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Motivation and goals

Heun accessory parameters are conjecturally related to quasiclassical limit of
Virasoro conformal blocks [Zamolodchikov, ’86]

Recently, Heun connection problem has also been conjecturally solved in terms of
quasiclassical conformal blocks [Bonelli, Iossa, Panea, Tanzini, ’21]

We want to understand how perturbative expansions following from this solution can be
computed without CFT
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Hypergeometric equation

Consider ψ′′ (z) = V (z)ψ (z), with

V (z) =
θ2
0 − 1

4

z2 +
θ2
1 − 1

4

(z − 1)2 +
θ2
∞ − θ2

0 − θ2
1 + 1

4

z (z − 1)

Three regular singularities → 2nd order poles of the quadratic differential V (z) dz2 on
the Riemann sphere:

V (z) ∼


θ20−

1
4

z2 as z → 0,
θ21−

1
4

(z−1)2
as z → 1,

θ2∞−
1
4

z2 as z →∞.

• two 2nd order poles at 0,∞ correspond to V (z) =
θ2− 1

4
z2 (Euler’s equation)



Frobenius solutions provide eigenbases of the operator of analytic continuation around
singular points z = 0, 1,∞. Their asymptotics is determined by the exponents θ0,1,∞ of
local monodromy, e.g.

ψ
[0]
± (z) = z

1
2∓θ0 (1− z)

1
2−θ1 2F1

[ 1
2 ∓ θ0 − θ1 − θ∞,

1
2 ∓ θ0 − θ1 + θ∞

1∓ 2θ0
; z

]
= z

1
2∓θ0 [1 + O (z)] as z → 0,

ψ
[1]
± (z) = (1− z)

1
2∓θ1 z

1
2−θ02F1

[ 1
2 − θ0 ∓ θ1 − θ∞,

1
2 − θ0 ∓ θ1 + θ∞

1∓ 2θ1
; 1− z

]
= (1− z)

1
2∓θ1 [1 + O (1− z)] as z → 1.

The exponents are encoded into the Riemann scheme
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1
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1
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1
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1
2 + θ0

1
2 + θ1

1
2 + θ∞

(normal form)

0 1 ∞

0 0 a
1− c c − a− b b

(canonical form)



Eigenbases of Frobenius solutions are related by

ψ[0]
ε (z) =

∑
ε′

Cεε′ψ
[1]
ε′ (z) , ε, ε′ = ±.

The elements Cεε′ of the connection matrix are expressed in terms of a single function

Cεε′ = C
(
εθ0, ε

′θ1, θ∞
)
,

which in the hypergeometric case is given by

C (θ0, θ1, θ∞) =
Γ (1− 2θ0) Γ (2θ1)

Γ
( 1

2 − θ0 + θ1 + θ∞
)

Γ
( 1

2 − θ0 + θ1 − θ∞
)



Heun equation

Potential:

V (z) =
θ2
0 − 1

4

z2 +
θ2
1 − 1

4

(z − 1)2 +
θ2
t − 1

4

(z − t)2 +
θ2
∞ − θ2

0 − θ2
1 − θ2

t + 1
2

z (z − 1)
+

(1− t) E
z (z − 1) (z − t)

• 4 regular singular points 0, 1, ∞, t ⇒ 4 exponents θk

• 1 accessory parameter E : not fixed by local monodromy

• we assume that |t| > 1



Space of monodromy data:

M =
{
M0,1,∞,t ∈ SL (2,C) : M∞MtM1M0 = 1,TrMk = −2 cos 2πθk

}/
∼

• dimM = 2; (E , t) can be seen as a pair of local coordinates onM

• another possibility is to use trace functions such as

TrM0M1 = 2 cos 2πσ, TrM1Mt = 2 cos 2πσ′



equation data: (E , t) monodromy data: σ’s

direct problem

inverse problem

• any choice of a coordinate σ onM makes E a function of t depending on σ

“Mixed” problem:

find E (t |σ) =
reconstruct Heun equation from prescribed
monodromy (σ) and singularity position (t)

Solved in terms of quasiclassical conformal blocks by Zamolodchikov conjecture



2. CFT heuristics & Trieste formula



Virasoro conformal blocks

Fix n ≥ 4 distinct points t0, . . . , tn−1 on CP1, using projective invariance to choose

t0 = 0, t1 = 1, tn−1 =∞

and assuming that |t1| < |t2| < . . . < |tn−2|. Conformal block is a multivariate series
assigned to a trivalent graph with n external edges, such as

