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Summary

In 1913, Birkhoff proposed a new solution (different of that of
Hilbert and Plemelj) to what he called the ”Riemann problem”
and used it to provide a unified framework for (linear complex
analytic) differential, difference and q-difference equations.
Starting from Birkhoff, I shall describe various ways of associating
”intrinsic transcendental invariants” (as Birkhoff said) to
q-difference equations: geometric, galoisian, cohomological ... up
to a mysterious sheaf theoretical formulation by Kontsevitch and
Soibelman. Most of that will rest on work by the Ramis school.
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Birkhoff’s formulation of “the Riemann problem”

Birkhoff 1913 (regular singular case only):
“The program of obtaining a characterization of a function in
simple descriptive terms which are independent of the equations of
definition of the function . . . ”
“. . . a certain number of characteristic constants - the
monodromic group constants . . . ”
“Riemann also proposed the associated problem of assigning these
constants at pleasure.”

Birkhoff and Guenther 1941 (also tackling irregular case):
“. . . the explicit determination of the essential transcendental
invariants (constants in the canonical form), the inverse Riemann
theory both for the neighborhood of x =∞ and in the complete
plane (case of rational coefficients), . . . ”
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General Notations

All along, we let q ∈ C∗ s.t. |q| < 1 and set σqf (x) := f (qx),
where e.g. f ∈ K := C(x), C({x}) or C((x)).

For K :=M(C∗), the field of q-constants isM(C∗)σq =M(Eq),
where Eq := C∗/qZ, the Tate elliptic curve (q-elliptic functions).

This extends coefficientwise to vectors and matrices.

We identify the q-difference system σqX = AX with its matrix
A(x) ∈ GLn(K ).

A morphism A ∈ GLn(K )→ B ∈ GLp(K ) is a F ∈ Matp,n(K ) such
that (σqF )A = BF .
It sends a solution X of A to the solution FX of B.

If n = p and F ∈ GLn(K ), the isomorphism F is also called a
gauge equivalence.
We then write B = F [A] := (σqF )AF

−1.
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Birkhoff 1913

Birkhoff considers a system:

σqX = AX , A = A0 + · · ·+ Aµx
µ, A0, . . . ,Aµ ∈ Matn(C),

with the fuchsianity condition at 0 and ∞:

Sp(A0) =: {ρ1, . . . , ρn} ⊂ C∗, Sp(Aµ) =: {σ1, . . . , σn} ⊂ C∗,

and the strong non-resonancy condition:

∀i , j = 1, . . . , n , i ̸= j =⇒ ρi/ρj ̸∈ qZ and σi/σj ̸∈ qZ.

We also require “fuchsianity at intermediate singularities”:

detA(x) = σ1 · · ·σn(x − x1) · · · (x − xN), N := nµ,

where:
i ̸= j =⇒ xi/xj ̸∈ qZ.

Note Fuchs relation: (−1)Nx1 · · · xN = ρ1 · · · ρn/σ1 · · ·σn.
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Construction of local solutions

First we need a function ex s.t. σqex = xex and “q-characters” ec
s.t. σqec = cec . Birkhoff takes them multivalued:

ex := q(logq x)(logq x−1)/2 and ec(x) := x logq c .

Following Ramis (1990), they could be taken uniform, using a
Tate Theta function θq ∈ O(C∗) s.t. σqθq = x−1θq.

Combining them, we build invertible matrices eA0 and eA∞ s.t.
σqeA0 = A0eA0 and σqeA∞ = A∞eA∞ , where A∞ := xµAµ.

Combining those, we build “local solutions”:{
X0 := M0eA0 , where M0 ∈ GLn(C{x}),
X∞ := M∞eA∞ , where M∞ ∈ GLn(C{1/x}).

Birkhoff then introduces the connection matrix:

P := X−1
0 X∞ ∈ GLn(M(C∗)).
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Connection matrices, monodromy data

Since P connects two solutions, it is q-invariant, i.e. σqP = P.
If it was uniform, it would be q-elliptic: P ∈ GLn(M(Eq)).

Birkhoff actually gets a multivalued connection matrix such that
P(qx) = P(x) but P(xe2iπ) ̸= P(x).

