Dynamics of groups of birational automorphisms of cubic surfaces and Fatou/Julia decomposition for Painlevé 6

Julio Rebelo and Roland Roeder

Contents

- Dynamics on character varieties.
- Connection with Painlevé 6.
- Dynamical dichotomies: Fatou vs. Julia and Discrete vs. (locally) Non-discrete groups.
- Some results.
- Further comments/issues.

Dynamics on character varieties

Let A, B, C, and D be fixed complex parameters.

$$S_{A,B,C,D} = \{(x,y,z) \in \mathbb{C}^3 : x^2 + y^2 + z^2 + xyz = Ax + By + Cz + D\}.$$

Switching intersections of $S_{A,B,C,D}$ with lines parallel to the x-axis yields

$$s_x \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x - yz + A \\ y \\ z \end{pmatrix}$$

Analogously defined: $s_y : S_{A,B,C,D} \to S_{A,B,C,D}$ and $s_z : S_{A,B,C,D} \to S_{A,B,C,D}$

くほと くほと くほと

Dynamics on character varieties

Consider the group

$$\Gamma^* = \Gamma^*_{A,B,C,D} = \langle s_x, s_y, s_z \rangle \le \operatorname{Aut}(S_{A,B,C,D}), \tag{1}$$

Rk. Generic parameters: $\Gamma_{A,B,C,D} = \operatorname{Aut}(S_{A,B,C,D})$. In general, $\Gamma_{A,B,C,D}$ is a subgroup of $\operatorname{Aut}(S_{A,B,C,D})$ of index at most 24. Consider also the subgroup

$$\Gamma = \Gamma_{A,B,C,D} = \langle g_x, g_y, g_z \rangle < \Gamma^*,$$

where g_x , g_y , and g_z are defined as follows

$$g_x = s_z \circ s_y, \qquad g_y = s_x \circ s_z, \qquad ext{and} \qquad g_z = s_y \circ s_x.$$
 and satisfy

$$g_x \circ g_z \circ g_y = \mathrm{id}$$
.

Maps g

We have:

$$g_{x}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\-y-xz+B\\xy+(x^{2}-1)z+C-Bx\end{pmatrix},$$

$$g_{y}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}(y^{2}-1)x+yz+A-Cy\\y\\-yx-z+C\end{pmatrix}, \text{ and}$$

$$g_{z}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x-x-yz+A\\zx+(z^{2}-1)y+B-Az\\z\end{pmatrix}.$$

Rebelo and Roeder

・ロト ・聞ト ・ヨト ・ヨト

Pointwise dynamics

Purpose: to study the pointwise dynamics of Γ and Γ^*

Relatively few works about these dynamics:

- W. Goldman ergodic theory of the dynamics in the real slice of "torus parameters" (A = B = C = 0);
- Cantat-Loray Non-existence of invariant affine/foliated structures;
- Dynamics of individual (hyperbolic) elements: Cantat, Iwasaki-Uehara.

Yet, there are many motivations: from Number theory (Markoff triplets), Teichmuller theory, and Painlevé 6.

< 注入 < 注入

Character varieties

To simplify: consider the case "Torus parameters" (A = B = C = 0) and let Π be the fundamental group of the punctured torus.

- Representations $\rho: \Pi \to SL(2, \mathbb{C})$ (6-parameter space).
- Up to conjugation: $\rho \simeq \rho'$ if $\rho' = g \circ \rho \circ g^{-1}$, $g \in \mathrm{SL}(2,\mathbb{C})$.
- (Categorical, see GIT) quotient: character variety.
- $Aut(\Pi)$ acts on space of representations by pre-composition:

$$(\gamma, \rho) \longmapsto \rho \circ \gamma : \Pi \to \mathrm{SL}(2, \mathbb{C}),$$

 $\gamma \in Aut(\Pi), \ \rho : \Pi \to SL(2, \mathbb{C}).$

- Descends to character variety.
- Inner automorphism action becomes trivial.

A B F A B F

Modular action

The action of $\operatorname{Aut}(\Pi)$ factors through

 $\operatorname{Out}(\Pi) = \operatorname{Aut}(\Pi) / \operatorname{Inn}(\Pi).$

In turn: $Out(\Pi)$ is identified with the extended *Mapping Class Group* of the punctured torus.

Fricke coordinates: Character variety identified with \mathbb{C}^3 . More GIT: The action of $Out(\Pi)$ is the action of Γ^* on \mathbb{C}^3 .

