathcal{R}(S,(n_i))$$

we get a smooth wild character variety $\mathcal{R}^*(S, (n_i), (\lambda_{-1}^{(i)}))$. Projectivized version: $\overline{\mathcal{R}}^*(S, (n_i), (\lambda_1^{(i)}))$.

The generalized monodromy map

Fix *S*, (n_i) and the **residues** $(\lambda_{-1}^{(i)})$. (Residues are defined up to $\times(-1)$; we make a choice).

$$\mathcal{P}^{\circ}(S,(n_i),(\lambda_{-1}^{(i)})) \longrightarrow \mathcal{M}(S,(n_i),(\lambda_{-1}^{(i)})) = \bar{\mathcal{R}}^*(S,(n_i),(\lambda_{-1}^{(i)})) \times T$$

$$\downarrow$$

$$\downarrow$$

$$\bar{\mathcal{R}}^*(S,(n_i),(\lambda_{-1}^{(i)}))$$

The monodromy map is holomorphic (Allegretti/Bridgeland 2020).

Theorem (T.S.)

Assume that we are not in one of the special cases listed below. Then, the monodromy map

$$\mathsf{Mon}_{\mathcal{S},(n_i),(\lambda_{-1}^{(i)})}:\mathcal{P}^{\circ}(\mathcal{S},(n_i),(\lambda_{-1}^{(i)}))\longrightarrow \bar{\mathcal{R}}^*(\mathcal{S},(n_i),(\lambda_{-1}^{(i)}))$$

is a local biholomorphism.

Special cases:

• g = 0, $(n_i) = (1)$, (2), (3), (4), (1,1), (1,2), (2,2), (1,3) or (2,3) (up to a permutation of its entries)

イロト イボト イヨト イヨト 三日

• g = 1, $(n_i) = \emptyset$

Local injectivity of the monodromy map

Local injectivity \Leftrightarrow transversality.

Local injectivity of the monodromy map

Isomonodromic deformations are induced by a codimension one foliation (Heu, 2010).

This allows to lift the C^{∞} trivialization of the family of curves (Ehresmann).

Local injectivity of the monodromy map

<ロト < 部ト < 差ト < 差ト 差 の Q (~ 19/21 This theorem was already proven in special cases via different techniques:

- all poles have order ≤ 2 with non-trivial and non-parabolic local monodromy (Luo 1993);
- all poles have order ≤ 2 with parabolic local monodromy and some specific residues (Hussenot Desenonges 2019);
- all poles have order ≥ 3 (Gupta/Mj 2021).

Thank you for your attention!