He characterizes the zeroes and poles of the coefficients pi,j(x) of
P(x) and writes, using Weierstraß sigma function:

pi,j(q
t) = ci,je

−(ηµ/2)t2+(η(ρj+σi )−η′µ/2)t
∏

1≤k≤µ

σ
(
t − α

(k)
i,j

)
,

where all ci,j , α
(k)
i,j ∈ C and

∑
1≤k≤µ

α
(k)
i,j = σi + ρj − µτ ′/2

We shall rather use a uniform, whence q-elliptic connection
matrix; and theta functions instead of the sigma function.
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The joys of counting

I am great headman, Ghân-buri-Ghân. I count many
things: stars in sky, leaves on trees, men in the dark.
(The Lord of the Rings: The return of the King)

Birkhoff then counts the “characteristic constants” up to gauge
freedoms. On the left (equations) as well as on the right
(connection matrices), he finds (n − 1)(nµ− 2).

He then proves that every such connection matrix P actually
comes from a system A.

For that, he uses the famous theorem of factorisation of analytic
matrices (“Riemann problem”) that allows for the unified point of
view in his 1913 article.
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A slight bit of modernisation

Without essentially changing Birkhoff’s method of rational
classification of fuchsian q-difference equations, we can:

1. Avoid the use of multivalued functions (using θq)

2. Allow for non generic cases (multiple exponents,
q-logarithmic parts)

3. Work with rational systems A(x) ∈ GLn(C(x)) (without
chasing denominators)

4. State correspondance as an equivalence of categories

5. Replace the connection matrix P = (M0eA0)
−1(M∞eA∞) by

its central part M := M−1
0 M∞.

Indeed, M does not take in account the “local q-monodromies” at
0 and ∞, which are encapsulated in the eA0 and eA∞ factors.
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Galois group in the regular case

Let A(x) ∈ GLn(C(x)) such that A(0) = A(∞) = In.
Let Sing(A) := poles of A ∪ poles of A−1. Then:{

X0 = A−1(x)A−1(qx) · · · ∈ GLn(C({x})),
X∞ = A(q−1x)A(q−2x) · · · ∈ GLn(C({1/x}))

=⇒ P = · · ·A(qx)A(x)A(q−1x)A(q−2x) · · · ∈ M(Eq),

Sing(P) = qZSing(A)

Then using Picard-Vessiot theory, Etingof (1995) proves:

Theorem

The values P(a)−1P(b), a, b ∈ C∗ \ Sing(P), generate an algebraic
subgroup of GLn(C), the Galois group of A.
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Galois group in the fuchsian case: first strike

We call A(x) ∈ GLn(C(x)) fuchsian if A(0),A(∞) ∈ GLn(C)
(maybe up to rational gauge equivalence A ∼ (σqF )AF

−1,
F ∈ GLn(C(x))). Such systems form a tannakian category.

Fiber functors over C are difficult to produce because the natural
field of constants is the fieldM(Eq) of q-elliptic functions; same
problem with Picard-Vessiot theory.

Van der Put and Singer (1999) bypass the problem by using
symbolic characters ec constrained to satisfy eced = ecd (which
would be impossible using “true functions”).

Using either Picard-Vessiot or tannakian theory, they get:

Theorem

The values P(a)−1P(b), a, b ∈ C∗\Sing(P), together with explicitly
described “local components” at 0 and ∞, generate an algebraic
subgroup of GLn(C), the Galois group of A.



Various forms of the
Riemann-Hilbert
correspondance
for q-difference

equations

Jacques Sauloy

Introduction: How
Birkhoff did it

q-Riemann-Hilbert-
Birkhoff: global,
fuchsian setting

q-Riemann-Hilbert-
Birkhoff: local,
irregular setting

Holomorphic vector
bundles over Eq

A mysterious mixture

References

Galois group in the fuchsian case: second strike

In spite of the bad multiplicative behaviour of the q-characters, it
is possible to define and describe the Galois group while using
“true functions”. The method is tannakian.

One thus obtains (S. 2003) a “universal fuchsian Galois group”, a
proalgebraic group over C of which all fuchsian systems “are”
rational representations.

The local components at 0 and ∞ can be defined (see section on
irregular case) and proved to be isomorphic to C×Homgr (Eq,C∗).

They can be connected by values of a twisted version P̌ of P
(alternatively, by values of the central part M, without twisting).
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Monodromy group in the fuchsian case

One can then extract from the local components isomorphic to
C× Homgr (Eq,C∗) discrete Zariski-dense subgroups isomorphic to
Z3, natural candidates to be “local monodromy groups” at 0,∞.

However, no general process has been found to extract local
contributions of intermediate singularities to the connection
component (generated by values P̌(a)−1P̌(b)).