Who is Painlevé 6?

$$\frac{d^2 y}{dx^2} = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-x} \right) \left(\frac{dy}{dx} \right)^2 - \left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{y-x} \right) \frac{dy}{dx} + \frac{y(y-1)(y-x)}{x^2(x-1)^2} \left(\alpha + \beta \frac{x}{y^2} + \gamma \frac{x-1}{(y-1)^2} + \delta \frac{x(x-1)}{(y-x)^2} \right), \quad (2)$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$.

Vector field formulation on \mathbb{C}^3 (z = dy/dx, x-space coordinate identified with time).

$$Z_{\rm VI} = \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + \mathcal{H}_{\alpha,\beta,\gamma,\delta}(x,y,z) \frac{\partial}{\partial z},$$
(3)

→ 3 → 4 3

Fibrations, foliations, and Okamoto

Compactify \mathbb{C}^3 into $\mathbb{CP}^2 \times \mathbb{CP}^1$ and denote by \mathcal{F} the resulting singular foliation.

- Invariant fibers x = 0, x = 1, $x = \infty$.
- Plenty of singularities and reasonably bad behavior (=lack of transversality).
- Okamoto: get rid of "poles" (=dicritical singularities) with blow-ups.
- He went all the way: nicer picture emerges foliation tranverse to a fibration.
- BUT fibers are open (complement of Okamoto divisor).
- Painlevé property comes to the rescue.

A B F A B F

Global holonomy representation and Riemann-Hilbert transform

<u>Conclusion</u>: Holonomy representation is "complete", i.e., it yields a representation ρ from $\Pi(S^2 \setminus \{0, 1, \infty\})$ to Aut (Fiber), where Fiber is OPEN.

(M. Inaba, K. Iwasaki, M. Saito) <u>Riemann-Hilbert transform</u>: conjugate the above action to the action of Γ on $S_{A,B,C,D}$ (explicit correspondence of parameters).

Rk: Riemann-Hilbert transform is highly transcendental - not liked by many Physicists.

< 同 ト く ヨ ト く ヨ ト

Locally non-discrete groups

Some credits:

- Originally introduced on $\text{Diff}(S^1)$ highly motivated by previous works by Shcherbakov, Nakai, and Ghys.
- Applications to ergodic theory and to rigidity phenomena.
- Complex dynamics variant first considered on $\mathrm{Diff}\,(\mathbb{C}^n,0)$, joint with F. Loray.
- Their "complement", i.e., locally discrete actions on S¹ where intensively and detailed studied by Deroin, Kleptsyn, Navas, Triestino, and their collaborators
- (Coarse) Classification of locally discrete groups (beyond Fuchsian ones).

・ 「 ・ ・ ・ ・ ・ ・ ・

Set: M complex manifold (possibly open) and G a group of holomorphic diffeomorphisms of M.

G is said to be *locally non-discrete* on an open set $U \subset M$ if there is a sequence of maps $\{f_n\}_{n=0}^{\infty} \in G$ satisfying the following conditions:

- For every n, f_n is different from the identity.
- **②** The sequence of maps f_n converges uniformly to the identity on compact subsets of U.

If there is no such sequence f_n on U we say that G is *locally discrete* on U.

Rk: For finite dimensional Lie groups, local non-discreteness implies that the corresponding sequence of converges *globally* to the identity on M. However, in our context the non-linearity of the mappings allow for local non-discreteness to occur on a proper open subset $U \subset M$.

(日) (周) (三) (三)

(Non) - discreteness locus

Fixed (A, B, C, D), let

 $\mathcal{N}_{A,B,C,D} = \{ p \in S_{A,B,C,D} \ : \ \mathsf{\Gamma}_{A,B,C,D} \text{ locally non-discrete on nghd of } p \},$

and let

$$\mathcal{D}_{A,B,C,D} = \mathcal{S}_{A,B,C,D} \setminus \mathcal{N}_{A,B,C,D}.$$

 $\mathcal{N}_{A,B,C,D}$ is the "locally non-discrete locus". $\mathcal{D}_{A,B,C,D}$ is the "locally discrete locus".

By definition, $\mathcal{N}_{A,B,C,D}$ is open, $\mathcal{D}_{A,B,C,D}$ is closed, and both of them are invariant under $\Gamma_{A,B,C,D}$.

