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Web-seminar on Painlevé Equations and related topics

Arata Komyo (Univ. of Hyogo)

July 9, 2025

1 / 32



1 Linear equations and their isomonodromic deformations

2 Classification of Algebraic solution of irregular Garnier
system

3 Explicit description of irregular Garnier system

4 Our algebraic solution of irregular Garnier system

2 / 32



1 Linear equations and their isomonodromic deformations

2 Classification of Algebraic solution of irregular Garnier
system

3 Explicit description of irregular Garnier system

4 Our algebraic solution of irregular Garnier system

3 / 32



Introduction
(This talk is based on arXiv/2003.08045 (PRIMS), 2205.14979 (FE))

I am interested in the algebraic geometric aspect of (generalized)
isomonodromic deformations.

▶ A (generalized) isomonodromic deformation is the deformation of a
linear differential equation (for example, Fuchsian system) which
preserves its (generalized) monodromy.

▶ Painlevé equations are derived by the (generalized) isomonodromic
deformations.

▶ By (generalized) isomonodromic deformations, we have generalization
of Painlevé equations (for example, Garnier system, irregular Garnier
system.)

Motivation: To supplement the classification of algebraic solutions of
irregular Garnier systems due to Diarra–Loray (Compositio Math. 2020)

(There is a lack in their list of algebraic solutions.)

First we recall linear differential equations.

(P1 is the complex projective line.)
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Linear differential equation

We consider the following linear differential equation on P1:

dy

dx
= A(x)y

(
where A(x) =

ν∑
i=1

mi∑
k=1

A
(i)
−k

(x− ti)k
−

m∞∑
k=2

A
(∞)
−k x

k−2

)

where A
(i)
−k are constant r × r matrices. (It appeared in Jimbo–Miwa–Ueno).

Laurent expansion of A(x) at x = ti:

A(x) =
A

(i)
−mi

(x− ti)mi
+

A
(i)
−mi+1

(x− ti)mi−1
+ · · ·+

A
(i)
−1

x− ti
+ [holo. part]

Assumpstion: The eigenvalues of the leading coeff. A
(i)
−mi

are distinct from
each other. By this assumption, we may diagonalize it as follows:

diag(ν
(i)
1 , ν

(i)
2 , . . . , ν

(i)
r )

(x− ti)mi
+ [holo. part (diagonal) ],

where ν
(i)
j are polynomials in (x− ti) with deg(ν

(i)
j ) ≤ mi − 1.
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Parameters of linear differential equation
We will consider the generalized isomonodromic deformation of
dy
dx = A(x)y. So we have to discuss about parameters of A(x).

A(x) =

ν∑
i=1

mi∑
k=1

A
(i)
−k

(x− ti)k
−

m∞∑
k=2

A
(∞)
−k x

k−2

7−→ diag(ν
(i)
1 , ν

(i)
2 , . . . , ν

(i)
r )

(x− ti)mi
dx + [holo. part] at x = ti

where ν
(i)
j are polynomials in (x− ti) with deg(ν

(i)
j ) ≤ mi − 1.

We set n :=
∑ν

i=1mi +m∞.

A(x) has the following parameters:

(i-a) Positions of singular points t1, t2, . . . , tν ,∞.

(i-b) The coefficients of ν
(i)
j except the coefficient of (x− ti)mi−1.

(ii) The coefficient of (x− ti)mi−1 (residue part).

(iii) Remaining parameters (that is called “accessory parameters”).
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The dimension of the space of parameters
Now we count the dimension of the space of parameters.

(i) ν + 1: number of singularities.

r(n− ν − 1): number of coefficients of ν
(i)
j except the residue parts.

By considering Möbius transformation, the number of parameters of this
kind is

(ν + 1) + r(n− ν − 1)− 3.

(ii) r(ν + 1): number of the coefficient of (x− ti)mi−1.

By considering the Fuchs relation, the number of parameters of this kind is

r(ν + 1)− 1.

