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2) Given two vector fields, are they conjugated?
Goal:

Give an analytic classification under the action of the germs of analytic diffeomorphisms in the
neighborhood of a singular point, by exhibiting a complete system of invariants
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: . : : A :
- Study of elementary singularities according to the ratio oo = /\—1 of eigenvalues
2

Arnold, Brjuno, Ecalle, Martinet, Ramis..

In dimension three: Panazzolo (over R) and Mcquillan/Panazzolo (over C)

There is still a lot of work to do for classifying the elementary singularities in dimension three

Specially in the so-called doubly resonant case (which cannot appear for elementary singular-
ities in (C?,0)).

The work of Bittmann concerns the classification of a doubly resonant germ of vector field
appearing in the compactification of (/) - Painlevé's first equation
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We consider the first Painlevé’s equation

d?z,

T (t)=621(t)%>+t

Painlevé property: The mobile singularities of such equation are poles (there is no ramification
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What about the fixed singularity at (t =00)?
There are numerous works on the subject:
asymptotic formulas (Boutroux)

Stokes phenomena and quasi-linear connecting formulas (Kapaev, Kitaev, Costin,.)
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Denote by z; 1 (t) the tri-tronque solution corresponding to the sector

v

Y, = {t e C™: =< arg(t) < 9%}

and by z; _(t) the one corresponding to the sector

Y= {t e Cm<arg(t) < i;}

Theorem (Kapaev 2004)

™ . et /8 _
For arg(t) € [ﬂ,%] and |t| — oo, if we note 042782 11/83=1/8 then

Zl,_(t) — Zl,+(t) — Oét1/8€Xp(—%211/431/4(67“(/575)5/4)(1 + O(t_3/8))




We consider the differential system

dz

i = ()

dz

i 621(t)% +1

and the associated autonomous vector field in C?



We consider the differential system

d
o = =)

dt

and the associated autonomous vector field in C?

o 0 ;

92— 6z (t)2+t

622



The (weighted) compactification is done throught the so-called Boutroux coordinates



The (weighted) compactification is done throught the so-called Boutroux coordinates

t = g7/
{ 21 = ulx_2/5
Zo = u2x_3/5

which gives the vector field



The (weighted) compactification is done throught the so-called Boutroux coordinates

p

= /5
{ 21 = ulx_2/5
Zo = uzx_3/5

which gives the vector field

0 4 2 0 24 4 3 0
2 U _x “ v _4x 2 F 9 v
X B < U9 + xul) +< 5 ui s —+ 5xuz)au2

Finally, an affine coordinate change (x,uy,us) — (z, y1, y2) gives



The (weighted) compactification is done throught the so-called Boutroux coordinates

p

= /5
{ 21 = u1$_2/5
Zo = uzx_3/5

\

which gives the vector field

0 4 2 0 24 4 3 0
2 o e 2 9 _
o ( v Uy + — xul) +< : ui 5+5:ch)

Finally, an affine coordinate change (x,uy,us) — (z, y1, y2) gives

%) 1 1 A 48 2 \*\ o
_ 2 Y = _ 2 T _ = __
L=z 6x+< TAVLF O GER T2 gaT 25>\( s 5>\y2> )

A _|_lx _|_Ax _5_)\2 2_ 24 _ 2 i i
RTGERT LN 995" ~ 5\ 1T 5a P



The (weighted) compactification is done throught the so-called Boutroux coordinates
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= /5
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which gives the vector field
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where y = (11, 12) € (C?%,0), A€ C*, Fy, Fo € C{x, y} have order at least 2.
We say that Y is a 2 — resonant diagonal saddle node

Initially, we consider the formal fibered classification, i.e. the orbits under action of the group

Diffy(C?, 0;1d) = {&: (2, y) = (2, y + $(x,y)) : ord(9) >2}
Theorem: (Poincaré-Dulac)

Each 2 — resonant saddle node is Diffgp,(C3, 0; Id)-conjugated to a vector field of the form

) 0
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where v = Y115 and x are the so-called resonant monomials and g1, go are formal series.
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Let YV € ST\Tdiag,nd. Then, there exists an unique dc ﬁﬁﬁb(@3, 0;Id) and a unique 5 — uple
o \c(C*

e (ay1,az) € C? such that a; +as=res(Y) ¢ Q<o
o (c1,c2) € (vC[[v]])?

such that
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OYP ' =Y, orm=2 e + (= A+ a1x +cl(v))y18y1 + (A + agx + CQ(’U))ygayQ

In other words, we can identify the orbit space ST\Tdiag,nd/Iji\ffﬁb(@‘g, 0;Id) to the set
Pﬁb — {(>\7 ai, a2, Cq, 02) S (D* X ((D2 \ A) X (UG[[U]])Q}

where A ={(a1,a2) € C* a1+ a2 ¢ Q<o}.
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Strictly non-degenerated

We say that Y € ST\Idiag,nd is strictly non-degenerated if
Re (res(Y)) >0

We denote by SNgiag, 0 the set of analytic 2-resonant saddle-nodes which are div-integrables and
strictly non-degenerated

Remark

If Y € SNaiag nd is transversally symplectic then it is div-integrable and strictly non-degenerate.
In particular, for (Fr) we have Y; € SNgiag 0.
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Sectorial normalisation

Theorem

Let Y € SNyiag,0 and S, S_ be two sectors as in the picture

AR,
[}

Then, there exists a unique pair (®, ®_) of sectorial diffomorphisms, fibered and tangent to
identity such that ®_(Y) = Y,orm on S+ x (C?,0).