∞

tn−2 t3 t2 t1

0
∆n−1 ∆̃2 ∆̃1 ∆0

∆n−2 ∆3 ∆2 ∆1

F
(
t,∆, ∆̃

)
=

n−3∏
`=1

t
∆̃`−∆̃`−1−∆`
`

∑
k∈Nn−3

Fk

(
∆, ∆̃

)( t1
t2

)k1 ( t2
t3

)k2

. . .

(
tn−3

tn−2

)kn−3



Remarks:

coefs Fk

(
∆, ∆̃

)
are fixed by the Virasoro commutation relations =⇒ rational

functions of weights and central charge c.

thanks to the AGT relation, there is an explicit combinatorial representation of F
in terms of a sum over tuples of partitions.

the series is convergent and analytic properties of F in each variable can be
described using elementary braiding and fusion transformations.

Simplest nontrivial case: 4-point conformal block

F (t) =

∞

t 1

0

∆t ∆1

∆∞ ∆σ ∆0

= t∆∞−∆t−∆σ

(
1 +

∞∑
k=1

Fkt
−k

)

depends on 5 conformal weights ∆k and the central charge c

a generalization of the Gauss 2F1 with 3 more parameters



Quasiclassical limit

Liouville parameterization:

c = 1 + 6Q2, ∆ =
Q2

4
− p2, Q = b + b−1.

We trade the central charge c and conformal weights ∆’s for b and θ’s and consider the
scaling limit

p →∞, b → 0, bp → θ.

Zamolodchikov conjecture
1 Conformal blocks have WKB type asymptotics

F (t; {pk}) ∼ exp b−2W (t; {θk})

The series W (t; {θk}) is called quasiclassical conformal block.

2 The 4-point spherical quasiclassical conformal block is related to Heun accessory
parameter function E (t |σ) by

E = t
∂W
∂t

where external θk ’s are Heun monodromy exponents and σ is similarly related to
rescaled intermediate momentum.



Expansion of W at large t has the form

W (t) = (δ∞ − δσ − δt) ln t +
∞∑
k=1

Wkt
−k ,

where δσ = 1
4 − σ

2, δk = 1
4 − θ

2
k for k = 0, 1, t,∞. First coefs are given by

W1 =
(δσ − δ0 + δ1) (δσ − δ∞ + δt)

2δσ
,

W2 =
(δσ − δ0 + δ1)2 (δσ − δ∞ + δt)

2

8δ2σ

(
1

δσ − δ0 + δ1
+

1
δσ − δ∞ + δt

−
1

2δσ

)
+

+

(
δ2σ + 2δσ (δ0 + δ1)− 3 (δ0 − δ1)2

)(
δ2σ + 2δσ (δ∞ + δt)− 3 (δ∞ − δt)2

)
16δ2σ (4δσ + 3)

The series for t
∂W
∂t

can be compared with the expansion of the accessory parameter

function E (t |σ) order by order.

Remark: Quasiclassical conformal block W (t |σ) can be interpreted as the generating
function of the canonical transformation (σ, η)→ (E , ln t) onM.



Degenerate fields

Special fusion relations: the OPE of Φ(1,2) (z) with a generic Virasoro primary with
momentum p contains only two conformal families with momenta p± = p ± b

2 .

BPZ (Belavin-Polyakov-Zamolodhikov) constraints:

DBPZF (t, z) = 0

- a linear PDE in position of fields
- 2nd order in z, 1st order in positions of other fields
- 3+1 points: hypergeometric equation in z

1

z

0∞

p1

p0 ± b
2 p(1,2)

p0
p∞

= F±p0,p1,p∞ (z) ,

1

z

0∞

p1

p1 ± b
2

p(1,2)

p0p∞

= F±p1,p0,p∞ (1− z) ,

where

Fp0,p1,p∞ (z) = z
1+b2

2 +bp0 (1− z)
1+b2

2 +bp1
2F1

[ 1
2 + b (p1 + p∞ + p0) , 1

2 + b (p1 − p∞ + p0)
1 + 2bp0

; z
]



