Several dynamics for the Painlevé V foliation

Emmanuel Paul joint work with J.P. Ramis

2023 January 4 Web seminar on Painlevé equations and related topics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Our aim: describe the dynamics of all the Painlevé foliations defined on the related characters varieties through the Riemann-Hilbert correspondence. We will discuss and compare:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Our aim: describe the dynamics of all the Painlevé foliations defined on the related characters varieties through the Riemann-Hilbert correspondence. We will discuss and compare:

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

1- the tame dynamics (induced by $Aut(\pi_1)$);

Our aim: describe the dynamics of all the Painlevé foliations defined on the related characters varieties through the Riemann-Hilbert correspondence. We will discuss and compare:

1- the tame dynamics (induced by $Aut(\pi_1)$);

2- the confluent dynamics (induced by the Painlevé VI dynamics);

Our aim: describe the dynamics of all the Painlevé foliations defined on the related characters varieties through the Riemann-Hilbert correspondence. We will discuss and compare:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1- the tame dynamics (induced by $Aut(\pi_1)$);
- 2- the confluent dynamics (induced by the Painlevé VI dynamics);
- 3- the canonical dynamics (induced by cluster coordinates);

Our aim: describe the dynamics of all the Painlevé foliations defined on the related characters varieties through the Riemann-Hilbert correspondence. We will discuss and compare:

- 1- the tame dynamics (induced by $Aut(\pi_1)$);
- 2- the confluent dynamics (induced by the Painlevé VI dynamics);
- 3- the canonical dynamics (induced by cluster coordinates);

4- the wild dynamics (induced by non linear monodromy, Stokes operators and exponential tori).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our aim: describe the dynamics of all the Painlevé foliations defined on the related characters varieties through the Riemann-Hilbert correspondence. We will discuss and compare:

- 1- the tame dynamics (induced by $Aut(\pi_1)$);
- 2- the confluent dynamics (induced by the Painlevé VI dynamics);
- 3- the canonical dynamics (induced by cluster coordinates);

4- the wild dynamics (induced by non linear monodromy, Stokes operators and exponential tori).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We present here the main tools in the case of the Painlevé V foliation.

The Painlevé-like foliations are families of vector fields which share three main properties:

The Painlevé-like foliations are families of vector fields which share three main properties:

• the Painlevé property: all the solutions has a meromorphic extension along any path in the time space;

The Painlevé-like foliations are families of vector fields which share three main properties:

• the Painlevé property: all the solutions has a meromorphic extension along any path in the time space;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• the isomonodromic property: all the Painlevé equations appear as a (generalized) isomonodromic condition on some space of linear rank 2 connections on a basis;

The Painlevé-like foliations are families of vector fields which share three main properties:

• the Painlevé property: all the solutions has a meromorphic extension along any path in the time space;

• the isomonodromic property: all the Painlevé equations appear as a (generalized) isomonodromic condition on some space of linear rank 2 connections on a basis;

• the hamiltonian property: the Painlevé vector fields can be written on $T \times C^2$ under a hamiltonian form [Okamoto]:

$$\begin{pmatrix} \dot{p} = -\frac{\partial H_{\bullet}}{\partial q} \\ \dot{q} = \frac{\partial H_{\bullet}}{\partial p}
\end{cases}$$

with $H_{\bullet} = H(p, q, t, \theta), t \in T = \mathbb{P}^1 \setminus \{ \text{fixed sing.} \}, \theta$: parameters.

Examples:

Examples:

•
$$H_{VI}(q, p, t, \theta) = \frac{q(q-1)(q-t)}{t(t-1)} [p^2 - (\frac{\theta_1}{q} + \frac{\theta_2}{q-1} + \frac{\theta_3}{q-t})p + \frac{\theta_1 + \theta_2 + \theta_3 - 1)^2 - (\theta_4 - 1)^2}{4q(q-1)}].$$

Examples:

•
$$H_{VI}(q, p, t, \theta) = \frac{q(q-1)(q-t)}{t(t-1)} [p^2 - (\frac{\theta_1}{q} + \frac{\theta_2}{q-1} + \frac{\theta_3}{q-t})p + \frac{\theta_1 + \theta_2 + \theta_3 - 1)^2 - (\theta_4 - 1)^2}{4q(q-1)}].$$

•
$$H_V(p,q,t,\theta) = t^{-1}[p(p+t)q(q-1) - \theta_1 p(q-1) + \theta_2 qt - \theta_3 pq].$$

Examples:

•
$$H_{VI}(q, p, t, \theta) = \frac{q(q-1)(q-t)}{t(t-1)} [p^2 - (\frac{\theta_1}{q} + \frac{\theta_2}{q-1} + \frac{\theta_3}{q-t})p + \frac{\theta_1 + \theta_2 + \theta_3 - 1)^2 - (\theta_4 - 1)^2}{4q(q-1)}].$$

•
$$H_V(p,q,t,\theta) = t^{-1}[p(p+t)q(q-1) - \theta_1 p(q-1) + \theta_2 qt - \theta_3 pq].$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 \mathcal{M}_{VI} : moduli space of *sl*₂-connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

 \mathcal{M}_{VI} : moduli space of sl_2 -connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

$$\mathcal{M}_{VI}(\theta) \stackrel{\mathsf{RH}_{VI}}{\to} \chi_{VI}(\mathsf{a}) = [\mathsf{Rep}(\pi_1^{VI}(\mathbb{P}^1 \setminus S), \mathsf{SL}_2(\mathbb{C})] \stackrel{\mathsf{Tr}_{VI}}{\to} \mathcal{C}_{VI}(\mathsf{b}).$$

 \mathcal{M}_{VI} : moduli space of *sl*₂-connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

$$\mathcal{M}_{VI}(\theta) \xrightarrow{RH_{VI}} \chi_{VI}(a) = [Rep(\pi_1^{VI}(\mathbb{P}^1 \setminus S), SL_2(\mathbb{C})] \xrightarrow{T_{VI}} \mathcal{C}_{VI}(b)$$

$$\mathcal{C}_{VI}(b): x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 - b_1x_1 - b_2x_2 - b_3x_3 + b_4 = 0, \text{ with } b_i = a_ia_4 + a_ja_k, i = 1, 2, 3 \text{ and } b_4 = a_1a_2a_3a_4 + \sum_i a_i^2 - 4.$$

 \mathcal{M}_{VI} : moduli space of *sl*₂-connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

$$\mathcal{M}_{VI}(\theta) \xrightarrow{RH_{VI}} \chi_{VI}(a) = [Rep(\pi_1^{VI}(\mathbb{P}^1 \setminus S), SL_2(\mathbb{C})] \xrightarrow{T_{VI}} \mathcal{C}_{VI}(b)$$
$$\mathcal{C}_{VI}(b): x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 - b_1x_1 - b_2x_2 - b_3x_3 + b_4 = 0, \text{ with } b_i = a_ia_4 + a_ja_k, i = 1, 2, 3 \text{ and } b_4 = a_1a_2a_3a_4 + \sum_i a_i^2 - 4.$$
Fibers of RH_{VI} : leaves of the Painlevé VI foliation.

 \mathcal{M}_{VI} : moduli space of sl_2 -connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

$$\mathcal{M}_{VI}(\theta) \stackrel{RH_{VI}}{\to} \chi_{VI}(a) = [Rep(\pi_1^{VI}(\mathbb{P}^1 \setminus S), SL_2(\mathbb{C})] \stackrel{Tr_{VI}}{\to} \mathcal{C}_{VI}(b).$$

$$\mathcal{C}_{VI}(b): x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 - b_1x_1 - b_2x_2 - b_3x_3 + b_4 = 0, \text{ with } b_i = a_ia_4 + a_ja_k, i = 1, 2, 3 \text{ and } b_4 = a_1a_2a_3a_4 + \sum_i a_i^2 - 4.$$
Fibers of RH_{VI} : leaves of the Painlevé VI foliation.
Dynamics through RH_{VI} induced by $Aut(\pi_1^{VI})$: generated by 3 braids. In trace coordinates:

$$h_{1,2}: \begin{cases} x_1' = -x_1 - x_2 x_3 + b_1 \\ x_2' = -x_2 + x_1 x_3 + x_2 x_3^2 - b_1 x_3 + b_2 \\ x_3' = x_3 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is a *tame* dynamics: $h_{i,j}$ and $h_{i,j}^{-1}$ are polynomials dynamics.

