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Goal:

Give an analytic classification under the action of the germs of analytic diffeomorphisms in the
neighborhood of a singular point, by exhibiting a complete system of invariants
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of eigenvalues

Arnold, Brjuno, Ecalle, Martinet, Ramis..

In dimension three: Panazzolo (over R) and Mcquillan/Panazzolo (over C)

There is still a lot of work to do for classifying the elementary singularities in dimension three

Specially in the so-called doubly resonant case (which cannot appear for elementary singular-
ities in (C2; 0)).

The work of Bittmann concerns the classification of a doubly resonant germ of vector field
appearing in the compactification of (PI) - Painlevé's first equation
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What about the fixed singularity at (t=1)?

There are numerous works on the subject:

asymptotic formulas (Boutroux)

Stokes phenomena and quasi-linear connecting formulas (Kapaev, Kitaev, Costin,.)
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where v= y1y2 and x are the so-called resonant monomials and g1; g2 are formal series.
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In other words, we can identify the orbit space SNb diag;nd/Diffc fib(C3; 0; Id) to the set
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Strictly non-degenerated

We say that Y 2SNb diag;nd is strictly non-degenerated if

Re (res(Y ))> 0

We denote by SNdiag;0 the set of analytic 2-resonant saddle-nodes which are div-integrables and
strictly non-degenerated

Remark

If Y 2SNdiag;nd is transversally symplectic then it is div-integrable and strictly non-degenerate.
In particular, for (PI) we have YI 2SNdiag;0.
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Sectorial normalisation

Theorem

Let Y 2SNdiag;0 and S+; S¡ be two sectors as in the picture

Then, there exists a unique pair (�+;�¡) of sectorial diffomorphisms, fibered and tangent to
identity such that ��(Y )=Ynorm on S�� (C2; 0).

Moreover, �̂ is weakly 1-summable and Ynorm is analytic in (C3; 0).

Stokes diffeomorphisms: ��=�+ ��¡¡1jS� �¡�=�+ ��¡¡1jS¡�
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1-Summability

Theorem

Let Y 2SNdiag;0 and (��;�¡�) be its Stokes diffeomorphisms.

Then, ��� has the identity as asymptotic 1-Gevrey expansion on S��� (C2; 0)

8S 0�S�� closed sector,8 K � (C2; 0) compact set, 9 A;B > 0 such that

k���(x; y)¡ Idk6A exp
�
¡ B
jxj

�
(x; y)2S 0�K

Corollary

The sectorial normalization �̂2Diffc fib(C3;0; Id) is 1-summable, with Stokes directions arg(��).

Moreover, (�+;�¡) are the 1-sums of �̂.
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� [Ynorm] the set of germs in SNdiag;0 which have Ynorm as formal normal form

� ���(Ynorm) the set or sectorial isotropies of Ynorm on S�� (C2; 0) which are tangent to
identity and which admit Id as 1-gevrey asymptotic expansion

Theorem

The following application is a bijection:

[Ynorm]/Difffib(C3;0;Id) ¡! (�+�(Ynorm);�¡�(Ynorm))

Y 7¡! (��;�¡�)
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H��:S��� (C2; 0)¡!S���¡��

(x; y) 7¡! (x; h1;��(x; y); h2;��(x; y))
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where

	�(h1; h2)=
 
h1+

X
n>2

	1;�;n(h1h2)h1n; h2+
X
n>2

	2;�;n(h1h2)h2n
!

where each 	i;�;n is an entire function satisfying an appropriate growth condition.

By using Kapaev'04, we can compute the first coefficients

	2;�;0(0)= i	1;¡�;0(0)=
ei�/8

�
p 23/831/8
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Thanks!