(iii) There are (n− 1)-r × r matrices in A(x),

By considering gauge transformations, the number of accessory parameters is

(n− 1)r2−(r2 − 1)− {r(n− ν − 1) + r(ν + 1)− 1}
= −2r2 + nr(r − 1) + 2.
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Role of each parameter

When we consider the generalized isomonodromic deformation of dy
dx = A(x)y,

A(x) =
ν∑

i=1

mi∑
k=1

A
(i)
−k

(x− ti)k
−

m∞∑
k=2

A
(∞)
−k x

k−2,

the roles of parameters of the linear equations is as follows:

Independent variable of the deformation:

▶ position of singularities t1, t2, . . . , tν ,∞
▶ the coefficients of ν

(i)
j except the residue parts.

Dependent variable of the deformation: accessory parameters

Fixed parameters:

▶ the coefficient of (x− ti)mi−1 (residue part).
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Our setting (irregular Garnier system)

We assume that dy
dx = A(x)y is rank 2. That is, A(x) is 2× 2 matrix.

Moreover, we assume that the principal part of each singularity of ∇ is
diagonalizable as follows:

ν
(i)
−mi

0

0 −ν
(i)
−mi

 dx

(x − ti)
mi

+ · · · +

ν
(i)
−2 0

0 −ν
(i)
−2

 dx

(x − ti)2
+

ν
(i)
+,−1 0

0 ν
(i)
−,−1

 dx

x − ti

Parameters of a family of linear differential equations:

▶ dependent variable: accessory parameters (] = 2n− 6),
▶ independent variable: positions of singularities, and ν

(i)
−j

(j = 2, 3, . . . ,mi) (] = n− 3)

The system of (nonlinear) differential equations given by the isomonodromic
deformations of this linear equation is called an irregular Garnier system.
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How to give an explicit formula of the system

(1) First, we have to introduce explicit accessory parameters

Now we use apparent singularities as explicit accessory parameters.

▶ Okamoto, Iwasaki, Dubrovin–Mazzocco, Saito–Szabo, Diarra–Loray,
Marchal–Orantin–Alameddine, Marchal–Alameddine,.. et al.

(2) Second, we have to give an explicit family of the linear differential equations
parametrized by apparent singularities.

it was done already, for example, by Diarra–Loray.

(3) Third, we have to calculate isomonodromic deformations concretely by using
the explicit family of the linear differential equations.

We use the isomonodromy 2-form, roughly speaking, this is the pull-back
of the Goldman symplectic form on the character variety under the
Riemann-Hilbert map (regular case).

Explicit calculation of the isomonodromy 2-form by using apparent
singularities was done by K (arXiv:2003.08045, PRIMS)
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Introduction

In general, solutions of irregular Garnier system are highly transcendental.

But, special irregular Garnier systems have special solution which is
algebraic.

Idea of construction of an algebraic solution is as follows:

▶ If we have an isomonodromic and algebraic family of linear
differential equations, then we have an algebraic solution of an
irregular Garnier system by calculating the apparent singularities.

▶ How to construct isomonodromic and algebraic family of linear
differential equations ?

▶ For example, pull-back method.
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Pull-back method

Pull-back method

(1) Prepare a linear equation on P1 and a family of branch coverings P1 → P1.

(2) By taking the pull-back of the linear equation under the branch coverings,
we have a family of linear equations on P1, which parametrized by the
parameters of the family of branch coverings.

(3) By construction of the family of linear equations, this family is
isomonodromic and algebraic.

When do irregular Garnier systems have an algebraic solution
constructed by the pull-back method?

Diarra–Loray have given an answer.

If an algebraic solution is not classical, then this algebraic solution is
given by the pull-back method.

classical solution: solutions comes from the deformation of a rank 2
differential system with diagonal or dihedral differential Galois group.
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Classification by Diarra–Loray

Theorem due to Diarra–Loray (2020)

Up to isomorphisms, there are exactly 3 non classical algebraic solutions, for
irregular Garnier systems of rank N > 1. The list of corresponding formal data is
as follows:

0 1 ∞
0 1 1

1/3 0 1
,

0 ∞
1 2
0 1

,
0 1 ∞
1 1 1
0 0 1

,
Positions of singularities
Poincaré rank (mi − 1)
exponent

Here exponent means the difference of “eigenvalues” of the residue part.