Fusion transformations

Hypergeometric connection formulas for 2F1’s can be interpreted as the fusion
transformation for 3+1 point conformal blocks,

1

z

0∞

p1

p0 + εb
2 p(1,2)

p0
p∞

=
∑
ε′

Fεε′ (p0, p1, p∞)

1

z

0∞

p1

p1 + ε′b
2

p(1,2)

p0p∞

, ε, ε′ = ±

We have Fεε′ (p0, p1, p∞) = F (εp0, ε
′p1, p∞) and

F (p0, p1, p∞) =
Γ (1− 2bp0) Γ (2bp1)

Γ
( 1

2 + b (p1 − p0 + p∞)
)

Γ
( 1

2 + b (p1 − p0 − p∞)
)

Locality of the fusion transformations means that for more complicated conformal blocks

1

z

0

p1

p0 + εb
2

p(1,2)

p0

pσ
=
∑
ε′

Fεε′ (p0, p1, pσ)

1

z

0

p1

p1 + ε′b
2

p(1,2)

p0

pσ

with the same fusion matrix F.



“Explanation” of Zamolodchikov conjecture

Plugging the WKB ansatz for the asymptotics of (n + 1)-point conformal blocks

1

z

0

p1

p0 + εb
2

p(1,2)

p0

pσ
= Ψε (z ; t) exp

{
b−2W (t)

} [
1 + o (1)

]
as b → 0.

into the BPZ constraint, the corresponding PDE becomes the generalized Heun’s ODE
(n Fuchsian singularities) for the amplitudes Ψ± (z),[

d2

dz2 +
n−2∑
k=0

δk

(z − tk)2 +
δn−1 −

∑n−2
k=0 δk

z (z − 1)
+

n−2∑
k=2

(tk − 1) Ek
z (z − 1) (z − tk)

]
Ψ± (z) = 0,

with δk = 1
4 − θ

2
k and accessory parameters given by Ek = tk

∂W
∂tk

.

n rescaled external momenta are related to local monodromy exponents 1
2 ± θk

n − 3 rescaled internal momenta such as σ = bpσ encode exponents of composite
monodromy and parameterize accessory parameters E2, . . . , En−2

we recover the usual Heun for n = 4



The structure of OPEs encoded in the conformal block diagrams implies that the
amplitudes Ψ± (z) have z → 0 expansions of the form

Ψ± (z) = N±z
1
2∓θ0

[
1 +

∞∑
k=1

Ψ±,kz
k
]
,

and therefore give a basis of Frobenius solutions of the generalized Heun equation at
z = 0. The normalization coefficients N± are fixed by

1

z

0

p1

p0 + εb
2

p(1,2)

p0

pσ
= z

1+b2
2 −εbp0

[ 1

0

p1

p0 + εb
2

pσ
+ O (z)

]
as z → 0+

Indeed, taking the quasiclassical limit, we get

Nε = lim
b→0

1

0

p1

p0 + εb
2

pσ
exp

{
b−2W (t)

}
= N exp

{
− ε
2
∂W
∂θ0

}
, ε = ±

where N = limb→0

1

0

p1

p0
pσ exp

{
b−2W (t)

}
=⇒ subleading term in the

Zamolodchikov conjecture.



Trieste formula [Bonelli, Iossa, Panea, Tanzini, ’21]

Denote by ψ[0]
± (z), ψ[1]

± (z) two pairs of normalized Frobenius solutions of the
generalized Heun equation at z = 0 and z = 1:

ψ
[0]
± (z) = z

1
2∓θ0

[
1 +

∞∑
k=1

ψ
[0]
±,kz

k
]
,

ψ
[1]
± (z) = (1− z)

1
2∓θ1

[
1 +

∞∑
k=1

ψ
[1]
±,k (z − 1)k

]
.

The connection between the two bases is given by

ψ[0]
ε (z) =

∑
ε′

C
(
εθ0, ε

′θ1, σ
)
ψ

[1]
ε′ (z) , ε, ε′ = ±,

C (θ0, θ1, σ) = Fcl (θ0, θ1, σ) exp
1
2

(
∂W
∂θ1
− ∂W
∂θ0

)

where Fcl (θ0, θ1, θ∞) = Γ(1−2θ0)Γ(2θ1)

Γ( 1
2 +θ1−θ0+θ∞)Γ( 1

2 +θ1−θ0−θ∞)
is the quasiclassical limit of the

fusion matrix.