 \mathcal{M}_{VI} : moduli space of sl_2 -connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

$$\mathcal{M}_{VI}(\theta) \stackrel{RH_{VI}}{\to} \chi_{VI}(a) = [Rep(\pi_1^{VI}(\mathbb{P}^1 \setminus S), SL_2(\mathbb{C})] \stackrel{Tr_{VI}}{\to} \mathcal{C}_{VI}(b).$$

$$\mathcal{C}_{VI}(b): x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 - b_1x_1 - b_2x_2 - b_3x_3 + b_4 = 0, \text{ with } b_i = a_ia_4 + a_ja_k, i = 1, 2, 3 \text{ and } b_4 = a_1a_2a_3a_4 + \sum_i a_i^2 - 4.$$
Fibers of RH_{VI} : leaves of the Painlevé VI foliation.
Dynamics through RH_{VI} induced by $Aut(\pi_1^{VI})$: generated by 3 braids. In trace coordinates:

$$h_{1,2}: \begin{cases} x_1' = -x_1 - x_2 x_3 + b_1 \\ x_2' = -x_2 + x_1 x_3 + x_2 x_3^2 - b_1 x_3 + b_2 \\ x_3' = x_3 \end{cases}$$

This is a *tame* dynamics: $h_{i,j}$ and $h_{i,j}^{-1}$ are polynomials dynamics. References: Dubrovin-Mazzocco, Iwasaki, Cantat-Loray or Ramis-P, by using groupoids instead of groups:

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

 \mathcal{M}_{VI} : moduli space of sl_2 -connections over $\mathbb{P}^1(\mathbb{C})$ with 4 regular singular points.

$$\mathcal{M}_{VI}(\theta) \stackrel{RH_{VI}}{\to} \chi_{VI}(a) = [Rep(\pi_1^{VI}(\mathbb{P}^1 \setminus S), SL_2(\mathbb{C})] \stackrel{Tr_{VI}}{\to} \mathcal{C}_{VI}(b).$$

$$\mathcal{C}_{VI}(b): x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 - b_1x_1 - b_2x_2 - b_3x_3 + b_4 = 0, \text{ with } b_i = a_ia_4 + a_ja_k, i = 1, 2, 3 \text{ and } b_4 = a_1a_2a_3a_4 + \sum_i a_i^2 - 4.$$
Fibers of RH_{VI} : leaves of the Painlevé VI foliation.
Dynamics through RH_{VI} induced by $Aut(\pi_1^{VI})$: generated by 3 braids. In trace coordinates:

$$h_{1,2}: \begin{cases} x_1' = -x_1 - x_2 x_3 + b_1 \\ x_2' = -x_2 + x_1 x_3 + x_2 x_3^2 - b_1 x_3 + b_2 \\ x_3' = x_3 \end{cases}$$

This is a *tame* dynamics: $h_{i,j}$ and $h_{i,j}^{-1}$ are polynomials dynamics. References: Dubrovin-Mazzocco, Iwasaki, Cantat-Loray or Ramis-P, by using groupoids instead of groups:

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

・ロト・日本・日本・日本・日本・日本

Linear representation ρ of the groupoid:

- objects (base point) $s \to \rho(s) = 2$ dim vector space V_s (RH: local matrix solution Y_s);

- morphisms (paths up to homotopy) $\gamma_{s,t} \to \rho(\gamma_{s,t}) = a$ linear map from V_s to V_t (RH: $\mathcal{M}(\gamma_{s,t})$ induced by analytic continuation of local matrix solutions: $Y_t = \widetilde{Y_s}^{\gamma_{s,t}} . \mathcal{M}(\gamma_{s,t}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear representation ρ of the groupoid:

- objects (base point) $s \to \rho(s) = 2$ dim vector space V_s (RH: local matrix solution Y_s);

- morphisms (paths up to homotopy) $\gamma_{s,t} \to \rho(\gamma_{s,t}) = a$ linear map from V_s to V_t (RH: $\mathcal{M}(\gamma_{s,t})$ induced by analytic continuation of local matrix solutions: $Y_t = \widetilde{Y_s}^{\gamma_{s,t}} . \mathcal{M}(\gamma_{s,t}).$

A change of representation of the objects gives an equivalent representation:

$$\rho' \sim \rho \Leftrightarrow \forall s, \exists M_s, M'(\gamma_{s,t}) = M_s \cdot M(\gamma_{s,t}) \cdot M_t$$

Linear representation ρ of the groupoid:

- objects (base point) $s \to \rho(s) = 2$ dim vector space V_s (RH: local matrix solution Y_s);

- morphisms (paths up to homotopy) $\gamma_{s,t} \to \rho(\gamma_{s,t}) = a$ linear map from V_s to V_t (RH: $\mathcal{M}(\gamma_{s,t})$ induced by analytic continuation of local matrix solutions: $Y_t = \widetilde{Y_s}^{\gamma_{s,t}} . \mathcal{M}(\gamma_{s,t}).$

A change of representation of the objects gives an equivalent representation:

$$\rho' \sim \rho \Leftrightarrow \forall s, \exists M_s, M'(\gamma_{s,t}) = M_s \cdot M(\gamma_{s,t}) \cdot M_t.$$

The character variety χ_{VI} is the variety of equivalent representations in $SL_2(\mathbb{C})$ of $\pi_1^{VI}(X, S)$.

(with M. Klimes)

(with M. Klimes) There are 24 lines in $C_{VI}(b)$ (27 in \mathbb{P}^2). What is the characteristic property of a point $[\rho]$ on such a line?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(with M. Klimes) There are 24 lines in $C_{VI}(b)$ (27 in \mathbb{P}^2). What is the characteristic property of a point $[\rho]$ on such a line?

Definition. Let γ be some path in $\pi_1^{\mathcal{V}}(X, S)$ from s_i to s_j , $\gamma_{i,i}$ the local loops at the extremities.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

 ρ is reducible along γ if $\rho(\gamma\gamma_{i,i}\gamma^{-1})$ and $\rho(\gamma_{j,j})$ have a common eigenvector.

(with M. Klimes) There are 24 lines in $C_{VI}(b)$ (27 in \mathbb{P}^2). What is the characteristic property of a point $[\rho]$ on such a line?

Definition. Let γ be some path in $\pi_1^{VI}(X, S)$ from s_i to s_j , $\gamma_{i,i}$ the local loops at the extremities.

 ρ is reducible along γ if $\rho(\gamma\gamma_{i,i}\gamma^{-1})$ and $\rho(\gamma_{j,j})$ have a common eigenvector. $\mathcal{R}(\gamma) = \{\rho, \text{ reducible over } \gamma\}.$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

(with M. Klimes) There are 24 lines in $C_{VI}(b)$ (27 in \mathbb{P}^2). What is the characteristic property of a point $[\rho]$ on such a line?

Definition. Let γ be some path in $\pi_1^{\mathcal{V}}(X, S)$ from s_i to s_j , $\gamma_{i,i}$ the local loops at the extremities. ρ is reducible along γ if $\rho(\gamma\gamma_{i,i}\gamma^{-1})$ and $\rho(\gamma_{j,j})$ have a common eigenvector. $\mathcal{R}(\gamma) = \{\rho, \text{ reducible over } \gamma\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. $\mathcal{R}(\gamma_{i,j})$ is the union of 4 lines in $\mathcal{C}_{VI}(b)$.

(with M. Klimes) There are 24 lines in $C_{VI}(b)$ (27 in \mathbb{P}^2). What is the characteristic property of a point $[\rho]$ on such a line?

Definition. Let γ be some path in $\pi_1^{\mathcal{V}}(X, S)$ from s_i to s_j , $\gamma_{i,i}$ the local loops at the extremities. ρ is reducible along γ if $\rho(\gamma\gamma_{i,i}\gamma^{-1})$ and $\rho(\gamma_{j,j})$ have a common eigenvector. $\mathcal{R}(\gamma) = \{\rho, \text{ reducible over } \gamma\}.$

Theorem. $\mathcal{R}(\gamma_{i,j})$ is the union of 4 lines in $\mathcal{C}_{VI}(b)$.

Some intersections of these lines correspond to special solutions studied by K. Kaneko.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Painlevé V equation as isomonodromic deformations of linear systems

$$\mathcal{M}_{V} = \left\{\frac{dY}{dx} = \left(\frac{A_{0}}{x-s_{0}} + \frac{A_{1}}{x-s_{1}} + A_{\infty}\right) \cdot Y\right\} / / _{(Y \to YP, x \to \varphi(x))}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $A_i \in sl_2(\mathbb{C}), A_\infty$ semi-simple;

The Painlevé V equation as isomonodromic deformations of linear systems

$$\mathcal{M}_{V} = \left\{\frac{dY}{dx} = \left(\frac{A_{0}}{x-s_{0}} + \frac{A_{1}}{x-s_{1}} + A_{\infty}\right) \cdot Y\right\} / / _{(Y \to YP, x \to \varphi(x))}.$$

 $A_i \in sl_2(\mathbb{C}), A_{\infty}$ semi-simple; $S = \{s_0, s_1, \infty\} \subset \mathbb{P}_1, s_0, s_1$ regular singular points, ∞ irregular (Katz rank 1): Around $z = x^{-1} = 0$, formally,

$$rac{d\,\widehat{Y}}{dz}=(rac{Q}{z^2}+rac{L}{z})\cdot \widehat{Y}, \,\, Q,L$$
 diagonal.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The Painlevé V equation as isomonodromic deformations of linear systems

$$\mathcal{M}_{V} = \left\{\frac{dY}{dx} = \left(\frac{A_{0}}{x-s_{0}} + \frac{A_{1}}{x-s_{1}} + A_{\infty}\right) \cdot Y\right\} / / _{(Y \to YP, x \to \varphi(x))}.$$

 $A_i \in sl_2(\mathbb{C}), A_{\infty}$ semi-simple; $S = \{s_0, s_1, \infty\} \subset \mathbb{P}_1, s_0, s_1$ regular singular points, ∞ irregular (Katz rank 1): Around $z = x^{-1} = 0$, formally,

$$rac{d\,\widehat{Y}}{dz}=(rac{Q}{z^2}+rac{L}{z})\cdot \widehat{Y}, \,\, Q,L$$
 diagonal.