The algebraic solutions of first and second cases are already given.

▶ The first and second irregular Garnier systems are 2-variable.

On the other hand, the algebraic solution of third case had not been
given, because the corresponding explicit irregular Garnier system had
not been known.

▶ (This is 3-variable Garnier system. It is more complicated than
2-variable cases.)
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Our target

Our target is the irregular Gariner system corresponding to
0 1 ∞
1 1 1
0 0 1

.

This irregular Gariner system is derived by the isomonodromic deformation
of connections

∇ : OP1 ⊕OP1(1) −→ (OP1 ⊕OP1(1))⊗ Ω1
P1(2[0] + 2[1] + 2[∞])

▶ We consider connections on OP1 ⊕OP1(1) instead of connections on
OP1 ⊕OP1 (rank 2 linear ODE).

▶ (We may transform connections on OP1 ⊕OP1(1) into on OP1 ⊕OP1

by a birational bunde transformation.)
▶ Assume that ∇|2[0],∇|2[1],∇|2[∞] are diagonalized as(
2 t1 0
0 −2 t1

)
dx

x2
+

(
− 1

6
0

0 − 1
6

)
dx

x(
2 t2 0
0 −2 t2

)
dx

(x− 1)2
+

(
− 1

6
0

0 − 1
6

)
dx

x− 1(
2 t3 0
0 −2 t3

)
dw

w2
+

(
− 1

6
0

0 − 1
6

)
dw

w
,

(ti become independent variables)
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Introduction

We want to derive the 3-variable Garnier system corresponding to
0 1 ∞
1 1 1
0 0 1

.

Strategy

(1) We use apparent singularities as explicit accessory parameters.

(2) We use an explicit family of connections due to Diarra–Loray
(arXiv:1907.07678, Period. Math. Hungar.).

(3) We consider the isomonodromy 2-form and calculate this 2-form by using
apparent singularities (arXiv:2003.08045, PRIMS)

First we recall a definition of apparent singularities.
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Definition of apparent singularities

D =
∑ν

i=1 ni[xi] + n∞[∞] (n := deg(D))

∇ : OP1 ⊕OP1(1) −→ (OP1 ⊕OP1(1))⊗ Ω1
P1(D)

▶ Assume that OP1(1) ⊂ OP1 ⊕OP1(1) is not ∇-invariant.

The composition ϕ∇

OP1(1) ↪→ OP1 ⊕OP1(1)
∇−−→ (OP1 ⊕OP1(1))⊗ Ω1

P1(D)

−→ (OP1 ⊕OP1(1)/OP1(1))⊗ Ω1
P1(D) ∼= OP1(n− 2)

is an OP1 -morphism.

Definition
We call zeros of ϕ∇ apparent singularities of ∇.

Assume that the apparent singularities consist of distinct points q1, . . . , qn−3.

(# of accessory parameters is 2(n− 3))
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Definition of pi

φ∇ := id⊕ ϕ∇ : OP1 ⊕OP1(1) 99K OP1 ⊕OP1(n− 2)

∇ 7−→ (φ∇)∗(∇)

▶ (φ∇)∗(∇) is a connection on OP1 ⊕OP1(n− 2), which has simple
poles at q1, . . . qn−3 with residual eigenvalues 0 and −1 at each qj .

By automorphisms of OP1 ⊕OP1(n− 2), we may normalize (φ∇)∗(∇) as(
0 1

P (x)

∗ ∗

)
dx, P (x) :=

ν∏
i=1

(x− xi)ni

Definition

We define pj so that

(
1
pj

)
is in the 0-eigenspace of the residue matrix of

normalized (φ∇)∗(∇) at qj
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Diarra–Loray’s normal form (1)
Now we recall a family of connections due to Diarra–Loray (arXiv:1907.07678,
Period. Math. Hungar.)

