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> What are (meromorphic) projective structures?

= Does the monodromy data of a (meromorphic) projective
structure characterizes it?

> Theorem (Hejhal, 1975): Locally, yes (non-singular cases).

> Theorem (T.S.): Locally, yes (meromorphic cases).
Under suitable assumptions.
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Definition
A complex projective structure P is a Riemann surface such that
Pjj == pjo <pj_1 = a restriction of a gj € Aut(P!) ~ PGL(2,C).
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The monodromy representation of P w.r.t. q:

m1(P,e) — PGL(2,C)
Y p¢o(7) = gn,(n—l) ©-++0821°810
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Fix S an infinitely differentiable compact real oriented surface.

P(S) := {isomorphism classes of marked proj. structures on S}

Py~ P, &dd: S — S a C™-diffeomorphism isotopic to idg
pulling back any chart of P, to a chart of P;

R(S) := Hom(m1(S), PGL(2,C))/ PGL(2,C)
Definition (Monodromy map):

Mons : P(S) — R(S)
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Fix S an infinitely differentiable compact real oriented surface.
P(S) := {isomorphism classes of marked proj. structures on S}
R(S) := Hom(m1(S), PGL(2,C))/ PGL(2,C)
Definition (Monodromy map):
Mons : P(S) — R(S)
Two natural questions:
> |5 it injective?
> |s it surjective?

= Same questions locally?
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Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on C is an affine space for the
vector space HO(C, (T*C)®2) of quadratic differentials.
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Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on C is an affine space for the
vector space HO(C, (T*C)®2) of quadratic differentials.

> P, P, projective structures on C
(z1, z» corresponding projective coordinates, 1) := z o zl_l)

Pr—Py=¢:= g9212(1/))d21®2 (Schwarzian derivative)

7/21



Relation to quadratic differentials

Fix C a smooth compact complex curve.

The set of projective structures on C is an affine space for the
vector space HO(C, (T*C)®2) of quadratic differentials.

> P, P, projective structures on C
(z1, z» corresponding projective coordinates, 1) := z o zl_l)

Sz (¥)

P1—Pr=¢:= szi@ (Schwarzian derivative)
"> P, projective structure on C, and ¢,, = q(gl)dzl®2

P1 + ¢ : charts are the solutions of S;,(¢) = q(z1)

< charts are the quotients of independent solutions

of y" + L(;l)y =0.
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The theorem of Hejhal

P(S) — T(S) is an affine bundle for the vector bundle
Q(S) — T(S) of quadratic differentials.

Theorem (Hejhal 1975, Earle, Hubbard 1981)

If g > 2, Moné>? : P(S) — R"(S) is a local biholomorphism.

> \What about projective structures with poles?
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C a complex curve.

Definition

A meromorphic projective structure on C is a projective
structure P* on the complement C* = C \. X of a finite subset
> C C, such that given a holomorphic projective structure Py on
C, the quadratic differential ¢ = P* — Pyc~ on C* extends to a
meromorphic quadratic differential on C.

> Pole orders are well-defined (do not depend on Py).
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Relation to Painlevé VI equation

The space of projective structures on P! with 5 singularities of
orders < 2, with exactly 1 apparent singularity, and fixed residues,
is of dimension 3.

The associated isomonodromic foliation in this space is the
Painlevé VI foliation.
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PGL(2, C)-opers on C

P a (non-singular) projective structure on C, with atlas (U, ;).

8ij : uin UJ' — PGL(2,C)

x — gij(x) whose restriction equals ¢j;

U,'X]P’l

Pi

(x, gji(x) - y)
—

UjXPl

Uj

wj
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PGL(2, C)-opers on C

lﬂ

<

This defines a PGL(2, C)-oper (7: Q@ — C,F,0) on C:
e 7m:Q — Cis a holomorphic P!-bundle,
@ F is a Riccati foliation on @,
@ 0: C — @ is a holomorphic section of 7, transverse to F.

And vice versa.
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Meromorphic PGL(2, C)-opers on C

meromorphic proj. structure — meromorphic oper

(without apparent sing.) (unique minimal birational model)

13/21



Moduli space of rank 2 meromorphic connections

= (1r:Q — C,F,o) lifts to a GL(2,C)-oper (E,V,L) on C.

> Oper condition + no apparent singularities = opers belong to
the smooth locus of the moduli space of (Inaba 2016, 2021)

,0
Mcpa-
> Thanks to the wild Riemann-Hilbert correspondence

we get a smooth wild character variety R*(S, (n;), ()\(_')1))

"> Projectivized version: R*(S, (ni),()\(il))-
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The generalized monodromy map

Fix S, (n;) and the residues (A(l)l)
(Residues are defined up to x(—1); we make a choice).
P(S. (m), A0))) ——= M(S, (m), (A1) = R*(S, (m). A))) x T

Mon (i)
S, (m),(x)

R*(S, (ni), A1)

™ The monodromy map is holomorphic (Allegretti/Bridgeland
2020).
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A generalization of Hejhal's theorem

Theorem (T.S.)
Assume that we are not in one of the special cases listed below.
Then, the monodromy map

M L P(S, (m), AD) — RS, (mi), (A1)

on i
S.(m),(A%)
is a local biholomorphism.

Special cases:

e g =0, (n)=1(1),(2), (3), (4), (1,1), (1,2), (2,2), (1,3) or
(2,3) (up to a permutation of its entries)

og:l,(n,-):VJ
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Local injectivity of the monodromy map

e R(S. (m), A1)
Local injectivity < transversality.
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Local injectivity of the monodromy map

Isomonodromic deformations are induced by a codimension one
foliation (Heu, 2010).
This allows to lift the C trivialization of the family of curves

(Ehresmann).
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Local injectivity of the monodromy map

o1
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This theorem was already proven in special cases via different
techniques:
@ all poles have order < 2 with non-trivial and non-parabolic
local monodromy (Luo 1993);
@ all poles have order < 2 with parabolic local monodromy and
some specific residues (Hussenot Desenonges 2019);

@ all poles have order > 3 (Gupta/Mj 2021).
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