Fatou - Julia

The Fatou set of the group action Γ is defined as

 $\mathcal{F}_{A,B,C,D} = \{ p \in S_{A,B,C,D} \ : \ \Gamma \text{ normal family in nghd of } p \}.$

The Julia set is

$$\mathcal{J}_{A,B,C,D} = \mathcal{S}_{A,B,C,D} \setminus \mathcal{F}_{A,B,C,D}.$$

 $\mathcal{F}_{A,B,C,D}$ is open while $\mathcal{J}_{A,B,C,D}$ is closed. Both sets are invariant under Γ .

A B A A B A

General Julia sets

Theorem A. For any parameters (A, B, C, D) there is a dense orbit of Γ in the Julia set $\mathcal{J}_{A,B,C,D}$. Moreover:

 $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$.

• Denseness of points with shear stabilizer

 $D\gamma(p)$ conjugate to

• The Julia set is connected.

Theorem B. For the Picard Parameters (A, B, C, D) = (0, 0, 0, 4) we have:

- (i) $\mathcal{J}_{0,0,0,4} = S_{0,0,0,4}$ and consequently $\mathcal{F}_{0,0,0,4} = \emptyset$,
- (ii) The action of $\Gamma_{0,0,0,4}$ is locally discrete on any open subset of $S_{0,0,0,4}$, and
- (iii) The closure of the set of points $\mathcal{J}_{0,0,0,4}^*$ that have hyperbolic stabilizers is contained in $S_{0,0,0,4} \cap [-2,2]^3$ and hence is a proper subset of $\mathcal{J}_{0,0,0,4} = S_{0,0,0,4}$.

However:

- (1) Punctured Torus Parameters: For any complex D not equal to 4 the Fatou set $\mathcal{F}_{0,0,0,D}$ is non-empty.
- (2) Dubrovin-Mazzocco Parameters: For any a ∈ (-2, 2) the Fatou set *F*_{A(a),B(a),C(a),D(a)} is non-empty.

Moreover, the result carries over to an open neighborhood in \mathbb{C}^4 of any such parameter.

where

Dubrovin-Mazzocco Parameters: Real 1-parameter family studied by Dubrovin and Mazzocco (Physically relevant). The Dubrovin-Mazzocco parameters correspond to

$$A(a) = B(a) = C(a) = 2a + 4$$
, and $D(a) = -(a^2 + 8a + 8)$ (4)

for $a \in (-2, 2)$.

イロト イポト イヨト イヨト

Now:

Theorem C. There is neighborhood of the Markoff Parameters (0, 0, 0, 0) and of each of the Dubrovin-Mazzocco Parameters

(A(a), B(a), C(a), D(a)), where $a \in (-2, 2)$, such that the following holds: the following property.

There are disjoint opens sets $U, V_{\infty} \subset S_{A,B,C,D}$ such that:

- **1** The action of $\Gamma_{A,B,C,D}$ is locally non-discrete on U; i.e. $U \subset \mathcal{N}_{A,B,C,D}$.
- ② The action of $\Gamma_{A,B,C,D}$ is locally discrete on nghd of any point from V_{∞} , i.e. $V_{\infty} \subset \mathcal{D}_{A,B,C,D}$. Indeed, the action of $\Gamma_{A,B,C,D}$ on V_{∞} is properly discontinuous.

Moreover, V_∞ is the previously described Fatou component.

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Also

Theorem D. For the previous neighborhoods and up to deleting a countable union of real analytic sets, we have:

$$U \subset \mathcal{J}_{A,B,C,D}$$
 and $V_{\infty} \subset \mathcal{F}_{A,B,C,D}$.

Here, U and V_{∞} are the open subsets from the statement of Theorem C.

Consequence of Theorems A, C, and D.

- There are points with orbits dense in open sets.
- There is a set

$$K_{A,B,C,D} \subset \partial \mathcal{N}_{A,B,C,D} = \partial \mathcal{D}_{A,B,C,D}$$

with topological dimension equal to three and invariant under $\Gamma_{A,B,C,D}$.

Remark. The boundary of Bers slice in Teichmuller theory allows one to produce a similar example, though the existence of sets $K_{A,B,C,D}$ as above goes beyond the parameters arising from Bers slice. Would this be a meaningful generalization of Bers slice? In any case, it would be interesting to study the geometry of the sets $K_{A,B,C,D}$ which appear to be fractal.

(人間) トイヨト イヨト