Formal solutions around ∞ :

$$\widehat{Y}(z) = \widehat{F}(z)z^L \exp Q/z.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
• The gauge quotient:

$$A_{\infty}=\left(egin{array}{cc}t&0\\0&-t\end{array}
ight),\ A_{i}=\left(egin{array}{cc}a_{i}&b_{i}\\c_{i}&-a_{i}\end{array}
ight),\ i=0,1.$$

under the action of *D* (diagonal matrices) and $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Invariant coordinates :

 $\alpha_0 = det(A_0), \ \alpha_1 = det(A_1), \ \alpha_{\infty} = det(L) = (a_0 + a_1)^2; ("local" coordinates);$ $\tau = a_0 t (the "time" coordinate);$ $\beta_0 = b_0 c_1 + b_1 c_0, \ \beta_1 = t(b_0 c_1 - b_1 c_0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The gauge quotient:

$$A_{\infty}=\left(egin{array}{cc}t&0\\0&-t\end{array}
ight),\ A_{i}=\left(egin{array}{cc}a_{i}&b_{i}\\c_{i}&-a_{i}\end{array}
ight),\ i=0,1.$$

under the action of D (diagonal matrices) and $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Invariant coordinates : $\alpha_0 = det(A_0), \ \alpha_1 = det(A_1), \ \alpha_\infty = det(L) = (a_0 + a_1)^2; ("local" coordinates);$ $\tau = a_0 t$ (the "time" coordinate); $\beta_0 = b_0 c_1 + b_1 c_0, \ \beta_1 = t(b_0 c_1 - b_1 c_0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The quotient under
$$Aut(P^1)$$
:
Using a translation on x : $s_0 = 0$ ($s_1 \neq 0$);
Action of $x \rightarrow \mu x$: $(\tau, \beta_0, \beta_1, s_1^{-1}) \rightarrow (\mu \tau, \beta_0, \mu \beta_1, \mu s_1^{-1})$
$$\mathcal{M}_V(\alpha) \simeq \mathbb{P}^3_{(1,0,1,1)}.$$

• The gauge quotient:

$$A_{\infty}=\left(egin{array}{cc}t&0\\0&-t\end{array}
ight),\ A_{i}=\left(egin{array}{cc}a_{i}&b_{i}\\c_{i}&-a_{i}\end{array}
ight),\ i=0,1.$$

under the action of *D* (diagonal matrices) and $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Invariant coordinates :

 $\begin{aligned} &\alpha_0 = det(A_0), \ \alpha_1 = det(A_1), \ \alpha_\infty = det(L) = (a_0 + a_1)^2; \ ("local" coordinates); \\ &\tau = a_0 t \ (\text{the "time" coordinate}); \\ &\beta_0 = b_0 c_1 + b_1 c_0, \ \beta_1 = t(b_0 c_1 - b_1 c_0). \end{aligned}$

• The quotient under
$$Aut(P^1)$$
:
Using a translation on x : $s_0 = 0$ ($s_1 \neq 0$);
Action of $x \rightarrow \mu x$: $(\tau, \beta_0, \beta_1, s_1^{-1}) \rightarrow (\mu \tau, \beta_0, \mu \beta_1, \mu s_1^{-1})$
$$\mathcal{M}_V(\alpha) \simeq \mathbb{P}^3_{(1,0,1,1)}.$$

The method of H. Chiba in order to compactify the variety on which live the Painlevé foliations can also be used starting from the spaces of linear connections.

- The monodromy operators are defined by the analytic continuation of the matrix solutions along paths. They define a representation of the group $\pi_1(P_1 \setminus S, x_0)$ or of a fundamental groupoid with 3 base points. - The *Stokes operators* are defined by the comparison between two resummations of a formal matrix solution \widehat{Y} on the left and rightside of a singular direction.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The monodromy operators are defined by the analytic continuation of the matrix solutions along paths. They define a representation of the group $\pi_1(P_1 \setminus S, x_0)$ or of a fundamental groupoid with 3 base points.

- The Stokes operators are defined by the comparison between two resummations of a formal matrix solution \hat{Y} on the left and rightside of a singular direction.

- The exponential torus is an action of the algebraic group (\mathbb{C}^*, \times) on the local formal solutions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Any element of \mathcal{M}_V defines a representation of the following extended groupoid:

The wild fundamental groupoid $\pi_1^V(X, S)$

with topological relations and additional wild relations $t_{i,i}(\kappa\kappa') = t_{i,i}(\kappa) \cdot t_{i,i}(\kappa')$ i=0,1; $[\widehat{\gamma}_{i,i}, t_{i,i}(\kappa)] = \star_i$ $[[\sigma_i, t_{i,i}(\kappa)], \sigma_i] = \star_i (\sigma_i$: Stokes loops based in s_i).

- Any connection in \mathcal{M}_V induces a linear representation of the groupoid $\pi_1^V(X, S)$: the paths are represented either by analytic continuation of local solution or by resummation process for a ray.

- Any connection in \mathcal{M}_V induces a linear representation of the groupoid $\pi_1^V(X, S)$: the paths are represented either by analytic continuation of local solution or by resummation process for a ray.

- Such representation satsfies the property (*): there exists a Borel-Cartan configuration (B^-, C, B^+) such that:

$$ho(t_{1,1}(\kappa))=\mathcal{C}, \
ho(\sigma_1)\in U^-, \
ho(\widehat{\gamma}_{1,2}'\cdot\sigma_2\cdot\widehat{\gamma}_{2,1}')\in U^+.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Any connection in \mathcal{M}_V induces a linear representation of the groupoid $\pi_1^V(X, S)$: the paths are represented either by analytic continuation of local solution or by resummation process for a ray.

- Such representation satsfies the property (*): there exists a Borel-Cartan configuration (B^-, C, B^+) such that:

$$ho(t_{1,1}(\kappa))=\mathcal{C}, \
ho(\sigma_1)\in U^-, \
ho(\widehat{\gamma}_{1,2}'\cdot\sigma_2\cdot\widehat{\gamma}_{2,1}')\in U^+.$$

The character variety χ_V is the variety of equivalent representations in $SL_2(\mathbb{C})$ of $\pi_1^V(X, S)$ which satisfy (*).

A class of such representations is "quasi" characterized by the data

$$\rho(\sigma_1) = U_1 = \begin{pmatrix} 1 & 0 \\ u_1 & 1 \end{pmatrix}, \rho(\sigma_2) = U_2 = \begin{pmatrix} 1 & u_2 \\ 0 & 1 \end{pmatrix}, \rho(\widehat{\gamma}_{1,1}) = M_0 = \begin{pmatrix} e_0 & 0 \\ 0 & e_0^{-1} \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and $\rho(\gamma_{3,3}) = M_3$, $\rho(\gamma_{4,4}) = M_4$.

- Any connection in \mathcal{M}_V induces a linear representation of the groupoid $\pi_1^V(X, S)$: the paths are represented either by analytic continuation of local solution or by resummation process for a ray.

- Such representation satsfies the property (*): there exists a Borel-Cartan configuration (B^-, C, B^+) such that:

$$ho(t_{1,1}(\kappa))=\mathcal{C}, \
ho(\sigma_1)\in U^-, \
ho(\widehat{\gamma}_{1,2}'\cdot\sigma_2\cdot\widehat{\gamma}_{2,1}')\in U^+.$$

The character variety χ_V is the variety of equivalent representations in $SL_2(\mathbb{C})$ of $\pi_1^V(X, S)$ which satisfy (*).

A class of such representations is "quasi" characterized by the data

$$\rho(\sigma_1) = U_1 = \begin{pmatrix} 1 & 0 \\ u_1 & 1 \end{pmatrix}, \\ \rho(\sigma_2) = U_2 = \begin{pmatrix} 1 & u_2 \\ 0 & 1 \end{pmatrix}, \\ \rho(\widehat{\gamma}_{1,1}) = M_0 = \begin{pmatrix} e_0 & 0 \\ 0 & e_0^{-1} \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and $\rho(\gamma_{3,3}) = M_3$, $\rho(\gamma_{4,4}) = M_4$.

Indeed from the local relations we have either $\rho(t_{1,1}(\kappa)) = diag(\kappa, \kappa^{-1})$ or $\rho(t_{1,1}(\kappa)) = diag(\kappa^{-1}, \kappa)$, defining $\chi_V = \chi_V^+ \cup \chi_V^-$.

The local data of ρ is defined by $a^+ = (e_0, a_3 = tr(M_3), a_4 = tr(M_4))$ or $a^- = (e_0^{-1}, a_3 = tr(M_3), a_4 = tr(M_4))$.

The local data of ρ is defined by $a^+ = (e_0, a_3 = tr(M_3), a_4 = tr(M_4))$ or $a^- = (e_0^{-1}, a_3 = tr(M_3), a_4 = tr(M_4))$. We set $x_1^+ = M_3[2, 2], x_2^+ = M_4[2, 2], x_3^+ = tr(U_1M_0U_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The local data of ρ is defined by $a^+ = (e_0, a_3 = tr(M_3), a_4 = tr(M_4))$ or $a^- = (e_0^{-1}, a_3 = tr(M_3), a_4 = tr(M_4))$. We set $x_1^+ = M_3[2, 2], x_2^+ = M_4[2, 2], x_3^+ = tr(U_1M_0U_2)$.