Accessory parameters: {(q1, p1), . . . , (qn−3, pn−3)} ∈ Symn−3(C2)

Family of connections parametrized by the accessory parameters:

d+Ω: OP1 ⊕OP1(n− 2)→ (OP1 ⊕OP1(n− 2))⊗Ω2
P1(D+ q1 + · · ·+ qn−3)

Ω =

(
0 1

P (x)

c2(x) d2(x)

)
dx

▶ P (x) :=
∏ν

i=1(x− xi)ni

▶ c2(x) :=
∑ν

i=1
Ci(x)

(x−xi)ni
+
∑n−3

j=1
pj

x−qj
+ C̃(x) + xn−3C∞(x)

▶ d2(x) :=
∑ν

i=1
Di(x)

(x−xi)ni
+
∑n−3

j=1
−1

x−qj
+D∞(x)

poly. in x Ci, Di(i = 1, . . . , ν) C∞ D∞ C̃
degree ≤ ni − 1 ≤ n∞ − 1 ≤ n∞ − 2 ≤ n− 4
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Diarra–Loray’s normal form (2)

We have a correspondence by φ∇:

Connections on OP1 ⊕OP1(n− 2) with apparent singularities at q1, . . . , qn−3

←→ Connections on OP1 ⊕OP1(1)

If we fix local data at x1, x2, . . . , xν ,∞,

then Ci, Di (i = 1, 2, . . . , ν), C∞, D∞ are determined.

▶ In our situation, D = 2[0] + 2[1] + 2[∞] (x1 = 0, x2 = 1 (ν = 2))


C0(x) = 4 t21(1− 2x)

C1(x) = 4 t22(2x− 1)

C∞(x) = 4 t23(x− 2)


D0(x) = −

x

3

D1(x) = −
x− 1

3
D∞(x) = 0
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Diarra–Loray’s normal form (3)

By the condition that q1, . . . , qn−3 are apparent, C̃ is determined.

In our situation, we have

C̃ = C̃q1(x− q2)(x− q3) + C̃q2(x− q1)(x− q3) + C̃q3(x− q2)(x− q1),

where

C̃qj =
1

Q′(qj)

(
p2j

q2j (qj − 1)2
+
qjpj + 12 t21(2 qj − 1)

3 q2j

+
(qj − 1)pj − 12 t22(2 qj − 1)

3 (qj − 1)2

+
∑

k∈{1,2,3}\{j}

pj − pk
qj − qk

− 4 t23q
3
j (qj − 2)

)
,

and Q′(x) = (x− q1)(x− q2) + (x− q2)(x− q3) + (x− q3)(x− q1)

So in our situation, Ω is parametrized by q1, q2, q3, p1, p2, p3; t1, t2, t3.
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Isomonodromy 2-form
Let Ω be the Diarra–Loray’s normal form:

d+Ω: OP1 ⊕OP1(n− 2)→ (OP1 ⊕OP1(n− 2))⊗Ω2
P1(D+ q1 + · · ·+ qn−3)

parametrized by q1, q2, q3, p1, p2, p3; t1, t2, t3 (in our situation (n = 6)).

We take (formal) solutions of d+Ω = 0:
▶ ψi : formal fundamental matrix solution of d+Ω = 0 at x = xi

(x1 = 0, x2 = 1, x3 =∞)
▶ ψqj : fundamental matrix solution of d+Ω = 0 at x = qj

(qj is apparent)

Isomonodromy 2-form (Krichever 2002)

ω is the 2-form on the parameter space of q1, q2, q3, p1, p2, p3; t1, t2, t3 defined by

ω(δ1, δ2) :=
1

2

3∑
i=1

resx=xiTr(δ(Ω) ∧ δ(ψi)ψ
−1
i )

+
1

2

3∑
j=1

resx=qjTr(δ(Ω) ∧ δ(ψqj )ψ
−1
qj )
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Explicit formula of Isomonodromy 2-form (1)

We have explicit description of Ω and we may give explicit description of solutions
ψi and ψqj . So we can calculate ω explicitly.

