
Several dynamics for the Painlevé V foliation
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Introduction

Our aim: describe the dynamics of all the Painlevé foliations defined on the
related characters varieties through the Riemann-Hilbert correspondence.
We will discuss and compare:

1- the tame dynamics (induced by Aut(π1));
2- the confluent dynamics (induced by the Painlevé VI dynamics);
3- the canonical dynamics (induced by cluster coordinates);
4- the wild dynamics (induced by non linear monodromy, Stokes operators and
exponential tori).

We present here the main tools in the case of the Painlevé V foliation.
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Introduction. Painlevé foliations

The Painlevé-like foliations are families of vector fields which share three main
properties:

• the Painlevé property: all the solutions has a meromorphic extension along
any path in the time space;
• the isomonodromic property: all the Painlevé equations appear as a
(generalized) isomonodromic condition on some space of linear rank 2
connections on a basis;
• the hamiltonian property: the Painlevé vector fields can be written on
T × C 2 under a hamiltonian form [Okamoto]:

ṗ = −∂H•

∂q

q̇ =
∂H•

∂p

with H• = H(p, q, t, θ), t ∈ T = P1 \ {fixed sing.}, θ : parameters.
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• the Painlevé property: all the solutions has a meromorphic extension along
any path in the time space;
• the isomonodromic property: all the Painlevé equations appear as a
(generalized) isomonodromic condition on some space of linear rank 2
connections on a basis;
• the hamiltonian property: the Painlevé vector fields can be written on
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Painlevé foliations

Examples:

• HVI (q, p, t, θ) =
q(q−1)(q−t)

t(t−1)
[p2 − ( θ1

q
+ θ2

q−1
+ θ3

q−t
)p+

+ θ1+θ2+θ3−1)2−(θ4−1)2

4q(q−1)
].

• HV (p, q, t, θ) = t−1[p(p + t)q(q − 1)− θ1p(q − 1) + θ2qt − θ3pq].
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The dynamics of the Painlevé VI foliation

MVI : moduli space of sl2-connections over P1(C) with 4 regular singular points.

MVI (θ)
RHVI→ χVI (a) = [Rep(πVI

1 (P1 \ S),SL2(C)]
TrVI→ CVI (b).

CVI (b): x1x2x3 + x2
1 + x2

2 + x2
3 − b1x1 − b2x2 − b3x3 + b4 = 0, with

bi = aia4 + ajak , i = 1, 2, 3 and b4 = a1a2a3a4 +
∑

i a
2
i − 4.

Fibers of RHVI : leaves of the Painlevé VI foliation.
Dynamics through RHVI induced by Aut(πVI

1 ): generated by 3 braids. In trace
coordinates:

h1,2 :


x ′
1 = −x1 − x2x3 + b1

x ′
2 = −x2 + x1x3 + x2x

2
3 − b1x3 + b2

x ′
3 = x3

This is a tame dynamics: hi,j and h−1
i,j are polynomials dynamics.

References: Dubrovin-Mazzocco, Iwasaki, Cantat-Loray or Ramis-P, by using
groupoids instead of groups:
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Dynamics through RHVI induced by Aut(πVI

1 ): generated by 3 braids. In trace
coordinates:

h1,2 :


x ′
1 = −x1 − x2x3 + b1

x ′
2 = −x2 + x1x3 + x2x

2
3 − b1x3 + b2

x ′
3 = x3

This is a tame dynamics: hi,j and h−1
i,j are polynomials dynamics.

References: Dubrovin-Mazzocco, Iwasaki, Cantat-Loray or Ramis-P, by using
groupoids instead of groups:



The dynamics of the Painlevé VI foliation

MVI : moduli space of sl2-connections over P1(C) with 4 regular singular points.

MVI (θ)
RHVI→ χVI (a) = [Rep(πVI

1 (P1 \ S),SL2(C)]
TrVI→ CVI (b).

CVI (b): x1x2x3 + x2
1 + x2

2 + x2
3 − b1x1 − b2x2 − b3x3 + b4 = 0, with

bi = aia4 + ajak , i = 1, 2, 3 and b4 = a1a2a3a4 +
∑

i a
2
i − 4.