Moreover, ® is weakly 1-summable and Y., is analytic in (C?,0).

Stokes diffeomorphisms: &) =d o CID:I\Sk O =, 0 @:1|S_k
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1-Summability

Theorem

Let ¥ € SNgiag,0 and (®y, P_») be its Stokes diffeomorphisms.

Then, @, has the identity as asymptotic 1-Gevrey expansion on S, x (C?,0)

VS’ C Sy closed sector,¥ K C (C?,0) compact set, 3 A, B >0 such that

rm,\(x,y)—lduwexp(—%) (z,y) €S x K

Corollary

The sectorial normalization & € ]j\ifffib(@g, 0;1d) is 1-summable, with Stokes directions arg(£\).

Moreover, (®,, ®_) are the 1-sums of .



Analytic classification



Analytic classification

Let us choose an analytic normal form Y;,orm € SNaiag,0 and denote:



Analytic classification
Let us choose an analytic normal form Y,orm € SNaiag,0 and denote:

® [Yiorm) the set of germs in SNyjae o which have Y, o, as formal normal form



Analytic classification
Let us choose an analytic normal form Y,orm € SNaiag,0 and denote:

® [Yiorm) the set of germs in SNyjae o which have Y, o, as formal normal form

o A (YVaorm) the set or sectorial isotropies of Yo on Sy x (€2 0) which are tangent to
identity and which admit Id as 1-gevrey asymptotic expansion



Analytic classification
Let us choose an analytic normal form Y,orm € SNaiag,0 and denote:

® [Yiorm) the set of germs in SNyjae o which have Y, o, as formal normal form

o A (YVaorm) the set or sectorial isotropies of Yo on Sy x (€2 0) which are tangent to
identity and which admit Id as 1-gevrey asymptotic expansion

Theorem



Analytic classification
Let us choose an analytic normal form Y,orm € SNaiag,0 and denote:

® [Yiorm) the set of germs in SNyjae o which have Y, o, as formal normal form

o A (YVaorm) the set or sectorial isotropies of Yo on Sy x (€2 0) which are tangent to
identity and which admit Id as 1-gevrey asymptotic expansion

Theorem

The following application is a bijection:



Analytic classification
Let us choose an analytic normal form Y,orm € SNaiag,0 and denote:

® [Yiorm) the set of germs in SNyjae o which have Y, o, as formal normal form

o A (YVaorm) the set or sectorial isotropies of Yo on Sy x (€2 0) which are tangent to
identity and which admit Id as 1-gevrey asymptotic expansion

Theorem

The following application is a bijection:

D/norm] /Diffﬁb(C3,0;Id) — (A#—/\(}/norm): A—A(}/norm))
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Let us choose an analytic normal form Y,orm € SNaiag,0 and denote:

® [Yiorm) the set of germs in SNyjae o which have Y, o, as formal normal form

o A (YVaorm) the set or sectorial isotropies of Yo on Sy x (€2 0) which are tangent to
identity and which admit Id as 1-gevrey asymptotic expansion

Theorem

The following application is a bijection:

D/norm] /Diffﬁb(C3,0;Id) — (A#—/\(}/norm): A—A(}/norm))

Y (@5, ®_)
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Leaf space

The normal form

0 0
Yoorm=2 5 (=X + a1z + c(v))ylﬁ—y1 + (A + asz + c(v))yga—y2

has two functionally independent sectorial first integrals

—A m m] - _
hl,i,\(aj, Y) =11 exp( - I C (yl?ﬂa)j Og(ZE) n C(yaljyg) )ZC -

-\ m m] ~ o
hz’j:A([E, y) = 1Yo exp( . 4+ C (3/13/23j og(:c) 4 c(y;yg) )ZE )

and we can consider the sectorial diffeomorphisms to the leaf space I )
Hj:/\: Sj:,\ X (@2, 0) — S:H\ X F:H\

(ZU, y) — (567 hl,i)\(ma y)? h2,:|:>\($7 y))



The leaf space for ¢ = 0.
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Stokes diffeomorphisms as maps on the leaf space

Dy
Y;lorm on S)x X ((DQ; O) YI’IOI"D’I on SA X (@2
HAl l H,
3, W 9
ZCQ—OHSAXF,\ — ;U2—OHS,\><F>\

1945 ox

where

n=2 n=2

Uy(h1, ho) = <h1 + Z Uy a.n(hihe) hT, ho+ Z Uy a.n(hihe) hé‘)

where each V; , ,, is an entire function satisfying an appropriate growth condition.

By using Kapaev'04, we can compute the first coefficients

im/8
Wy 2.0(0)=iW; _x 0(0) 26723/831/8




More recent work of Martin Klimes on the local analytic classification in families



More recent work of Martin Klimes on the local analytic classification in families

Eg. Confluence phenomena in the Painlevé hyerarchy



More recent work of Martin Klimes on the local analytic classification in families

Eg. Confluence phenomena in the Painlevé hyerarchy



More recent work of Martin Klimes on the local analytic classification in families

Eg. Confluence phenomena in the Painlevé hyerarchy



More recent work of Martin Klimes on the local analytic classification in families

Eg. Confluence phenomena in the Painlevé hyerarchy

Thanks!