Practical implementation for Heun

1 Generate quasiclassical conformal block expansion

W (t) = (δ∞ − δσ − δt) ln t +
(δσ − δ0 + δ1) (δσ − δ∞ + δt)

2δσ
t−1 + O

(
t−2)

2 Parameterize E = − 1
4 − θ

2
∞ + ω2 + θ2

t and compute the expansion of composite

monodromy exponent σ = σ (t) from E = t
∂W
∂t

:

σ (t) = ω −
( 1

4 − ω
2 + θ2

0 − θ2
1
) ( 1

4 − ω
2 + θ2

∞ − θ2
t

)
4ω
( 1

4 − ω2
) t−1 + O

(
t−2)

3 Plug both expansions into

C (θ0, θ1, σ) =
Γ (1− 2θ0) Γ (2θ1)

Γ
( 1

2 + θ1 − θ0 + σ
)

Γ
( 1

2 + θ1 − θ0 − σ
)︸ ︷︷ ︸

=Fcl(θ0,θ1,σ)

exp
1
2

(
∂W
∂θ1
− ∂W
∂θ0

)



General structure:

lnC (θ0, θ1, σ) = lnFcl (θ0, θ1, ω) +
1
2

(
∂W
∂θ1
−
∂W
∂θ0

)
−
∞∑
k=1

[
ψ(k)

( 1
2 + θ1 − θ0 + ω

)
+ (−1)k ψ(k)

( 1
2 + θ1 − θ0 − ω

)] (σ − ω)k

k!

Coefs of t−n in (σ − ω)k and ∂W
∂θ1

, ∂W
∂θ0

are rational in θ0, θ1, θt , θ∞ and ω.

Therefore, we have the expansion

lnC (θ0, θ1, σ) = lnFcl (θ0, θ1, ω) +
∞∑
k=1

fkt−k

where fk are given by linear combinations of polygamma functions, e.g.

f1 = −

(
1
4 − ω

2 + θ20 − θ
2
1

) (
1
4 − ω

2 + θ2∞ − θ
2
t

)
4ω
(

1
4 − ω

2
) [

ψ
(

1
2 + θ1 − θ0 + ω

)
− ψ

(
1
2 + θ1 − θ0 − ω

)]

−
(θ0 + θ1)

(
1
4 − ω

2 + θ2∞ − θ
2
t

)
2
(

1
4 − ω

2
)



3. Darboux method and Schäfke-Schmidt formula



Motivating example. Consider the Taylor expansion of u (z) = (1− z)−θ around z = 0:

u (z) =
∞∑
k=0

ukz
k , uk =

(θ)k
k!

=
Γ (k + θ)

Γ (θ) Γ (k + 1)

The ratio test ( uk+1
uk

k→∞
−→ 1) “detects” the position of the branch point z = 1

The coefficients have the large k behavior

uk =
kθ−1

Γ (θ)

[
1 + O

(
k−1)] as k →∞.

It depends on the exponent θ which hints that such asymptotics can also capture
the critical behavior of u (z) at the branch point z = 1.



Darboux theorem (1878)

Let u (z) be analytic in a neighborhood of z = 0. Suppose it has exactly one singularity
z = 1 inside a disk |z | = R > 1. If u (z) can be written in the form

u (z) = v (z) + (1− z)−θ w (z) , θ /∈ Z

with v (z), w (z) analytic in a neighborhood of z = 1, then the coefficients of the Taylor
expansion u (z) =

∑∞
k=0 ukz

k at z = 0 have the asymptotics

uk =
w(1)

Γ (θ)
kθ−1

[
1 + O

(
k−1)] as k →∞.