The coordinates (a^+, x^+) define a map Tr_V^+ , invertible for a generic *a*, from χ_V^+ to the family affine cubic surface $C_V(b^+)$ defined by

$$F_V(b^+, x) = x_1 x_2 x_3 + x_1^2 + x_2^2 - b_1^+ x_1 - b_2^+ x_2 - b_3^+ x_3 + b_4^+ = 0$$

A D N A 目 N A E N A E N A B N A C N

where $b_1^+ = a_3 + e_0 a_4$, $b_2^+ = a_4 + e_0 a_3$, $b_3^+ = e_0$, $b_4^+ = e_0^2 + e_0 a_3 a_4 + 1$.

The local data of ρ is defined by $a^+ = (e_0, a_3 = tr(M_3), a_4 = tr(M_4))$ or $a^- = (e_0^{-1}, a_3 = tr(M_3), a_4 = tr(M_4))$. We set $x_1^+ = M_3[2, 2], x_2^+ = M_4[2, 2], x_3^+ = tr(U_1M_0U_2)$.

The coordinates (a^+, x^+) define a map Tr_V^+ , invertible for a generic *a*, from χ_V^+ to the family affine cubic surface $C_V(b^+)$ defined by

$$F_V(b^+, x) = x_1 x_2 x_3 + x_1^2 + x_2^2 - b_1^+ x_1 - b_2^+ x_2 - b_3^+ x_3 + b_4^+ = 0,$$

where $b_1^+ = a_3 + e_0 a_4$, $b_2^+ = a_4 + e_0 a_3$, $b_3^+ = e_0$, $b_4^+ = e_0^2 + e_0 a_3 a_4 + 1$.

We also have a similar map $Tr_V^-: \chi_V^- \to C_V(b^-)$ defined by $x_1^- = M_3[1, 1]$, $x_2^- = M_4[1, 1]$, $x_3^+ = x_3^-$.

A D N A 目 N A E N A E N A B N A C N

We have defined : RH_V : $\mathcal{M}_V(\alpha) \to \chi_V(a)$.

We have defined : RH_V : $M_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

We have defined : RH_V : $\mathcal{M}_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

$$\frac{dY}{dx} = A_V(x,t) \cdot Y, B_V(x,t) := \frac{d}{dt} Y(x,t) \cdot Y(x,t)^{-1}$$
 extends meromorphically.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The pair $(\partial Y/\partial x = A_V(x,t) \cdot Y, \partial Y/\partial t = B_V(x,t) \cdot Y)$ is compatible.

We have defined : RH_V : $M_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

$$\frac{dY}{dx} = A_V(x,t) \cdot Y, B_V(x,t) := \frac{d}{dt} Y(x,t) \cdot Y(x,t)^{-1}$$
 extends meromorphically.

The pair $(\partial Y/\partial x = A_V(x, t) \cdot Y, \partial Y/\partial t = B_V(x, t) \cdot Y)$ is compatible. The compatibility condition $\frac{\partial A}{\partial t} - \frac{\partial B}{\partial x} + [B, A] = 0$ is equivalent to $P_V(\kappa)$ in some chart (q, p, t) on $\mathcal{M}_V(\alpha)$ and for $\kappa = \kappa(\alpha)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We have defined : RH_V : $M_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

 $\frac{dY}{dx} = A_V(x,t) \cdot Y, B_V(x,t) := \frac{d}{dt}Y(x,t) \cdot Y(x,t)^{-1}$ extends meromorphically.

The pair $(\partial Y/\partial x = A_V(x, t) \cdot Y, \partial Y/\partial t = B_V(x, t) \cdot Y)$ is compatible. The compatibility condition $\frac{\partial A}{\partial t} - \frac{\partial B}{\partial x} + [B, A] = 0$ is equivalent to $P_V(\kappa)$ in some chart (q, p, t) on $\mathcal{M}_V(\alpha)$ and for $\kappa = \kappa(\alpha)$.

We summarize:

$$\mathcal{M}_{V}(\alpha) \stackrel{\mathsf{RH}_{V}}{\longrightarrow} \chi_{V}(\mathbf{a}) \stackrel{\mathsf{Tr}_{V}}{\longrightarrow} \mathcal{C}_{V}(\mathbf{b}).$$

We have defined : RH_V : $M_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

 $\frac{dY}{dx} = A_V(x,t) \cdot Y, B_V(x,t) := \frac{d}{dt}Y(x,t) \cdot Y(x,t)^{-1}$ extends meromorphically.

The pair $(\partial Y/\partial x = A_V(x, t) \cdot Y, \partial Y/\partial t = B_V(x, t) \cdot Y)$ is compatible. The compatibility condition $\frac{\partial A}{\partial t} - \frac{\partial B}{\partial x} + [B, A] = 0$ is equivalent to $P_V(\kappa)$ in some chart (q, p, t) on $\mathcal{M}_V(\alpha)$ and for $\kappa = \kappa(\alpha)$.

We summarize:

$$\mathcal{M}_{V}(\alpha) \stackrel{\mathsf{RH}_{V}}{\longrightarrow} \chi_{V}(a) \stackrel{\mathsf{Tr}_{V}}{\longrightarrow} \mathcal{C}_{V}(b).$$

- Symplectic structure on $\mathcal{M}_V(\alpha)$: $\omega_V(\alpha) = dq \wedge dp$ or directly: Atiyah-Bott, Fock-Rosly, Boalch...

We have defined : RH_V : $M_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

 $\frac{dY}{dx} = A_V(x,t) \cdot Y, B_V(x,t) := \frac{d}{dt}Y(x,t) \cdot Y(x,t)^{-1}$ extends meromorphically.

The pair $(\partial Y/\partial x = A_V(x, t) \cdot Y, \partial Y/\partial t = B_V(x, t) \cdot Y)$ is compatible. The compatibility condition $\frac{\partial A}{\partial t} - \frac{\partial B}{\partial x} + [B, A] = 0$ is equivalent to $P_V(\kappa)$ in some chart (q, p, t) on $\mathcal{M}_V(\alpha)$ and for $\kappa = \kappa(\alpha)$.

We summarize:

$$\mathcal{M}_V(\alpha) \stackrel{\mathsf{RH}_V}{\longrightarrow} \chi_V(a) \stackrel{\mathsf{Tr}_V}{\longrightarrow} \mathcal{C}_V(b).$$

- Symplectic structure on $\mathcal{M}_V(\alpha)$: $\omega_V(\alpha) = dq \wedge dp$ or directly: Atiyah-Bott, Fock-Rosly, Boalch...

- Symplectic structure on $\chi_V(a)$: $\omega_V(a)$ Goldman (Poincaré-Lefchetz duality), Chekhov-Mazzocco-Roubtsov (decorated character varieties), Boalch (quasi-hamiltonian geometry),...

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ == ∽へ⊙

We have defined : RH_V : $\mathcal{M}_V(\alpha) \rightarrow \chi_V(a)$. Fibers ("generalized isomonodromic" families): leaves of the Painlevé V foliation. Indeed:

$$\frac{dY}{dx} = A_V(x,t) \cdot Y, B_V(x,t) := \frac{d}{dt} Y(x,t) \cdot Y(x,t)^{-1}$$
 extends meromorphically.

The pair $(\partial Y/\partial x = A_V(x, t) \cdot Y, \partial Y/\partial t = B_V(x, t) \cdot Y)$ is compatible. The compatibility condition $\frac{\partial A}{\partial t} - \frac{\partial B}{\partial x} + [B, A] = 0$ is equivalent to $P_V(\kappa)$ in some chart (q, p, t) on $\mathcal{M}_V(\alpha)$ and for $\kappa = \kappa(\alpha)$.

We summarize:

$$\mathcal{M}_{V}(\alpha) \xrightarrow{\mathcal{R}H_{V}} \chi_{V}(a) \xrightarrow{\mathcal{T}r_{V}} \mathcal{C}_{V}(b).$$

- Symplectic structure on $\mathcal{M}_V(\alpha)$: $\omega_V(\alpha) = dq \wedge dp$ or directly: Atiyah-Bott, Fock-Rosly, Boalch...

- Symplectic structure on $\chi_V(a)$: $\omega_V(a)$ Goldman (Poincaré-Lefchetz duality), Chekhov-Mazzocco-Roubtsov (decorated character varieties), Boalch (quasi-hamiltonian geometry),...

- Symplectic structure on $C_V(b)$: Residue form of the volume form i.e. $\omega_V(b) = \frac{dx_1 \wedge dx_2}{\partial F_V / \partial x_3}$ (up to circular permutation).

Expected results: for J = VI, V, etc... :

- *RH*_J is a symplectic morphism between $(\mathcal{M}_J(\alpha), \omega_J(\alpha))$ and $(\chi_J(a), 2i\pi\omega_J(a));$
- *Tr_J* is a symplectic morphism between $(\chi_J(a), \omega_J(a))$ and $(C_J(b), \omega_J(b))$.

Expected results: for J = VI, V, etc... :

- *RH*_J is a symplectic morphism between $(\mathcal{M}_J(\alpha), \omega_J(\alpha))$ and $(\chi_J(a), 2i\pi\omega_J(a));$
- Tr_J is a symplectic morphism between $(\chi_J(a), \omega_J(a))$ and $(C_J(b), \omega_J(b))$.

For RH_{VI} : Iwasaki (2002) or M. Klimes (using the Jimbo's asymtotic formula).