Fibers of RHVI : leaves of the Painlevé VI foliation.
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The groupoid πVI
1 (X ,S)

 

Linear representation ρ of the groupoid:
- objects (base point) s → ρ(s) = 2 dim vector space Vs (RH: local matrix
solution Ys);
- morphisms (paths up to homotopy) γs,t → ρ(γs,t) = a linear map from Vs to
Vt (RH: M(γs,t) induced by analytic continuation of local matrix solutions:

Yt = Ỹs

γs,t
.M(γs,t).

A change of representation of the objects gives an equivalent representation:

ρ′ ∼ ρ ⇔ ∀s, ∃Ms ,M
′(γs,t) = Ms ·M(γs,t) ·Mt .

The character variety χVI is the variety of equivalent representations in SL2(C)
of πVI

1 (X , S).
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γs,t
.M(γs,t).

A change of representation of the objects gives an equivalent representation:

ρ′ ∼ ρ ⇔ ∀s, ∃Ms ,M
′(γs,t) = Ms ·M(γs,t) ·Mt .

The character variety χVI is the variety of equivalent representations in SL2(C)
of πVI

1 (X , S).



The groupoid πVI
1 (X ,S)

 

Linear representation ρ of the groupoid:
- objects (base point) s → ρ(s) = 2 dim vector space Vs (RH: local matrix
solution Ys);
- morphisms (paths up to homotopy) γs,t → ρ(γs,t) = a linear map from Vs to
Vt (RH: M(γs,t) induced by analytic continuation of local matrix solutions:

Yt = Ỹs
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Lines in CVI (b)

(with M. Klimes)

There are 24 lines in CVI (b) (27 in P2). What is the characteristic property of a
point [ρ] on such a line?

Definition. Let γ be some path in πVI
1 (X ,S) from si to sj , γi,i the local loops

at the extremities.
ρ is reducible along γ if ρ(γγi,iγ

−1) and ρ(γj,j) have a common eigenvector.
R(γ) = {ρ, reducible over γ}.

Theorem. R(γi,j) is the union of 4 lines in CVI (b).

Some intersections of these lines correspond to special solutions studied by K.
Kaneko.
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The Painlevé V equation as isomonodromic deformations of linear systems

MV = {dY
dx

= (
A0

x − s0
+

A1

x − s1
+ A∞) · Y }//(Y→YP,x→φ(x)).

Ai ∈ sl2(C), A∞ semi-simple;

S = {s0, s1,∞} ⊂ P1, s0, s1 regular singular points, ∞ irregular (Katz rank 1):
Around z = x−1 = 0, formally,

dŶ

dz
= (

Q

z2
+

L

z
) · Ŷ , Q, L diagonal.

Formal solutions around ∞:

Ŷ (z) = F̂ (z)zL expQ/z .
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The quotient MV : Global Normal forms.

• The gauge quotient:

A∞ =

(
t 0
0 −t

)
, Ai =

(
ai bi
ci −ai

)
, i = 0, 1.

under the action of D (diagonal matrices) and P =

(
0 1
−1 0

)
.

Invariant coordinates :
α0 = det(A0), α1 = det(A1), α∞ = det(L) = (a0 + a1)

2; (”local” coordinates);
τ = a0t (the ”time” coordinate);
β0 = b0c1 + b1c0, β1 = t(b0c1 − b1c0).

• The quotient under Aut(P1):
Using a translation on x : s0 = 0 (s1 ̸= 0);
Action of x → µx : (τ, β0, β1, s

−1
1 ) → (µτ, β0, µβ1, µs

−1
1 ).

MV (α) ≃ P3
(1,0,1,1).

The method of H. Chiba in order to compactify the variety on which live the
Painlevé foliations can also be used starting from the spaces of linear
connections.
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The wild character variety χV

- The monodromy operators are defined by the analytic continuation of the
matrix solutions along paths. They define a representation of the group
π1(P1 \ S , x0) or of a fundamental groupoid with 3 base points.
- The Stokes operators are defined by the comparison between two
resummations of a formal matrix solution Ŷ on the left and rightside of a
singular direction.

- The exponential torus is an action of the algebraic group (C∗,×) on the local
formal solutions.
Any element of MV defines a representation of the following extended
groupoid:
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The wild fundamental groupoid πV
1 (X ,S)

 

 

with topological relations and additional wild relations
ti,i (κκ

′) = ti,i (κ) · ti,i (κ′) i=0,1;
[γ̂i,i , ti,i (κ)] = ⋆i
[[σi , ti,i (κ)], σi ] = ⋆i (σi : Stokes loops based in si ).