To the best of my knowledge, the only significant advance is by
Roques (2011) for q-hypergeometric functions.

Related advances (not Galoisian though) are by Roques-S (2019)
on rigidity index, see last section; and Ohyama-Ramis-S (2021),
see next two slides.
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A more geometric q-RHB correspondance

We return to Birkhoff’s setting: A = A0 + · · ·+ Aµx
µ, where:

R := Sp(A0),S := Sp(Aµ) ⊂ C∗ and x := zeroes of detA

satisfy the same non resonancy assumptions as before.

Fixing the “local data” R,S , x , we want to define a space of such
matrices A up to rational gauge equivalence:

ER,S,x :=
ER,S,x := all such matrices A(x)

A ∼ (σqF )AF−1 whenever F ∈ GLn(C(x))
·

The right hand side of q-RHB correspondance (the side of the
connection matrix) is handy for that. We use the “central parts”
M of Birkhoff’s connection matrices P.

The set FR,S,x of all possible such matrices M is an affine
algebraic subset of a finite dimensional complex space.
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A more geometric q-RHB correspondance

The rational gauge equivalence on ER,S,x translates to a rational
action on FR,S,x by a linear algebraic group.

By q-RHB correspondance, there is in natural bijection:

ER,S,x =
ER,S,x

rat. equiv.
←→ FR,S,x =

FR,S,x

alg. gr. action
·

When n = µ = 2 (“Jimbo-Sakai family”), it is shown by
Ohyama-Ramis-S (2021) that FR,S,x is an algebraic surface with
interesting properties.

This rests on a process of localisation around pairs of intermediate
singularities (“Mano decomposition”).

The study has been extended by Joshi-Roffelsen (2022) and
Ramis-S (2022) . However, so far, FR,S,x has not been shown to
be a moduli space.
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Local fuchsian Galois group

In the course of a work on loop groups, Baranovsky and Ginzburg
(1996) prove that the category of fuchsian q-difference systems
over C((x)) is equivalent to the category of flat vector bundles
over the elliptic curve Eq.

! Caution ! here and in the sequel, “flat vector bundle” means
“which can be equipped with a flat connection”.
The connection is not part of the structure.

Using that equivalence, Kontsevitch (appendix to BG1996) shows
that the corresponding universal Galois group is
C× Homgr (Eq,C∗).

We shall return (in the next section) to the appearance of vector
bundles over Eq.
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Filtration by the slopes

Every q-difference system [with matrix] A(x) ∈ GLn(C({x}) is
endowed with a formal invariant, its Newton polygon: rational
slopes µ1 > · · · > µk with multiplicities r1, . . . , rk ∈ N∗ s.t.
r1 + · · ·+ rk = n.

For simplicity we assume that µ1, . . . , µk ∈ Z.

There is a canonical filtration by slopes and an associated
graduation:
Up to formal, resp. to analytic equivalence, A can be put in block
diagonal form A0, resp. block triangular form AU :

A0 :=

xµ1A1 . . . 0
...

. . .
...

0 . . . xµkAk

 AU :=

xµ1A1 . . . U1,k

...
. . .

...
0 . . . xµkAk

 ,

where all Ai ∈ GLri (C), all Ui,j ∈ Matri ,rj (C[x , x
−1]).

The graded form A0 encodes the formal class of all AU .
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q-Stokes phenomenon, cohomological form

There is a unique formal isomorphism F̂ : A0 → AU having the
form left below; and, for almost c ∈ Eq, a unique “summation of

F̂U in direction c”, a meromorphic isomorphism Sc F̂U : A0 → AU

having the form right below, subject to some precise polarity
conditions on the Fi,j :

F̂U =

Ir1 . . . F̂1,k

...
. . .

...
0 . . . Irk

 Sc F̂U =

Ir1 . . . F1,k

...
. . .

...
0 . . . Irk


The Sc,d F̂U := (Sc F̂U)

−1Sd F̂U form a cocycle of the sheaf ΛI (A0)
of meromorphic automorphisms of A0 “tangent to the identity”
(i.e. in the above unipotent triangular form), a Stokes cocycle.

Theorem (q-analogue of Birkhoff-Malgrange-Sibuya)

This induces a bijection from the set of isoformal analytic classes in
the formal class A0 onto H1(Eq,ΛI (A0)) (Ramis, S., Zhang, 2013).
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q-Stokes phenomenon, galoisian form
The meromorphic isomorphisms Sc F̂U are Galoisian.