Change of variable: From pj to ηj :

ηj :=
pj

q2j (qj − 1)2
− D0(qj)

q2j
− D1(qj)

(qj − 1)2
−D∞(qj)

=
pj

q2j (qj − 1)2
+

1

3 qj
+

1

3(qj − 1)

We consider the diagonalizations until the constant terms:(
2 t1 0
0 −2 t1

)
dx

x2
+

(
− 1

6
0

0 − 1
6

)
dx

x
+

(
θ+1 (t, q,η) 0

0 θ−1 (t, q,η)

)
dx+O(x)(

2 t2 0
0 −2 t2

)
dx

(x− 1)2
+

(
− 1

6
0

0 − 1
6

)
dx

x− 1
+

(
θ+2 (t, q,η) 0

0 θ−2 (t, q,η)

)
dx+O(x− 1)(

2 t3 0
0 −2 t3

)
dw

w2
+

(
− 1

6
0

0 − 1
6

)
dw

w
+

(
θ+3 (t, q,η) 0

0 θ−3 (t, q,η)

)
dw +O(w).
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Explicit formula of Isomonodromy 2-form (2)

By explicit calculation of ω, we have the following equality

ω =

3∑
j=1

dηj ∧ dqj − dθ+1 ∧ d(2t1)− dθ
+
2 ∧ d(2t2)− dθ

+
3 ∧ d(2t3)

− dθ−1 ∧ d(−2t1)− dθ
−
2 ∧ d(−2t2)− dθ

−
3 ∧ d(−2t3)

+
∑
i1<i2

fi1,i2(t, q,η) dti1 ∧ dti2 .

We set 
Ht1(t, q,η) := 2 θ−1 (t, q,η)− 2 θ+1 (t, q,η),

Ht2(t, q,η) := 2 θ−2 (t, q,η)− 2 θ+2 (t, q,η),

Ht3(t, q,η) := 2 θ−3 (t, q,η)− 2 θ+3 (t, q,η).

Then

ω =

3∑
j=1

dηj ∧ dqj + dHt1 ∧ dt1 + dHt2 ∧ dt2 + dHt3 ∧ dt3

+
∑
i1<i2

fi1,i2 dti1 ∧ dti2 .
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Hamiltonian (1)

Since ω is isomonodromy 2-form (that is, the interior product with IMD
vanishes), we obtain the corresponding irregular Garnier system is

∂qj
∂ti

=
∂Hti(t, q,η)

∂ηj

∂ηj
∂ti

= −∂Hti(t, q,η)

∂qj

(i = 1, 2, 3, j = 1, 2, 3).

Explicit forms of the hamiltonians Hti(t, q,η) are in the next page.
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Hamiltonian (2)
Q(x) := (x− q1)(x− q2)(x− q3), σ1 := q1 + q2 + q3, σ2 := q1q2 + q2q3 + q3q1, σ3 = q1q2q3.

Ht1
(t, q,η)

= −
q1q2q3

t1

3∑
j=1

 qj
(
qj − 1

)2
Q′(qj)

ηj
2 −

(
5 qj

2 − 9 qj + 4
)

3Q′(qj)
ηj

 +
3∑

j=1

4 t1

qj2
+

144 t1
2 + 144 t2

2 − 13

36 t1

+
4 t3

2σ3 (σ1 − 2)

t1
−

4 t1 (2σ2 − σ1)

q1q2q3

−
4 t2

2
(
σ1

2 − 2σ1σ2 + 3σ1σ3 + σ2
2 − 2σ2σ3 − 2σ1 + 2σ2 − 4σ3 + 1

)
t1 (q1 − 1)2 (q2 − 1)2 (q3 − 1)2

Ht2
(t, q,η)

= −
(q1 − 1) (q2 − 1) (q3 − 1)

t2

3∑
j=1

(
qj

2 (qj − 1
)

Q′(qj)
ηj

2 −
qj
(
5 qj − 1

)
3Q′(qj)

ηj

)
+

3∑
j=1

4 t2(
qj − 1

)2
+

144 t1
2 + 144 t2

2 − 13

36 t2
+

4 t3
2(σ1 − σ2 + σ3 − 1) (σ1 − 1)

t2
+

4 t2 (2σ2 − 3σ1 + 3)

(q1 − 1) (q2 − 1) (q3 − 1)

−
4 t1

2
(
σ1σ2 − σ1σ3 − σ2

2 + 2σ2σ3 − σ2 + σ3

)
t2q12q22q32

Ht3
(t, q,η)