The wild character variety χV

- Any connection in MV induces a linear representation of the groupoid
πV
1 (X , S) : the paths are represented either by analytic continuation of local

solution or by resummation process for a ray.

- Such representation satsfies the property (⋆): there exists a Borel-Cartan
configuration (B−,C ,B+) such that:

ρ(t1,1(κ)) = C , ρ(σ1) ∈ U−, ρ(γ̂ l
1,2 · σ2 · γ̂ l

2,1) ∈ U+.

The character variety χV is the variety of equivalent representations in SL2(C)
of πV

1 (X , S) which satisfy (⋆).
A class of such representations is ”quasi” characterized by the data

ρ(σ1) = U1 =

(
1 0
u1 1

)
, ρ(σ2) = U2 =

(
1 u2
0 1

)
, ρ(γ̂1,1) = M0 =

(
e0 0
0 e−1

0

)
and ρ(γ3,3) = M3, ρ(γ4,4) = M4.

Indeed from the local relations we have either ρ(t1,1(κ)) = diag(κ, κ−1) or
ρ(t1,1(κ)) = diag(κ−1, κ), defining χV = χ+

V ∪ χ−
V .
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”Trace” coordinates on χV (a).

The local data of ρ is defined by a+ = (e0, a3 = tr(M3), a4 = tr(M4)) or
a− = (e−1

0 , a3 = tr(M3), a4 = tr(M4)).

We set x+
1 = M3[2, 2], x

+
2 = M4[2, 2], x

+
3 = tr(U1M0U2).

The coordinates (a+, x+) define a map Tr+V , invertible for a generic a, from χ+
V

to the family affine cubic surface CV (b
+) defined by

FV (b
+, x) = x1x2x3 + x2

1 + x2
2 − b+

1 x1 − b+
2 x2 − b+

3 x3 + b+
4 = 0,

where b+
1 = a3 + e0a4, b+

2 = a4 + e0a3, b+
3 = e0, b+

4 = e20 + e0a3a4 + 1.

We also have a similar map Tr−V : χ−
V → CV (b

−) defined by x−
1 = M3[1, 1],

x−
2 = M4[1, 1], x

+
3 = x−

3 .
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The Riemann-Hilbert map RHV .

We have defined : RHV : MV (α) → χV (a).

Fibers (”generalized isomonodromic” families): leaves of the Painlevé V
foliation. Indeed:

dY

dx
= AV (x , t) · Y ,BV (x , t) :=

d

dt
Y (x , t).Y (x , t)−1extends meromorphically.

The pair (∂Y /∂x = AV (x , t) · Y , ∂Y /∂t = BV (x , t) · Y ) is compatible.
The compatibility condition ∂A

∂t
− ∂B

∂x
+ [B,A] = 0 is equivalent to PV (κ) in

some chart (q, p, t) on MV (α) and for κ = κ(α).

We summarize:
MV (α)

RHV−→ χV (a)
TrV−→ CV (b).

- Symplectic structure on MV (α): ωV (α) = dq ∧ dp or directly: Atiyah-Bott,
Fock-Rosly, Boalch...
- Symplectic structure on χV (a): ωV (a) Goldman (Poincaré-Lefchetz duality),
Chekhov-Mazzocco-Roubtsov (decorated character varieties), Boalch
(quasi-hamiltonian geometry),...
- Symplectic structure on CV (b): Residue form of the volume form i.e.
ωV (b) =

dx1∧dx2
∂FV /∂x3

(up to circular permutation).
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foliation. Indeed:

dY

dx
= AV (x , t) · Y ,BV (x , t) :=

d

dt
Y (x , t).Y (x , t)−1extends meromorphically.

The pair (∂Y /∂x = AV (x , t) · Y , ∂Y /∂t = BV (x , t) · Y ) is compatible.
The compatibility condition ∂A

∂t
− ∂B

∂x
+ [B,A] = 0 is equivalent to PV (κ) in

some chart (q, p, t) on MV (α) and for κ = κ(α).