We fix an arbitrary base point x0 ∈ C∗ and consider the map
c 7→ log Sc F̂U(x0). It is meromorphic with simple poles at the
prohibited directions of summation. The corresponding residues
∆̇c(AU) belong to the Lie algebra L(AU) of the unipotent Stokes
component S(AU) of Gal(AU). Precisely:

Gal(AU) = S(AU)⋊ Gp(AU) and L(AU) := Lie(S(AU)),

where Gp the formal Galois group, which is semi-simple.

Theorem (Ramis, S., 2015)

(i) The spectral components of the ∆̇c under the action of Gp

generate a free graded Lie algebra L.
(ii) The q-analogue of the Wild Fundamental Group exp L ⋊ Gp is
Zariski-dense in the Galois group.

Corollary

Solution of the local and global inverse problem (for integral slopes).
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Vector bundles attached to q-difference equations

The categories of fuchsian q-difference systems over C((x)) or
over C({x}) are equivalent.
In the analytic setting, we have a sheaf theoretic interpretation of
the construction of Baranovsky-Ginzburg.

Let π : C∗ → Eq the natural projection, and let A ∈ GLn(C({x})).
For U ⊂ Eq, the following sheaf is locally free:

FA(U) := {solutions of σqX = AX holomorphic over π−1(U) near 0},

The corresponding vector bundle can be defined geometrically:

FA :=
(C∗, 0)× Cn

(x ,X ) ∼ (qx ,A(x)X )
·

According to Praagman (1985), FA is meromorphically free (i.e.
tensoring it with the sheafMEq of meromorphic functions on Eq

yields a free sheaf ≃Mn
Eq
). As a consequence, there always exists

a (uniform) fundamental local solution X (0).
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Local fuchsian and pure Galois groups
We recover Baranovsky-Ginzburg-Kontsevich (1996):

Theorem

The functor A⇝ FA is a ⊗-equivalence from the category of fuch-
sian q-difference systems over C({x}) to the category of flat vector
bundles over Eq.

Corollary

The fuchsian local Galois group is C× Homgr (Eq,C∗).

Pure isoclinic systems are those with only one slope; pure systems
are their direct sums, i.e. those graded by the slopes.

Corollary

The local Galois group of the category of pure systems with integral
slopes is C∗ × C× Homgr (Eq,C∗).

The Galois group for arbitrary pure systems is more complicated, it
was determined by van der Put and Reversat (2007).
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Global Galois group and vector bundles

For rational systems (equivalently: global over the Riemann
sphere) A ∈ GLn(C(x)), the two reductions at 0 and ∞ give rise

to two vector bundles F (0)
A and F (∞)

A .

Birkhoff’s connection matrix (or rather its central part) takes the

form of a meromorphic isomorphism M : F (0)
A → F (∞)

A

Theorem

The functor A ⇝ (F (0)
A ,M,F (∞)

A ) is exact, faithful and ⊗-
compatible. Restricted to fuchsian systems and flat bundles, it is a
⊗-equivalence.

In the irregular case, under the assumption of integral slopes at 0
and at ∞, Ramis and S. (2015) describe the Galois group and
solve the inverse problem.

Here again, local wild monodromy groups at 0 and ∞ are known,
but nothing of the sort at intermediate singularities.
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Vector bundles for general irregular systems

The functor A⇝ FA is exact, faithful, ⊗-compatible.

! It is not fully faithful. The function θq is a morphism
Fx → F1 but it does not come from a morphism x → 1.

The bundle associated to a pure module of integral slope µ is the
tensor product of a line bundle of degree −µ by a flat bundle. In
particular, it is semi-stable.

The slope filtration on A induces a filtration F1 ⊂ · · · ⊂ Fk on FA

such that each quotient Fi/Fi−1 is a bundle of rank ri , slope −µi .

! This is not the Harder-Narasimhan filtration:
1) The slopes −µ1 < · · · < −µk of the successive quotients are
strictly increasing.

2) If A :=

(
x 1
0 1

)
then FA is stable but its filtration has two

steps with quotients Fx and F1.
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Filtration and q-Gevrey asymptotics

Proposition (S. 2009)

The functor A ⇝ (FA, (F1 ⊂ · · · ⊂ Fk)) is exact, fully faithful,
⊗-compatible.

I do not know its essential image.

It is related to the q-Gevrey asymptotics of Ramis,Zhang (2002)
(also see Ramis,S.,Zhang (2013)). Actually, it corresponds to
usual filtration by asymptotic growths.