Expected results: for J = VI, V, etc... :

- *RH*_J is a symplectic morphism between $(\mathcal{M}_J(\alpha), \omega_J(\alpha))$ and $(\chi_J(a), 2i\pi\omega_J(a));$
- Tr_J is a symplectic morphism between $(\chi_J(a), \omega_J(a))$ and $(\mathcal{C}_J(b), \omega_J(b))$.

For RH_{VI} : Iwasaki (2002) or M. Klimes (using the Jimbo's asymtotic formula). For Tr_{VI} : Iwasaki.

Expected results: for J = VI, V, etc... :

- *RH*_J is a symplectic morphism between $(\mathcal{M}_J(\alpha), \omega_J(\alpha))$ and $(\chi_J(a), 2i\pi\omega_J(a));$
- Tr_J is a symplectic morphism between $(\chi_J(a), \omega_J(a))$ and $(\mathcal{C}_J(b), \omega_J(b))$.

For RH_{VI} : Iwasaki (2002) or M. Klimes (using the Jimbo's asymtotic formula). For Tr_{VI} : Iwasaki. For RH_V : Boalch (in a particular case).

Expected results: for J = VI, V, etc... :

- *RH*_J is a symplectic morphism between $(\mathcal{M}_J(\alpha), \omega_J(\alpha))$ and $(\chi_J(a), 2i\pi\omega_J(a));$
- Tr_J is a symplectic morphism between $(\chi_J(a), \omega_J(a))$ and $(\mathcal{C}_J(b), \omega_J(b))$.

For RH_{VI} : Iwasaki (2002) or M. Klimes (using the Jimbo's asymtotic formula). For Tr_{VI} : Iwasaki. For RH_V : Boalch (in a particular case). For Tr_V : ?

Expected results: for J = VI, V, etc... :

• *RH*_J is a symplectic morphism between $(\mathcal{M}_J(\alpha), \omega_J(\alpha))$ and $(\chi_J(a), 2i\pi\omega_J(a));$

• Tr_J is a symplectic morphism between $(\chi_J(a), \omega_J(a))$ and $(C_J(b), \omega_J(b))$.

For RH_{VI} : Iwasaki (2002) or M. Klimes (using the Jimbo's asymtotic formula). For Tr_{VI} : Iwasaki. For RH_V : Boalch (in a particular case). For Tr_V : ? For the general case?

Similar to the case J = VI: Aut $(\pi_V^1(X, S))$ acts on $\chi_V(a)$ by $\rho \to \rho \circ b$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Similar to the case J = VI: $Aut(\pi_V^1(X, S))$ acts on $\chi_V(a)$ by $\rho \to \rho \circ b$. For J = V, $Aut(\pi_V^1(X, S))$ is generated by only one pure braid *b* (only 3 singular points).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similar to the case J = VI: $Aut(\pi_V^1(X, S))$ acts on $\chi_V(a)$ by $\rho \to \rho \circ b$. For J = V, $Aut(\pi_V^1(X, S))$ is generated by only one pure braid *b* (only 3 singular points).

Proposition [Ramis, P.], [Klimes]

$$h_b: \begin{cases} x'_1 = -x_1 + x_2 x_3 + x_1 x_3^2 - \theta_2 x_3 + \theta_1 \\ x'_2 = -x_2 - x_1 x_3 + \theta_2 \\ x'_3 = x_3 \end{cases}$$

Similar to the case J = VI: $Aut(\pi_V^1(X, S))$ acts on $\chi_V(a)$ by $\rho \to \rho \circ b$. For J = V, $Aut(\pi_V^1(X, S))$ is generated by only one pure braid *b* (only 3 singular points).

Proposition [Ramis, P.], [Klimes]

$$h_b: \begin{cases} x'_1 = -x_1 + x_2 x_3 + x_1 x_3^2 - \theta_2 x_3 + \theta_1 \\ x'_2 = -x_2 - x_1 x_3 + \theta_2 \\ x'_3 = x_3 \end{cases}$$

Remark. The tame dynamics are always *polynomial* dynamics on χ in trace coordinates.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The confluent morphims.

First description: M. Klimes.

The confluent morphims.

First description: M. Klimes.

Here, we make use of morphisms between groupoids:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The confluent morphims.

First description: M. Klimes. Here, we make use of morphisms between groupoids:

 $arphi(\kappa): \ \pi_1^{VI}(X, \mathcal{S}_{VI}) o \pi_1^{V,\kappa}(X, \mathcal{S}_V)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
The confluent dynamics on $\chi_V(a)$: $\varphi(\kappa)$.

Another presentation for $\pi_1^{V,\kappa}(X,S)$:

The confluent dynamics on $\chi_V(a)$: $\varphi(\kappa)$.

Another presentation for $\pi_1^{V,\kappa}(X,S)$:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

$$\begin{split} \varphi_{\kappa}(\gamma_{1,1}) &= \sigma_{1} \cdot t_{1,1}(\kappa), \\ \varphi_{\kappa}(\gamma_{2,2}) &= \sigma_{2} \cdot t_{2,2}(\kappa), \\ \text{For the other generators} : \varphi_{\kappa}(\gamma_{i,j}) \text{ is defined by the figure above.} \end{split}$$

< □ > < 個 > < 差 > < 差 > 差 の Q @

Theorem. The morphisms $\Phi(\kappa)^{\pm}$: $\chi_V^{\pm}(a) \to \chi_{VI}(a_{\kappa})$: $\rho \to \rho \circ \varphi_{\kappa}$ are generically invertible (on a Zariski open set). $\Phi(\kappa)^{\pm}$: $C_V^{\pm}(b) \to C_{VI}(b_{\kappa})$ is a family of birational maps.

Theorem. The morphisms $\Phi(\kappa)^{\pm}$: $\chi_V^{\pm}(\mathbf{a}) \to \chi_{VI}(\mathbf{a}_{\kappa})$: $\rho \to \rho \circ \varphi_{\kappa}$ are generically invertible (on a Zariski open set). $\Phi(\kappa)^{\pm}$: $\mathcal{C}_V^{\pm}(\mathbf{b}) \to \mathcal{C}_{VI}(\mathbf{b}_{\kappa})$ is a family of birational maps.

Idea of the proof. We want to construct an inverse of

 $\Phi(\kappa): [U_1, M_0, U_2, M_3, M_4] \mapsto [M_{1,\kappa}, M_{2,\kappa}, M_3, M_4] = [U_1 D_{\kappa}, D_{\kappa}^{-1} M_0 U_2, M_3, M_4].$

Theorem. The morphisms $\Phi(\kappa)^{\pm}$: $\chi_V^{\pm}(a) \to \chi_{VI}(a_{\kappa})$: $\rho \to \rho \circ \varphi_{\kappa}$ are generically invertible (on a Zariski open set). $\Phi(\kappa)^{\pm}$: $C_V^{\pm}(b) \to C_{VI}(b_{\kappa})$ is a family of birational maps.

Idea of the proof. We want to construct an inverse of

 $\Phi(\kappa): [U_1, M_0, U_2, M_3, M_4] \mapsto [M_{1,\kappa}, M_{2,\kappa}, M_3, M_4] = [U_1 D_{\kappa}, D_{\kappa}^{-1} M_0 U_2, M_3, M_4].$ We use the LDU decomposition in *SL*₂: If $a \neq 0$,

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}1&0\\l&1\end{array}\right)\cdot\left(\begin{array}{cc}e&0\\0&e^{-1}\end{array}\right)\cdot\left(\begin{array}{cc}1&u\\0&1\end{array}\right):e=a,l=c/a,u=b/a.$$

Theorem. The morphisms $\Phi(\kappa)^{\pm}$: $\chi_V^{\pm}(a) \to \chi_{VI}(a_{\kappa})$: $\rho \to \rho \circ \varphi_{\kappa}$ are generically invertible (on a Zariski open set). $\Phi(\kappa)^{\pm}$: $C_V^{\pm}(b) \to C_{VI}(b_{\kappa})$ is a family of birational maps.

Idea of the proof. We want to construct an inverse of

 $\Phi(\kappa): [U_1, M_0, U_2, M_3, M_4] \mapsto [M_{1,\kappa}, M_{2,\kappa}, M_3, M_4] = [U_1 D_{\kappa}, D_{\kappa}^{-1} M_0 U_2, M_3, M_4].$ We use the LDU decomposition in *SL*₂: If $a \neq 0$,

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}1&0\\l&1\end{array}\right)\cdot\left(\begin{array}{cc}e&0\\0&e^{-1}\end{array}\right)\cdot\left(\begin{array}{cc}1&u\\0&1\end{array}\right):e=a,l=c/a,u=b/a.$$

 $U_1M_0U_2$ is a representation through φ_{κ} of a loop around the 2 confluent singularities s_1 et s_2 . Therefore:

- $U_1 M_0 U_2$ is the LDU decomposition of a matrix conjugated to $M_{1,\kappa} M_{2,\kappa}$.
- its diagonal component D is $\begin{pmatrix} e_{1,\kappa}e_{2,\kappa} & 0\\ 0 & e_{1,\kappa}^{-1}e_{2,\kappa}^{-1} \end{pmatrix}$.

Lemma. Let M_1 , M_2 , $\neq \pm I$, with eigenvalues (e_1, e_1^{-1}) et (e_2, e_2^{-1}) . Suppose that the eigenvectors related to (M_1, e_1) et (M_2, e_2^{-1}) are independent. There exists a unique matrix $M = P^{-1}M_1M_2P$ whose LDU decomposition satisfies $D = diag(e_{1,\kappa}e_{2,\kappa}, e_{1,\kappa}^{-1}e_{2,\kappa}^{-1})$.