We summarize:
MV (α)

RHV−→ χV (a)
TrV−→ CV (b).

- Symplectic structure on MV (α): ωV (α) = dq ∧ dp or directly: Atiyah-Bott,
Fock-Rosly, Boalch...
- Symplectic structure on χV (a): ωV (a) Goldman (Poincaré-Lefchetz duality),
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Chekhov-Mazzocco-Roubtsov (decorated character varieties), Boalch
(quasi-hamiltonian geometry),...

- Symplectic structure on CV (b): Residue form of the volume form i.e.
ωV (b) =

dx1∧dx2
∂FV /∂x3

(up to circular permutation).



The Riemann-Hilbert map RHV .

We have defined : RHV : MV (α) → χV (a).
Fibers (”generalized isomonodromic” families): leaves of the Painlevé V
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The Riemann-Hilbert map RHV .

Expected results: for J = VI , V , etc... :

• RHJ is a symplectic morphism between (MJ(α), ωJ(α)) and
(χJ(a), 2iπωJ(a));

• TrJ is a symplectic morphism between (χJ(a), ωJ(a)) and (CJ(b), ωJ(b)).

For RHVI : Iwasaki (2002) or M. Klimes (using the Jimbo’s asymtotic formula).
For TrVI : Iwasaki.
For RHV : Boalch (in a particular case).
For TrV : ?
For the general case?
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The tame dynamics on χV (a).

Similar to the case J = VI :
Aut(π1

V (X , S)) acts on χV (a) by ρ → ρ ◦ b.

For J = V , Aut(π1
V (X ,S)) is generated by only one pure braid b (only 3

singular points).

Proposition [Ramis, P.], [Klimes]

hb :


x ′
1 = −x1 + x2x3 + x1x

2
3 − θ2x3 + θ1

x ′
2 = −x2 − x1x3 + θ2

x ′
3 = x3

Remark. The tame dynamics are always polynomial dynamics on χ in trace
coordinates.
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The confluent morphims.

First description: M. Klimes.

Here, we make use of morphisms between groupoids:

 

 

 

φ(κ) : πVI
1 (X , SVI ) → πV ,κ

1 (X , SV )
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The confluent dynamics on χV (a): φ(κ).

Another presentation for πV ,κ
1 (X , S):

 

 

 

φκ(γ1,1) = σ1 · t1,1(κ),
φκ(γ2,2) = σ2 · t2,2(κ),
For the other generators : φκ(γi,j) is defined by the figure above.
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φκ(γ1,1) = σ1 · t1,1(κ),
φκ(γ2,2) = σ2 · t2,2(κ),
For the other generators : φκ(γi,j) is defined by the figure above.



The confluent morphisms.

Theorem. The morphisms Φ(κ)± : χ±
V (a) → χVI (aκ): ρ → ρ ◦ φκ are

generically invertible (on a Zariski open set).
Φ(κ)± : C±

V (b) → CVI (bκ) is a family of birational maps.

Idea of the proof. We want to construct an inverse of

Φ(κ) : [U1,M0,U2,M3,M4] 7→ [M1,κ,M2,κ,M3,M4] = [U1Dκ,D
−1
κ M0U2,M3,M4].

We use the LDU decomposition in SL2: If a ̸= 0,(
a b
c d

)
=

(
1 0
l 1

)
·
(

e 0

0 e−1

)
·
(

1 u
0 1

)
: e = a, l = c/a, u = b/a.

U1M0U2 is a representation through φκ of a loop around the 2 confluent
singularities s1 et s2. Therefore:
- U1M0U2 is the LDU decomposition of a matrix conjugated to M1,κM2,κ.

- its diagonal component D is
(

e1,κe2,κ 0

0 e−1
1,κe−1

2,κ

)
.

Lemma. Let M1, M2, ̸= ±I , with eigenvalues (e1, e
−1
1 ) et (e2, e

−1
2 ).

Suppose that the eigenvectors related to (M1, e1) et (M2, e
−1
2 ) are independent.

There exists a unique matrix M = P−1M1M2P whose LDU decomposition
satisfies D = diag(e1,κe2,κ, e

−1
1,κe

−1
2,κ).

(P is obtained by using the ”mixed” basis induced by the hypothesis.)
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The confluent morphisms.