Proof idea:

uk =
1
2πi

∮
CR∪Cr

z−k−1u (z) dz

the contribution of CR is at most O
(
R−k

)
plug the expression of u (z) into

∮
Cr∮

Cr
z−k−1v (z) dz = 0

it suffices to estimate the asymptotics of∮
Cr
z−k−1 (1− z)−θ w (z) dz



Application to connection problem

Consider a linear ODE ψ′′ (z) = V (z)ψ (z) with potential

V (z) =
θ2
0 − 1

4

z2 +
θ2
1 − 1

4

(z − 1)2 +
U (z)

z (z − 1)

where U (z) is holomorphic inside |z | = R > 1. Introduce normalized Frobenius solutions

ψ
[0]
± (z) = z

1
2∓θ0

∞∑
k=0

ψ
[0]
±,kz

k ,

ψ
[1]
± (z) = (1− z)

1
2∓θ1

∞∑
k=0

ψ
[1]
±,k (1− z)k ,

with ψ[0]
±,k = ψ

[1]
±,k = 1. The connection matrix relating the two bases is given by

ψ[0]
ε (z) =

∑
ε′

C
(
εθ0, ε

′θ1
)
ψ

[1]
ε′ (z) , ε, ε′ = ±



Theorem [Schäfke, Schmidt, ’80]

Write the solution ψ[0]
+ as

ψ
[0]
+ (z) = z

1
2−θ0 (1− z)

1
2−θ1 u (z) , with u (z) = 1 +

∞∑
k=1

ukz
k .

Then
C (θ0, θ1) = Γ (2θ1) lim

k→∞
k1−2θ1uk

Proof. Direct corollary of the Darboux theorem, with v (z) and w (z) coming from the
Frobenius solutions at z = 1.



4. Application to Heun equations



Schäfke-Schmidt theorem applies to all Heun equations with two Fuchsian singularities:
the usual, confluent, and reduced confluent Heun. In the last case,

V (z) =
θ2
0 − 1

4

z2 +
θ2
1 − 1

4

(z − 1)2 +
ω2 − θ2

0 − θ2
1 + 1

4 + λz

z (z − 1)

ω is the accessory parameter

we look for perturbative expansion of the connection function C in λ

for λ = 0:
- the potential reduces to hypergeometric one with exponents

0 1 ∞
1
2 ± θ0

1
2 ± θ1

1
2 ± ω

- the coefficients uk are given by

u
(λ=0)
k =

( 1
2 − θ0 + θ1 + ω

)
k

( 1
2 − θ0 + θ1 − ω

)
k

k! (1− 2θ0)k

- the C-function is the hypergeometric one

C(λ=0) (θ0, θ1) = Fcl (θ0, θ1, ω) =
Γ (1− 2θ0) Γ (2θ1)

Γ
( 1

2 − θ0 + θ1 + ω
)

Γ
( 1

2 − θ0 + θ1 − ω
)



Introducing rescaled coefficients ak = uk/u
(λ=0)
k , the Schäfke-Schmidt theorem can be

reformulated as follows.

Proposition. The C-function of the reduced confluent Heun equation is given by

C (θ0, θ1, ω, t) = Fcl (θ0, θ1, ω) · a∞,

where {ak} satisfy the 3-term recurrence relation

ak+1 − ak = −λβkak−1

subject to initial conditions a−1 = 0, a0 = 1, with

βk = − k (k − 2θ0)((
k − 1

2 − θ0 + θ1
)2 − ω2

)((
k + 1

2 − θ0 + θ1
)2 − ω2

)
Formal solution:

a∞ = det


1 −1
−λβ1 1 −1

−λβ2 1 −1
−λβ3 1 ·

· ·

 = 1− λ
∞∑
k=1

βk + λ2
∞∑

k′≥k+2

βkβk′ + . . .



Exponentiation gives a perturbative series involving only 1-fold sums:

− ln a∞ =
∞∑
n=1

Tr A2n

2n
λn, A =


0 1
β1 0 1

β2 0 1
β3 0 ·

· ·


We have, for example,

Tr A2 =
∞∑
k=1

2βk , Tr A4 =
∞∑
k=1

(
4βkβk+1 + 2β2

k

)
,

Tr A6 =
∞∑
k=1

(
6βkβk+1βk+2 + 6β2

kβk+1 + 6βkβ2
k+1 + 2β3

k

)
, . . .

NB: Since βk is rational in k, all sums can be computed in terms of expressions rational
in θ0, θ1, ω and polygammas ψ(k)

( 1
2 − θ0 + θ1 ± ω

)
=⇒ we recover the predictions of

Trieste formula!