For instance, for a pure isoclinic module of slope µ, a section, seen

as a function on (C∗, 0), behaves like Cxkq−µ(log2q x)/2 when x → 0
(for some C > 0 and k).
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Stokes data according to Kontsevich-Soibelman

In “Symplectic geometry of Riemann-Hilbert correspondences”,
accessible on Youtube, Yan Soibelman (2016) considers our
(FA, (F1 ⊂ · · · ⊂ Fk)) as a q-analogue for Stokes data.

The framework is slightly different from ours. Dq-modules are
meant in the sense of Sabbah (1993).
And Soibelman always mentions coherent sheaves where we only
found locally free sheaves.

He calls anti-HN filtration a filtration by coherent subsheaves
0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ F∞ = F of the sheaf F (over Eq) of
solutions such that all Fi/Fi−1 are semistable with increasing
slopes and F∞/Fk is a torsion sheaf (so rank = 0 and slope =∞).

Theorem (or conjecture ?) Kontsevich-Soibelman (2016 ?)

The category of holonomic Dq-modules on C∗ is equivalent to the
category of coherent sheaves on the elliptic curve Eq, which are
endowed with two anti-HN filtrations labeled by Q ∪ {∞}.
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Trying to understand the correspondence

Although details are missing, the following facts appear clearly.

▶ F is made of “global” solutions, so we should consider a
rational system A ∈ GLn(C(x)).

▶ The two anti-HN filtrations are (in essence) our filtrations by
slopes at 0 and at ∞:

F (0)
1 ⊂ · · · ⊂ F (0)

k = F (0)
A ⊂ F∞ ⊃ F (∞)

A = F (∞)
ℓ ⊃ · · · ⊃ F (∞)

1

▶ The reverse construction (from such data to Dq-modules)
uses q-Gevrey asymptotic behaviour of sections (although
there seems to be a typographic error in the exponent for the

factor q−µi (log
2
q x)/2).

Here, we only try to understand, within our framework, what is

that sheaf F∞ such that F∞/F (0)
k and F∞/F (∞)

ℓ are torsion
sheaves.
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Some sheaves of solutions
Let A ∈ GLn(C(x)). We call (intermediate) singularities of A its
poles and the poles of A−1 lying in C∗. Their locus is Sing(A).
Generically, A is non resonant, i.e. Sing(A) ∩ qN

∗
Sing(A) = ∅; and

this can always be achieved by a rational gauge transformation.

For reasons (apparently) unrelated to q-RHB, Roques and S.
(2019) introduce the following sheaves of solutions (on Eq) of
σqX = AX ; notation is V ⊂ Eq, U := π−1(V ) ⊂ C∗:

FA(V ) := {solutions holomorphic over U},

F (0)
A (V ) := {solutions holomorphic over U near 0},

F (∞)
A (V ) := {solutions holomorphic over U near ∞},
F ′

A(V ) := {solutions holomorphic over U except possibly for a

finite number of poles over any q-spiral aqZ ⊂ U}

Then:

▶ FA ⊂ F (0)
A ∩ F

(∞)
A = F ′

A. If A is non resonant, FA = F ′
A.

▶ F (0)
A , F (∞)

A and F ′
A are “intrinsic” w.r.t. rational gauge

equivalence but FA is not: B = F [A] ̸⇒ FB = FFA.
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Torsion and singularities; and a proposal
We restrict to the generic nonresonant case.

Theorem

(i) F (0)
A /FA and F (∞)

A /FA are skyscraper sheaves concentrated at
π(Sing(A)) ⊂ Eq.
(ii) Their stalks at π(a) ∈ Eq can be computed from the elementary
divisors of A(x) at a ∈ Sing(A) (over the valuation ring OC∗,a).

Note that
F (0)

A

FA
=

F (0)
A

F (0)
A ∩ F

(∞)
A

≃
F (0)

A + F (∞)
A

F (∞)
A

and similarly

F (∞)
A

FA
≃
F (0)

A + F (∞)
A

F (0)
A

.

Also, in the two anti-HN filtrations encountered above, the
penultimate upper terms are F (0)

k = F (0)
A and F (∞)

ℓ = F (∞)
A

So it seems that one should take F∞ := F (0)
A + F (∞)

A .
We do not (yet) know how to characterize it, nor have we
achieved a proof of the correspondence in that form.
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That’s all folks.
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