In trace coordinates, we recover the formulas of M. Klimes:

Φκ = φ∗
κ : χV (a) → χVI (aκ) is given by

x1,κ = e−1
0 κx1 + κ−1x2

x2,κ = −e−1
0 κx1x3 + κ−1x1 − e−1

0 κx2 + a3κ+ a4e
−1
0 κ

x3,κ = x3.

Φκ is invertible outside the line Le1,κ,e2,κ and Φ−1
κ is given by

x1 = (−κx1,κ − e0κ
−1x2,κ + a3e0 + a4)(x3,κ − ce1,κ,e2,κ)

−1

x2 = (κx1,κx3,κ − e0κ
−1x1,κ + κx2,κ − a3κ

2 − a4κ
2e−1

0 )(x3,κ − ce1,κ,e2,κ)
−1

x3 = x3,κ.



The confluent dynamics on χV .

We transfer the dynamics < hi,j > of Painlevé VI on χV :
gi,j(κ) := Φ(κ)−1 ◦ hi,j ◦ Φ(κ). We obtain:

• g1,2(κ) do not depend on κ and coincide with the tame dynamics on χV .

• g2,3(κ) is a rational dynamics:

X1 =
e0
x2

X2 = x2 +
κ2

x2
− e−1

0 κ2x1

X3 = −κ2x2
2 x3 + (e−2

0 κ2 − κ−2)x1x2 − 2e−1
0 x2

2+

+ (e−1
0 b2κ

−2b1)x2 − (e−1
0 κ2 + e0κ

−2)

• g3,1(κ) is a rational dynamics, defined by: g1,2 ◦ g2,3(κ) ◦ g3,1(κ) = id .

Remark. The family t2,3(κ) defined by g2,3(κ) = g2,3(1) ◦ t2,3(κ) is
multiplicative: t2,3(κκ

′) = t2,3(κ) ◦ t2,3(κ′), and can be defined as the flow of a
complete vector field.
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The log-canonical dynamics on CV (b).

• CV (b) ≃bir C2 by the restriction of (x1, x2, x3) → (x1, x2) to CV (b), because
x3 = r(x1, x2), with r rational.

• (CV (b), ωV (b)) ≃bir,symp (C2, ωlog ), ωlog = du
u
∧ dv

v
: (y1, z1) = (x1, x1x2 − e0)

is a birational symplectic isomorphism (a log-canonical system of coordinates).

• Two consecutive elements of the following sequence (yi , zi ) also define a
log-canonical system of coordinates:
· · · , z0 = −x2

2 − x1x2x3 + b2x2 − e0, y1 = x1, z1 = x1x2 − e0, y2 = x2,
z2 = −x1x2 − x2

2 x3 + b1x2 − e0,· · ·

The dots terms are obtained by using the following ”exchange” relations:
ykyk+1 = P(zk) with P(t) = t + e0
z2kz2k+1 = Q1(y2k+1) with Q1(t) = (t − e0e

−1
4 )(t − e0e4)(t − e−1

3 )(t − e3)
z2k+1z2k+2 = Q2(y2k+2) with Q2(t) = (t − e0e

−1
3 )(t − e0e3)(t − e−1

4 )(t − e4).

Remark. z1z2z3 = 0 is the equation of 12 lines in CV (b).
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The Laurent property.

Definition.

1. A rational map r ∈ C(x , y) satifies the Laurent property if its polar set is
included in xy = 0.

2. A birational map r satifies the Laurent property if both r and r−1 have the
Laurent property.

3. Let X be an affine surface, and let (yn, zn) be a sequence of algebraic
morphisms from X to C2. This sequence satisfies the Laurent property, if
given an element (yn, zn), any other regular function ym(or zm) = r(xn, yn)
satisfies the Laurent property.

The Laurent property is not stable by composition or inversion. It turns out
that in a cluster sequence some simplications arise from the exchange relations
and give this property:

Proposition. The log-canonical sequence satisfies the Laurent property.
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The symplectic Cremona group.