(P is obtained by using the "mixed" basis induced by the hypothesis.)

In trace coordinates, we recover the formulas of M. Klimes:

$$\Phi_{\kappa} = \varphi_{\kappa}^*: \ \chi_V(\mathbf{a}) \to \chi_{VI}(\mathbf{a}_{\kappa}) \text{ is given by}$$

$$\begin{cases} x_{1,\kappa} = \mathbf{e}_0^{-1}\kappa x_1 + \kappa^{-1}x_2 \\ x_{2,\kappa} = -\mathbf{e}_0^{-1}\kappa x_1 x_3 + \kappa^{-1}x_1 - \mathbf{e}_0^{-1}\kappa x_2 + \mathbf{a}_3\kappa + \mathbf{a}_4 \mathbf{e}_0^{-1}\kappa \\ x_{3,\kappa} = x_3. \end{cases}$$

 Φ_{κ} is invertible outside the line $L_{e_{1,\kappa},e_{2,\kappa}}$ and Φ_{κ}^{-1} is given by

$$\begin{cases} x_1 = (-\kappa x_{1,\kappa} - e_0 \kappa^{-1} x_{2,\kappa} + a_3 e_0 + a_4) (x_{3,\kappa} - c_{e_{1,\kappa},e_{2,\kappa}})^{-1} \\ x_2 = (\kappa x_{1,\kappa} x_{3,\kappa} - e_0 \kappa^{-1} x_{1,\kappa} + \kappa x_{2,\kappa} - a_3 \kappa^2 - a_4 \kappa^2 e_0^{-1}) (x_{3,\kappa} - c_{e_{1,\kappa},e_{2,\kappa}})^{-1} \\ x_3 = x_{3,\kappa}. \end{cases}$$

We transfer the dynamics $\langle h_{i,j} \rangle$ of Painlevé VI on χ_V : $g_{i,j}(\kappa) := \Phi(\kappa)^{-1} \circ h_{i,j} \circ \Phi(\kappa)$. We obtain:

We transfer the dynamics $\langle h_{i,j} \rangle$ of Painlevé VI on χ_V : $g_{i,j}(\kappa) := \Phi(\kappa)^{-1} \circ h_{i,j} \circ \Phi(\kappa)$. We obtain:

• $g_{1,2}(\kappa)$ do not depend on κ and coincide with the tame dynamics on χ_V .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We transfer the dynamics $\langle h_{i,j} \rangle$ of Painlevé VI on χ_V : $g_{i,j}(\kappa) := \Phi(\kappa)^{-1} \circ h_{i,j} \circ \Phi(\kappa)$. We obtain:

- $g_{1,2}(\kappa)$ do not depend on κ and coincide with the tame dynamics on χ_V .
- $g_{2,3}(\kappa)$ is a rational dynamics:

$$\begin{cases} X_1 = \frac{e_0}{x_2} \\ X_2 = x_2 + \frac{\kappa^2}{x_2} - e_0^{-1}\kappa^2 x_1 \\ X_3 = -\kappa^2 x_2^2 x_3 + (e_0^{-2}\kappa^2 - \kappa^{-2})x_1 x_2 - 2e_0^{-1}x_2^2 + \\ + (e_0^{-1}b_2\kappa^{-2}b_1)x_2 - (e_0^{-1}\kappa^2 + e_0\kappa^{-2}) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We transfer the dynamics $\langle h_{i,j} \rangle$ of Painlevé VI on χ_V : $g_{i,j}(\kappa) := \Phi(\kappa)^{-1} \circ h_{i,j} \circ \Phi(\kappa)$. We obtain:

- $g_{1,2}(\kappa)$ do not depend on κ and coincide with the tame dynamics on χ_V .
- $g_{2,3}(\kappa)$ is a rational dynamics:

$$\begin{cases} X_1 = \frac{e_0}{x_2} \\ X_2 = x_2 + \frac{\kappa^2}{x_2} - e_0^{-1} \kappa^2 x_1 \\ X_3 = -\kappa^2 x_2^2 x_3 + (e_0^{-2} \kappa^2 - \kappa^{-2}) x_1 x_2 - 2e_0^{-1} x_2^2 + \\ + (e_0^{-1} b_2 \kappa^{-2} b_1) x_2 - (e_0^{-1} \kappa^2 + e_0 \kappa^{-2}) \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• $g_{3,1}(\kappa)$ is a rational dynamics, defined by: $g_{1,2} \circ g_{2,3}(\kappa) \circ g_{3,1}(\kappa) = id$.

We transfer the dynamics $\langle h_{i,j} \rangle$ of Painlevé VI on χ_V : $g_{i,j}(\kappa) := \Phi(\kappa)^{-1} \circ h_{i,j} \circ \Phi(\kappa)$. We obtain:

- $g_{1,2}(\kappa)$ do not depend on κ and coincide with the tame dynamics on χ_V .
- $g_{2,3}(\kappa)$ is a rational dynamics:

$$\begin{cases} X_1 = \frac{e_0}{x_2} \\ X_2 = x_2 + \frac{\kappa^2}{x_2} - e_0^{-1} \kappa^2 x_1 \\ X_3 = -\kappa^2 x_2^2 x_3 + (e_0^{-2} \kappa^2 - \kappa^{-2}) x_1 x_2 - 2e_0^{-1} x_2^2 + \\ + (e_0^{-1} b_2 \kappa^{-2} b_1) x_2 - (e_0^{-1} \kappa^2 + e_0 \kappa^{-2}) \end{cases}$$

• $g_{3,1}(\kappa)$ is a rational dynamics, defined by: $g_{1,2} \circ g_{2,3}(\kappa) \circ g_{3,1}(\kappa) = id$.

Remark. The family $t_{2,3}(\kappa)$ defined by $g_{2,3}(\kappa) = g_{2,3}(1) \circ t_{2,3}(\kappa)$ is multiplicative: $t_{2,3}(\kappa\kappa') = t_{2,3}(\kappa) \circ t_{2,3}(\kappa')$, and can be defined as the flow of a complete vector field.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• $\mathcal{C}_V(b) \simeq_{bir} \mathbb{C}^2$ by the restriction of $(x_1, x_2, x_3) \rightarrow (x_1, x_2)$ to $\mathcal{C}_V(b)$, because $x_3 = r(x_1, x_2)$, with r rational.

• $C_V(b) \simeq_{bir} \mathbb{C}^2$ by the restriction of $(x_1, x_2, x_3) \rightarrow (x_1, x_2)$ to $C_V(b)$, because $x_3 = r(x_1, x_2)$, with r rational.

• $(C_V(b), \omega_V(b)) \simeq_{bir,symp} (\mathbb{C}^2, \omega_{log}), \ \omega_{log} = \frac{du}{u} \land \frac{dv}{v}: \ (y_1, z_1) = (x_1, x_1x_2 - e_0)$ is a birational symplectic isomorphism (a log-canonical system of coordinates).

• $C_V(b) \simeq_{bir} \mathbb{C}^2$ by the restriction of $(x_1, x_2, x_3) \rightarrow (x_1, x_2)$ to $C_V(b)$, because $x_3 = r(x_1, x_2)$, with r rational.

• $(C_V(b), \omega_V(b)) \simeq_{bir,symp} (\mathbb{C}^2, \omega_{log}), \omega_{log} = \frac{du}{u} \wedge \frac{dv}{v}$: $(y_1, z_1) = (x_1, x_1x_2 - e_0)$ is a birational symplectic isomorphism (a log-canonical system of coordinates).

• Two consecutive elements of the following sequence (y_i, z_i) also define a log-canonical system of coordinates:

..., $z_0 = -x_2^2 - x_1x_2x_3 + b_2x_2 - e_0$, $y_1 = x_1$, $z_1 = x_1x_2 - e_0$, $y_2 = x_2$, $z_2 = -x_1x_2 - x_2^2x_3 + b_1x_2 - e_0$,...

• $C_V(b) \simeq_{bir} \mathbb{C}^2$ by the restriction of $(x_1, x_2, x_3) \rightarrow (x_1, x_2)$ to $C_V(b)$, because $x_3 = r(x_1, x_2)$, with r rational.

• $(C_V(b), \omega_V(b)) \simeq_{bir,symp} (\mathbb{C}^2, \omega_{log}), \omega_{log} = \frac{du}{u} \wedge \frac{dv}{v}$: $(y_1, z_1) = (x_1, x_1x_2 - e_0)$ is a birational symplectic isomorphism (a log-canonical system of coordinates).

• Two consecutive elements of the following sequence (y_i, z_i) also define a log-canonical system of coordinates:

 $\cdots, \ z_0 = -x_2^2 - x_1 x_2 x_3 + b_2 x_2 - e_0, \ y_1 = x_1, \ z_1 = x_1 x_2 - e_0, \ y_2 = x_2, \\ z_2 = -x_1 x_2 - x_2^2 x_3 + b_1 x_2 - e_0, \cdots$

The dots terms are obtained by using the following "exchange" relations: $y_k y_{k+1} = P(z_k)$ with $P(t) = t + e_0$ $z_{2k} z_{2k+1} = Q_1(y_{2k+1})$ with $Q_1(t) = (t - e_0 e_4^{-1})(t - e_0 e_4)(t - e_3^{-1})(t - e_3)$ $z_{2k+1} z_{2k+2} = Q_2(y_{2k+2})$ with $Q_2(t) = (t - e_0 e_3^{-1})(t - e_0 e_3)(t - e_4^{-1})(t - e_4)$.