= −
1

t3

3∑
j=1

 qj
2 (qj − 1

)2
Q′(qj)

ηj
2 −

qj

(
2 qj

2 − 3 qj + 1
)

3Q′(qj)
ηj

 + 4 t3(σ1
2 − 2σ1 − σ2 + 1) −

1

36 t3

−
4 t1

2 (2σ3 − σ2)

t3q12q22q32
+

4 t2
2 (2σ3 − σ2 + 1)

t3 (q1 − 1)2 (q2 − 1)2 (q3 − 1)2
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Introduction

Now we have the 3-variable Garnier system corresponding to
0 1 ∞
1 1 1
0 0 1

.

We want to give an algebraic solution of this equation.

By Diarra–Loray, we already have the corresponding isomonodromic family
of connections by Pull-back method.

First we recall the construction of this isomonodromic family .

Pull-back method (recall)

(1) Prepare a linear equation on P1 and a family of branch coverings P1 → P1.

(2) By taking the pull-back of the linear equation under the branch coverings,
we have a family of linear equations on P1, which parametrized by the
parameters of the family of branch coverings.

(3) By construction of the family of linear equations, this family is
isomonodromic and algebraic.
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Construction of an isomonodromic family
We consider the following linear equation on P1

z:

d2u

dz2
+

2

3 z

du

dz
− 1

z
u = 0.

▶ it has a regular singular point at z = 0
▶ it has a ramified irregular singular point at z = ∞ (Poincaré rank 1/2)

We consider the branched covering ϕs : P1
x → P1

z defined by

x 7−→ ϕs(x) =
(s3x (x− 1) + s2x+ s1 (1− x))3

x2 (x− 1)2
.

This branched covering is parametrized by (s1, s2, s3) ∈ C3.

We take the pull-back of the linear equation above. Then we have the linear
equation on P1

x associated to the connection

d+

(
0 1

x2(x−1)2

4 s3(s3x
2−(s1−s2+s3)x+s1)Q(x;s)2

x2(x−1)2
− 1

3 x
− 1

3(x−1)
−
∑2

i=1
Q′(x;s)
Q(x;s)

)
dx,

where we put Q(x; s) := x3 +
s1 − s2 − 3 s3

2 s3
x2 +

−3 s1 − s2 + s3
2 s3

x+
s1
s3

.
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Algebraic solution

The apparent singularities q1, q2, q3 are the zeros of Q(x; s),

ηj =
1

3 qj
+ 1

3 (qj−1) .

By comparing the principal parts, we have t2i = s3i .

Main theorem
Functions qj(t1, t2, t3), ηj(t1, t2, t3) (j = 1, 2, 3) are defined by

q3j +
s1 − s2 − 3 s3

2 s3
q2j +

−3 s1 − s2 + s3
2 s3

qj +
s1
s3

= 0 j = 1, 2, 3

ηj =
1

3 qj
+

1

3 (qj − 1)
j = 1, 2, 3

t2i = s3i i = 1, 2, 3.

implicitly. Then these functions satisfy the following system:
∂qj
∂ti

=
∂Hti(t, q,η)

∂ηj

∂ηj
∂ti

= −∂Hti(t, q,η)

∂qj

(i = 1, 2, 3, j = 1, 2, 3)
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τ function
Hti(t): the substitution of our algebraic solution to the Hamiltonians
Hti(t, q,η).

▶ Our Hamilton system is nonautonomous. So this is not conserved
quantity.

We will calculate the τ -function with respect to our algebraic solution.

We consider the following 1-form:

$ = Ht1(t)dt1 +Ht2(t)dt2 +Ht3(t)dt3

Now, this 1-from is exact. If we set

F (s1, s2, s3) :=
s1

3 + s2
3 + s3

3

2
+

ln (s1s2s3)

24

−
9
(
(s2 − s3)

2 s1 + (s1 − s3)
2 s2 + (s2 − s1)

2 s3
)

2
− 18 s1s2s3,

then $ = dF (s1, s2, s3) (t2i = s3i ).

So the τ -function with respect to our algebraic solution is

τ = c · eF (s1,s2,s3),

where c is a constant.
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