Cr = Bir(C2) = Bir(P1 × P1).
Symp = Bir(P1 × P1, ωlog ). First studies: A. Usnich (2006), J. Blanc (2013).
Some subgroups of Symp:

• T1 = {(u, v) → (u, µv)}, T2 = {(u, v) → (λu, v)}, T = T1 × T2 : a
”Cartan” subgroup (an algebraic maximal subgroup)

• B1 = {(u, v) → (λu, r(u)v), λ ∈ C∗, r ∈ C(u)∗}: symplectic de Jonquières
maps : a ”Borel” subgroup i.e. a maximal solvable (non algebraic!) subgroup
which contains T .
B2: idem.
B1, B2 generates Symp.

• U1 = {b ∈ B1, λ = 1, r(0) = 1}: subgroup of B1 of the ”unipotent”
elements: U1 is abelian, [B1,B1] ⊂ U1.

• B♮
1 =< U1,T1 >. B♮

1 is also a meta-abelian group which contains U1, but it
contains only a maximal torus of rank 1. B♮

1 is a Borel of rank 1.
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The log-canonical dynamics on CV (b).

• We consider a log-canonical triple (z , y , z ′).
The pull-back of T1 by (z , y) is equal the pull-back of T2 by (y , z ′) and defines
the subgroup Ty of Symp(CV (b)): the exponential torus related to y .

• We consider a log-canonical triple (y , z , y ′).
The pull-back of B2 (B♮

2 , U2) by (y , z) is equal to the pull-back of B1 (B♮
1 , U1)

by (z , y ′) and defines the subgroup Bz (B♮
z , Uz) of Symp(CV (b)): the Borel

subgroup related to z .

• There exists a unique unipotent element sz in Uz such that szTy s
−1
z = Ty′ .

We call it the Stokes operator related to z . sz : (y , z) → (y(1 + e−1
0 z), z). is

the canonical Stokes operator related to z .

Definition. The canonical dynamics Dyn(CV (b)) is the subgroup of
Symp(CV (b)) generated by:
g : (y2, z2) → (y0, z0) (the canonical tame dynamics),
sz1 and sz2 (the canonical Stokes operators),
Ty1 (the canonical exponential torus).

Remark. Dyn(CV (b)) contains all the Ty and all the sz .
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Comparison between the confluent and the canonical dynamics

Recall that g2,3(κ) = g2,3(1) ◦ t2,3(κ).
- t2,3(κ) ∈ Ty2 but g2,3(1) is not a canonical element. Conf ̸⊂ Dyn.
- s1 ̸∈ Conf (CV (b)): indeed the restriction of s1 on the lines z1 = 0 are
translations, and this not the case for gi,j(κ). Dyn ̸⊂ Conf .

Problem: g2,3(1) is not unipotent. We need to introduce a (unique)
decomposition of g2,3(1) = uz1 ◦ by2 , uz1 in Uz1 , by2 in By2 :
(z1, y2) → (z1y

−2
2 , y2).

If we extend both Conf and Dyn by this element by2 , Conf
♯ = Dyn♯.
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The wild dynamics on CV (b).

Following M. Klimes, around an ”irregular” singular point (of saddle node type)
of the non linear foliation PV , by using formal normal forms (Yoshida, Bittman)
and their sectoral summations, one can define a pseudo group generated by:
- a non linear Stokes operator,
- a non linear formal exponential torus, and sectoral exponential tori,
- a non linear local formal and geometric monodromy.

Theorem [M. Klimes] Through RHV this dynamics coincide with the canonical
dynamics Dyn(CV (b)).

(This was conjectured by J.P. Ramis in 2010).
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Conclusion

The tame dynamics on χV can be extended to a rational symplectic dynamics
by using birational confluent morphisms.
There exists on CV (b) a canonical symplectic dynamics which coincide with the
wild dynamics.

We conjecture that:
- in any χJ , J = VI ,V , ..., the lines are a reducibility locus of some path in the
corresponding groupoid;
- We already know that for every J there exists canonical cluster sequences
which induces a canonical dynamics Dyn(χJ). We conjecture that the wild
dynamics coincide with these canonical dynamics;
- there exists a diagram of families of confluent birational symplectic morphims
(similar to the one of Ohyama-Okumura), defining confluent dynamics and
induced by a diagram of confluence between fundamental groupoids;
- all the morphims RHJ and TrJ are symplectic morphisms;
- for generic parameters, the Malgrange groupoid of the Painlevé foliations is
maximal.
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Thank you for your attention.

HAPPY NEW YEAR!