・ロト・西ト・モン・モー シック

• $C_V(b) \simeq_{bir} \mathbb{C}^2$ by the restriction of $(x_1, x_2, x_3) \rightarrow (x_1, x_2)$ to $C_V(b)$, because $x_3 = r(x_1, x_2)$, with r rational.

• $(C_V(b), \omega_V(b)) \simeq_{bir,symp} (\mathbb{C}^2, \omega_{log}), \omega_{log} = \frac{du}{u} \wedge \frac{dv}{v}$: $(y_1, z_1) = (x_1, x_1x_2 - e_0)$ is a birational symplectic isomorphism (a log-canonical system of coordinates).

• Two consecutive elements of the following sequence (y_i, z_i) also define a log-canonical system of coordinates:

 $\cdots, \ z_0 = -x_2^2 - x_1 x_2 x_3 + b_2 x_2 - e_0, \ y_1 = x_1, \ z_1 = x_1 x_2 - e_0, \ y_2 = x_2, \\ z_2 = -x_1 x_2 - x_2^2 x_3 + b_1 x_2 - e_0, \cdots$

The dots terms are obtained by using the following "exchange" relations: $y_k y_{k+1} = P(z_k)$ with $P(t) = t + e_0$ $z_{2k} z_{2k+1} = Q_1(y_{2k+1})$ with $Q_1(t) = (t - e_0 e_4^{-1})(t - e_0 e_4)(t - e_3^{-1})(t - e_3)$ $z_{2k+1} z_{2k+2} = Q_2(y_{2k+2})$ with $Q_2(t) = (t - e_0 e_3^{-1})(t - e_0 e_3)(t - e_4^{-1})(t - e_4)$.

Remark. $z_1 z_2 z_3 = 0$ is the equation of 12 lines in $C_V(b)$.

The Laurent property.

The Laurent property.

Definition.

- 1. A rational map $r \in \mathbb{C}(x, y)$ satifies the Laurent property if its polar set is included in xy = 0.
- 2. A birational map r satifies the Laurent property if both r and r^{-1} have the Laurent property.
- 3. Let X be an affine surface, and let (y_n, z_n) be a sequence of algebraic morphisms from X to \mathbb{C}^2 . This sequence satisfies the Laurent property, if given an element (y_n, z_n) , any other regular function y_m (or z_m) = $r(x_n, y_n)$ satisfies the Laurent property.

The Laurent property is not stable by composition or inversion. It turns out that in a cluster sequence some simplications arise from the exchange relations and give this property:

The Laurent property.

Definition.

- 1. A rational map $r \in \mathbb{C}(x, y)$ satifies the Laurent property if its polar set is included in xy = 0.
- 2. A birational map r satifies the Laurent property if both r and r^{-1} have the Laurent property.
- 3. Let X be an affine surface, and let (y_n, z_n) be a sequence of algebraic morphisms from X to \mathbb{C}^2 . This sequence satisfies the Laurent property, if given an element (y_n, z_n) , any other regular function y_m (or z_m) = $r(x_n, y_n)$ satisfies the Laurent property.

The Laurent property is not stable by composition or inversion. It turns out that in a cluster sequence some simplications arise from the exchange relations and give this property:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition. The log-canonical sequence satisfies the Laurent property.

$$Cr = Bir(\mathbb{C}^2) = Bir(P^1 \times P^1).$$

 $Cr = Bir(\mathbb{C}^2) = Bir(P^1 \times P^1).$ $Symp = Bir(P^1 \times P^1, \omega_{log}).$ First studies: A. Usnich (2006), J. Blanc (2013). Some subgroups of Symp:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $Cr = Bir(\mathbb{C}^2) = Bir(P^1 \times P^1).$ $Symp = Bir(P^1 \times P^1, \omega_{log}).$ First studies: A. Usnich (2006), J. Blanc (2013). Some subgroups of *Symp*:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $T_1 = \{(u, v) \rightarrow (u, \mu v)\}, T_2 = \{(u, v) \rightarrow (\lambda u, v)\}, T = T_1 \times T_2 : a$ "Cartan" subgroup (an algebraic maximal subgroup)

 $Cr = Bir(\mathbb{C}^2) = Bir(P^1 \times P^1).$ $Symp = Bir(P^1 \times P^1, \omega_{log}).$ First studies: A. Usnich (2006), J. Blanc (2013). Some subgroups of Symp:

• $T_1 = \{(u, v) \rightarrow (u, \mu v)\}, T_2 = \{(u, v) \rightarrow (\lambda u, v)\}, T = T_1 \times T_2 : a$ "Cartan" subgroup (an algebraic maximal subgroup)

• $B_1 = \{(u, v) \rightarrow (\lambda u, r(u)v), \lambda \in \mathbb{C}^*, r \in \mathbb{C}(u)^*\}$: symplectic de Jonquières maps : a "Borel" subgroup i.e. a maximal solvable (non algebraic!) subgroup which contains T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 B_2 : idem.

 B_1, B_2 generates Symp.

 $Cr = Bir(\mathbb{C}^2) = Bir(P^1 \times P^1).$ $Symp = Bir(P^1 \times P^1, \omega_{log}).$ First studies: A. Usnich (2006), J. Blanc (2013). Some subgroups of Symp:

• $T_1 = \{(u, v) \rightarrow (u, \mu v)\}, T_2 = \{(u, v) \rightarrow (\lambda u, v)\}, T = T_1 \times T_2 : a$ "Cartan" subgroup (an algebraic maximal subgroup)

• $B_1 = \{(u, v) \rightarrow (\lambda u, r(u)v), \lambda \in \mathbb{C}^*, r \in \mathbb{C}(u)^*\}$: symplectic de Jonquières maps : a "Borel" subgroup i.e. a maximal solvable (non algebraic!) subgroup which contains T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 B_2 : idem.

 B_1, B_2 generates Symp.

• $U_1 = \{b \in B_1, \lambda = 1, r(0) = 1\}$: subgroup of B_1 of the "unipotent" elements: U_1 is abelian, $[B_1, B_1] \subset U_1$.

 $Cr = Bir(\mathbb{C}^2) = Bir(P^1 \times P^1).$ $Symp = Bir(P^1 \times P^1, \omega_{log}).$ First studies: A. Usnich (2006), J. Blanc (2013). Some subgroups of Symp:

• $T_1 = \{(u, v) \rightarrow (u, \mu v)\}, T_2 = \{(u, v) \rightarrow (\lambda u, v)\}, T = T_1 \times T_2 : a$ "Cartan" subgroup (an algebraic maximal subgroup)

• $B_1 = \{(u, v) \rightarrow (\lambda u, r(u)v), \lambda \in \mathbb{C}^*, r \in \mathbb{C}(u)^*\}$: symplectic de Jonquières maps : a "Borel" subgroup i.e. a maximal solvable (non algebraic!) subgroup which contains T.

 B_2 : idem.

 B_1, B_2 generates Symp.

• $U_1 = \{b \in B_1, \lambda = 1, r(0) = 1\}$: subgroup of B_1 of the "unipotent" elements: U_1 is abelian, $[B_1, B_1] \subset U_1$.

• $B_1^{\natural} = \langle U_1, T_1 \rangle$. B_1^{\natural} is also a meta-abelian group which contains U_1 , but it contains only a maximal torus of rank 1. B_1^{\natural} is a Borel of rank 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• We consider a log-canonical triple (z, y, z').

The pull-back of T_1 by (z, y) is equal the pull-back of T_2 by (y, z') and defines the subgroup T_y of $Symp(\mathcal{C}_V(b))$: the exponential torus related to y.

• We consider a log-canonical triple (z, y, z'). The pull-back of T_1 by (z, y) is equal the pull-back of T_2 by (y, z') and defines the subgroup T_y of $Symp(\mathcal{C}_V(b))$: the exponential torus related to y.

• We consider a log-canonical triple (y, z, y'). The pull-back of B_2 (B_2^{\natural}, U_2) by (y, z) is equal to the pull-back of B_1 (B_1^{\natural}, U_1) by (z, y') and defines the subgroup B_z (B_z^{\natural}, U_z) of $Symp(\mathcal{C}_V(b))$: the Borel subgroup related to z.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We consider a log-canonical triple (z, y, z'). The pull-back of T_1 by (z, y) is equal the pull-back of T_2 by (y, z') and defines the subgroup T_y of $Symp(\mathcal{C}_V(b))$: the exponential torus related to y.

• We consider a log-canonical triple (y, z, y'). The pull-back of B_2 (B_2^{\natural}, U_2) by (y, z) is equal to the pull-back of B_1 (B_1^{\natural}, U_1) by (z, y') and defines the subgroup B_z (B_z^{\natural}, U_z) of $Symp(\mathcal{C}_V(b))$: the Borel subgroup related to z.

• There exists a unique unipotent element s_z in U_z such that $s_z T_y s_z^{-1} = T_{y'}$. We call it the Stokes operator related to z. s_z : $(y, z) \rightarrow (y(1 + e_0^{-1}z), z)$. is the canonical Stokes operator related to z.