In general, TrA2n =
∞∑
k=1

2n−1∑
µ`n
Nµ · βµ1

k βµ2
k+1 . . . β

µ`
k+`, where µ runs over all compositions

(ordered partitions) of n and Nµ are integers counting staircase walks of type µ.

(b)

1
2

3
4

(0, 0)

(6, 6)

(a)

(a) A staircase walk of type (1, 3, 1, 1)

(b) Six possible walks of type (1, 2)



Proposition. We have

ln a∞ =
∞∑
k=1

ln

1− λβk

1− λβk+1

1−
λβk+2
1−...


Proof. The determinant

Dk = det


1 −1
−λβk 1 −1

−λβk+1 1 −1
−λβk+2 1 ·

· ·


satisfies a linear 3-term recurrence relation Dk − Dk+1 = −λβkDk+2. It can be
transformed into a nonlinear 2-term Riccati equation for Dk/Dk+1, which is solved by
the above infinite fraction. It remains to write

ln a∞ =
∞∑
k=1

ln
Dk

Dk+1
.

Remark. This also implies

Nµ =
2n
µ1

∏
`

(
µ` + µ`+1 − 1

µ`+1

)



Theorem. Write the normal form of the RCHE as[
d2

dz2 +
1
4 − θ

2
0

z2 +
1
4 − θ

2
1

(z − 1)2 +
θ2
0 + θ2

1 − ω2 − 1
4 − λz

z (z − 1)

]
ψ (z) = 0,

with θ0, θ1 /∈ Z/2, and denote by ψ[0]
± (z), ψ[1]

± (z) its normalized Frobenius solutions at
z = 0, 1. The connection between the two Frobenius bases is given by

ψ[0]
ε (z) =

∑
ε′=±

C
(
εθ0, ε

′θ1
)
ψ

[1]
ε′ (z) , ε = ±,

where C (θ0, θ1) admits the following representation in terms of continued fractions:

C (θ0, θ1) =
Γ (1− 2θ0) Γ (2θ1)

Γ
( 1

2 + θ1 − θ0 + ω
)

Γ
( 1

2 + θ1 − θ0 − ω
) exp

∞∑
k=1

ln

(
1− λβk

1− λβk+1
1−...

)

with
βk =

k (k − 2θ0)((
k + 1

2 − θ0 + θ1
)2 − ω2

)((
k − 1

2 − θ0 + θ1
)2 − ω2

) .



Theorem. Write the normal form of the Heun equation as ψ′′ (z) = V (z)ψ (z) with

V (z) =
θ20 −

1
4

z2 +
θ21 −

1
4

(z − 1)2
+
θ2t − 1

4

(z − t)2
+
θ2∞ − θ20 − θ21 − θ2t + 1

2
z (z − 1)

+
(1− t)

(
ω2 + θ2t − θ2∞ − 1

4

)
z (z − 1) (z − t)

and assume that |t| > 1 and θ0, θ1 /∈ Z/2. The connection matrix relating the two
normalized Frobenius bases is given by

C (θ0, θ1) =
Γ (1− 2θ0) Γ (2θ1) (1− λ)−

1
2−θt

Γ
( 1

2 + θ1 − θ0 + ω
)

Γ
( 1

2 + θ1 − θ0 − ω
)×

× exp
∞∑
k=1

ln

(
1− λαk−1 −

λβk

1− λαk − λβk+1
1−...

)

with λ = 1
t
and

αk = −
(
k + 1

2 − θ0 − θt
)2 − θ2

0 − θ2
∞ + ω2(

k + 1
2 − θ0 + θ1

)2 − ω2
,

βk =
k (k − 2θ0)

(
(k − θ0 + θ1 − θt)2 − θ2

∞
)((

k + 1
2 − θ0 + θ1

)2 − ω2
)((

k − 1
2 − θ0 + θ1

)2 − ω2
) .



Conclusions

Perturbative solution of the connection problem for Heun equations between two
Fuchsian singularities can be systematically computed using the Schäfke-Schmidt
formula

It confirms Trieste formula expressing the connection coefficients in terms of
quasiclassical Virasoro conformal blocks.

It would be interesting to extend the method to irregular singularities and compare
with CFT predictions of [Bonelli, Iossa, Panea, Tanzini, ’21].

A proof using extended symplectic structure of [Bertola, Korotkin, ’19] ? connection
formula for the PVI tau function ?