• We consider a log-canonical triple (z, y, z'). The pull-back of T_1 by (z, y) is equal the pull-back of T_2 by (y, z') and defines the subgroup T_y of $Symp(\mathcal{C}_V(b))$: the exponential torus related to y.

• We consider a log-canonical triple (y, z, y'). The pull-back of B_2 (B_2^{\natural}, U_2) by (y, z) is equal to the pull-back of B_1 (B_1^{\natural}, U_1) by (z, y') and defines the subgroup B_z (B_z^{\natural}, U_z) of $Symp(\mathcal{C}_V(b))$: the Borel subgroup related to z.

• There exists a unique unipotent element s_z in U_z such that $s_z T_y s_z^{-1} = T_{y'}$. We call it the Stokes operator related to z. s_z : $(y, z) \rightarrow (y(1 + e_0^{-1}z), z)$. is the canonical Stokes operator related to z.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition. The canonical dynamics $Dyn(\mathcal{C}_V(b))$ is the subgroup of $Symp(\mathcal{C}_V(b))$ generated by: $g: (y_2, z_2) \rightarrow (y_0, z_0)$ (the canonical tame dynamics), s_{z_1} and s_{z_2} (the canonical Stokes operators), T_{y_1} (the canonical exponential torus).

• We consider a log-canonical triple (z, y, z'). The pull-back of T_1 by (z, y) is equal the pull-back of T_2 by (y, z') and defines the subgroup T_y of $Symp(\mathcal{C}_V(b))$: the exponential torus related to y.

• We consider a log-canonical triple (y, z, y'). The pull-back of B_2 (B_2^{\natural}, U_2) by (y, z) is equal to the pull-back of B_1 (B_1^{\natural}, U_1) by (z, y') and defines the subgroup B_z (B_z^{\natural}, U_z) of $Symp(\mathcal{C}_V(b))$: the Borel subgroup related to z.

• There exists a unique unipotent element s_z in U_z such that $s_z T_y s_z^{-1} = T_{y'}$. We call it the Stokes operator related to z. s_z : $(y, z) \rightarrow (y(1 + e_0^{-1}z), z)$. is the canonical Stokes operator related to z.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition. The canonical dynamics $Dyn(\mathcal{C}_V(b))$ is the subgroup of $Symp(\mathcal{C}_V(b))$ generated by: $g: (y_2, z_2) \rightarrow (y_0, z_0)$ (the canonical tame dynamics), s_{z_1} and s_{z_2} (the canonical Stokes operators), T_{y_1} (the canonical exponential torus).

Remark. $Dyn(\mathcal{C}_V(b))$ contains all the T_y and all the s_z .

Comparison between the confluent and the canonical dynamics
(ロ)、(型)、(E)、(E)、 E) の(()

Recall that $g_{2,3}(\kappa) = g_{2,3}(1) \circ t_{2,3}(\kappa)$.

Recall that $g_{2,3}(\kappa)=g_{2,3}(1)\circ t_{2,3}(\kappa).$

- $t_{2,3}(\kappa) \in \mathcal{T}_{y_2}$ but $g_{2,3}(1)$ is not a canonical element. Conf $\not\subset$ Dyn.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recall that $g_{2,3}(\kappa) = g_{2,3}(1) \circ t_{2,3}(\kappa)$.

- $t_{2,3}(\kappa) \in T_{y_2}$ but $g_{2,3}(1)$ is not a canonical element. Conf $\not\subset$ Dyn.

- $s_1 \notin Conf(\mathcal{C}_V(b))$: indeed the restriction of s_1 on the lines $z_1 = 0$ are translations, and this not the case for $g_{i,i}(\kappa)$. Dyn $\not\subset Conf$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that $g_{2,3}(\kappa) = g_{2,3}(1) \circ t_{2,3}(\kappa)$.

- $t_{2,3}(\kappa) \in T_{y_2}$ but $g_{2,3}(1)$ is not a canonical element. Conf $\not\subset$ Dyn.

- $s_1 \notin Conf(\mathcal{C}_V(b))$: indeed the restriction of s_1 on the lines $z_1 = 0$ are translations, and this not the case for $g_{i,i}(\kappa)$. $Dyn \not\subset Conf$.

Problem: $g_{2,3}(1)$ is not unipotent. We need to introduce a (unique) decomposition of $g_{2,3}(1) = u_{z_1} \circ b_{y_2}$, u_{z_1} in U_{z_1} , b_{y_2} in B_{y_2} : $(z_1, y_2) \rightarrow (z_1 y_2^{-2}, y_2)$.

Recall that $g_{2,3}(\kappa) = g_{2,3}(1) \circ t_{2,3}(\kappa)$.

- $t_{2,3}(\kappa) \in T_{y_2}$ but $g_{2,3}(1)$ is not a canonical element. Conf $\not\subset$ Dyn.

- $s_1 \notin Conf(\mathcal{C}_V(b))$: indeed the restriction of s_1 on the lines $z_1 = 0$ are translations, and this not the case for $g_{i,j}(\kappa)$. Dyn $\not\subset$ Conf.

Problem: $g_{2,3}(1)$ is not unipotent. We need to introduce a (unique) decomposition of $g_{2,3}(1) = u_{z_1} \circ b_{y_2}$, u_{z_1} in U_{z_1} , b_{y_2} in B_{y_2} : $(z_1, y_2) \rightarrow (z_1 y_2^{-2}, y_2)$.

If we extend both *Conf* and *Dyn* by this element b_{γ_2} , $Conf^{\sharp} = Dyn^{\sharp}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

Following M. Klimes, around an "irregular" singular point (of saddle node type) of the non linear foliation \mathcal{P}_V , by using formal normal forms (Yoshida, Bittman) and their sectoral summations, one can define a pseudo group generated by:

- a non linear Stokes operator,
- a non linear formal exponential torus, and sectoral exponential tori,
- a non linear local formal and geometric monodromy.

Following M. Klimes, around an "irregular" singular point (of saddle node type) of the non linear foliation \mathcal{P}_V , by using formal normal forms (Yoshida, Bittman) and their sectoral summations, one can define a pseudo group generated by:

- a non linear Stokes operator,
- a non linear formal exponential torus, and sectoral exponential tori,
- a non linear local formal and geometric monodromy.

Theorem [M. Klimes] Through RH_V this dynamics coincide with the canonical dynamics $Dyn(C_V(b))$.

Following M. Klimes, around an "irregular" singular point (of saddle node type) of the non linear foliation \mathcal{P}_V , by using formal normal forms (Yoshida, Bittman) and their sectoral summations, one can define a pseudo group generated by:

- a non linear Stokes operator,
- a non linear formal exponential torus, and sectoral exponential tori,
- a non linear local formal and geometric monodromy.

Theorem [M. Klimes] Through RH_V this dynamics coincide with the canonical dynamics $Dyn(\mathcal{C}_V(b))$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(This was conjectured by J.P. Ramis in 2010).

▲□▶▲舂▶▲≧▶▲≧▶ ≧ の�?

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

We conjecture that:

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

We conjecture that:

- in any χ_J , J = VI, V, ..., the lines are a reducibility locus of some path in the corresponding groupoid;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

We conjecture that:

- in any χ_J , J = VI, V, ..., the lines are a reducibility locus of some path in the corresponding groupoid;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We already know that for every J there exists canonical cluster sequences which induces a canonical dynamics $Dyn(\chi_J)$. We conjecture that the wild dynamics coincide with these canonical dynamics;

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

We conjecture that:

- in any χ_J , J = VI, V, ..., the lines are a reducibility locus of some path in the corresponding groupoid;

- We already know that for every J there exists canonical cluster sequences which induces a canonical dynamics $Dyn(\chi_J)$. We conjecture that the wild dynamics coincide with these canonical dynamics;

- there exists a diagram of families of confluent birational symplectic morphims (similar to the one of Ohyama-Okumura), defining confluent dynamics and induced by a diagram of confluence between fundamental groupoids;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

We conjecture that:

- in any χ_J , J = VI, V, ..., the lines are a reducibility locus of some path in the corresponding groupoid;

- We already know that for every J there exists canonical cluster sequences which induces a canonical dynamics $Dyn(\chi_J)$. We conjecture that the wild dynamics coincide with these canonical dynamics;

- there exists a diagram of families of confluent birational symplectic morphims (similar to the one of Ohyama-Okumura), defining confluent dynamics and induced by a diagram of confluence between fundamental groupoids;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- all the morphims RH_J and Tr_J are symplectic morphisms;

The tame dynamics on χ_V can be extended to a rational symplectic dynamics by using birational confluent morphisms.

There exists on $C_V(b)$ a canonical symplectic dynamics which coincide with the wild dynamics.

We conjecture that:

- in any χ_J , J = VI, V, ..., the lines are a reducibility locus of some path in the corresponding groupoid;

- We already know that for every J there exists canonical cluster sequences which induces a canonical dynamics $Dyn(\chi_J)$. We conjecture that the wild dynamics coincide with these canonical dynamics;

- there exists a diagram of families of confluent birational symplectic morphims (similar to the one of Ohyama-Okumura), defining confluent dynamics and induced by a diagram of confluence between fundamental groupoids;

- all the morphims RH_J and Tr_J are symplectic morphisms;

- for generic parameters, the Malgrange groupoid of the Painlevé foliations is maximal.

Thank you for your attention.

HAPPY NEW YEAR!

・ロト・日本・ヨト・ヨー うへの