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Monodromy

Examples: Differential equations on the complex affine line
X = A1(C) (coordinate z):

z d
dz f (z) + f (z) = 0

⇝ f (z) = c · 1z
sheaf of solutions: CX\{0}

2z d
dz f (z) + f (z) = 0 ⇝ f (z) = c · 1√

z

sheaf of solutions: local system on X \ {0} with stalk C and
monodromy −1

z d
dz f (z) + γf (z) = 0 ⇝ f (z) = c · z−γ

sheaf of solutions: local system on X \ {0} with stalk C and
monodromy e−2πiγ
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Riemann–Hilbert correspondences

Idea (inspired by Hilbert’s 21st problem):
Correspondence between differential equations and topological data
(e.g. local systems = representations of the fundamental group)

Theorem (Deligne ’70)

X complex manifold, D ⊂ X divisor{
meromorphic connections on X

with regular poles at D

} {
local systems
on X \ D

}
∼
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Motivation

Two facts:

Linear differential equations determine monodromy data (over
C)
Theory of local systems works over any field

Question: When are the monodromy data of a differential equation
defined over a subfield of C?

E.g. Mixed Hodge modules: Regular holonomic D-modules whose
perverse sheaf is defined over Q.

Our case of interest: Hypergeometric differential equations

Fedorov ’18: Real structures of hypergeometric equations with
regular singularities
Barco–Hien–H.–Sevenheck ’23: Allow irregular singularities and
consider more general subfields of C
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Plan of the talk

1 Riemann–Hilbert correspondence for irregular singularities
(d’après D’Agnolo–Kashiwara)

2 Galois descent

3 Results for hypergeometric systems
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D-modules: An algebraic theory of differential equations

X : complex manifold, OX : sheaf of holomorphic functions

DX : sheaf of linear differential operators

local sections: finite sums of the form

P =
∑

α∈Zn
≥0

aα(z)
dα1

dzα1
1

· · · d
αn

dzαn
n

(aα ∈ OX )

Observation

Let P ∈ DX , then consider the DX -moduleM := DX/(P). One
has

HomDX
(M,OX ) ≃ {f ∈ OX ;Pf = 0}
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Regular Riemann–Hilbert correspondence

Kashiwara ’81/’84, Mebkhout ’84

Db
hol(DX ) ?

Db(DX ) Db(CX )

Mod(DX ) Perv(CX )

SolX=RHomDX
(−,OX )
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A basic example of an irregular D-module

X = A1(C)

reg M1 = DX/DX (z
2 d
dz + z)

solutions: c · 1z ⇝ local system CX\{0}

irreg M2 = E
1
z = DX/DX (z

2 d
dz + 1)

solutions: c · e
1
z ⇝ local system CX\{0}

In fact: SolX (M1) ≃ SolX (M2)

Idea: Use a different solution functor that takes into account the
growth of the solutions.
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Tempered solutions

Idea (Kashiwara–Schapira): Replace OX by Ot
X , defined by

Ot
X (U) :=

{
f ∈ OX (U);∃C ,M ∈ R>0 ∀z ∈ U : |f (z)| ≤ C

dist(z , ∂U)M

}
(for U ⊂ X relatively compact). Sol tX := RHomDX

(−,Ot
X )

Then for U ⊂ X \ {0}

H0Sol tX (M1)(U) = C

H0Sol tX (M2)(U) =

{
C if Re 1

z is bounded on U

0 otherwise

Technical problem: Ot
X is not a sheaf!
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Subanalytic sheaves

Technical problem: Ot
X is not a sheaf

(for the usual topology)

Ot
X is a sheaf on the subanalytic site:

open sets: subanalytic relatively compact open subsets of X
coverings: finite coverings

In this framework, we can write

H0Sol t(M1) ≃ CX\{0}

H0Sol t(E
1
z ) ≃ “ lim−→ ”

a→∞
C{z∈X\{0};Re 1

z
<a}
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Enhanced ind-sheaves

A further construction is needed to obtain a fully faithful functor.
⇝ Enhanced ind-sheaves Eb(ICX ) ≈ Subanalytic sheaves on X ×R

Six functors:
+
⊗, Ef∗, Ef!!, etc.

Theorem (D’Agnolo–Kashiwara ’16)

Let X be a complex manifold. There is a fully faithful functor

SolEX : Db
hol(DX ) ↪→ Eb

R-c(ICX )

extending the Riemann–Hilbert functor for regular holonomic
DX -modules

(relying on the classification of holonomic D-modules due to Sabbah,

Kedlaya, T. Mochizuki)

E
1
z := SolEX (E

1
z ) ≃ “ lim−→ ”

a→∞
C{(z,t)∈X\{0}×R;t+Re 1

z
≥a}
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Galois descent – the case C/R

V : complex vector space

V : same underlying additive group, λ · v := λv for λ ∈ C, v ∈ V

There is a correspondence

isomorphisms sub-R-vector spaces
φ : V

∼−→ V W ⊂ V

such that ←→ such that

V
φ−→ V

φ−→ V = V W ⊗R C −→ V

is the identity is an isomorphism

This generalizes to finite Galois extensions L/K .
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Galois descent for enhanced ind-sheaves

Theorem (BHHS ’23, H. ’24)

Let L/K be a finite Galois extension. Let G be its Galois group.
Then there is a correspondence between

objects of Eb
R-c(IKX ) and

pairs (F , (φg )g∈G ), where F ∈ Eb
R-c(ILX ) and φg : F

∼→ F
g

such that for any g , h ∈ G the diagram

F F
h

F
g h

F
gh

φh

φgh

φg
h

commutes.

In other words, if we are given F and we can find such a collection
of φg ’s, then there exists an object FK such that F ≃ LX ⊗KX

FK .
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Hypergeometric differential equations

X = Gm,q: one-dimensional complex algebraic torus, coordinate q.
For α1, . . . , αn, β1 . . . , βm ∈ [0, 1) ⊂ R, set

P :=
n∏

i=1

(q∂q − αi )− q
m∏
j=1

(q∂q − βj); H(α;β) := DX/(P).

We assume αi ̸= βj for any i , j .

Theorem (Barco–Hien–H.–Sevenheck 2023)

If the non-zero αi come in pairs that sum up to 1 (and the same
for the βj), then there exists F ∈ Eb

R-c(RX ) such that

SolEX (H(α;β)) ≃ CX ⊗RX
F .
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Idea of the proof

“Proposition” (close to reality)

H(α;β) ≃ p+(Eφ ⊗R)

p : (Gm)
n+m ×Gm,q → Gm,q projection,

φ = 1
x1

+ . . .+ 1
xn

+ xn+1 + . . .+ xn+m + q · x1 · · · xn+m,

R regular with solutions c · xα1
1 · · · xαn

n · x
β1
n+1 · · · x

βm
n+m.

Hence SolEX (H(α;β)) ≃ Ep!!(Eφ
+
⊗ L)←

local system with monodromies
e2πiα1 , . . . , e2πiαn , e2πiβ1 , . . . , e2πiβm , id

SolEX (H(α;β)) ≃ Ep!!(Eφ
+
⊗ L)←

local system with monodromies
e2πiα1 , . . . , e2πiαn , e2πiβ1 , . . . , e2πiβm , id
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A more general version

Theorem (Barco–Hien–H.–Sevenheck 2023)

Let L ⊂ C be a field containing e2πiαi , e2πiβj for any i , j . Let
K ⊂ L be a finite Galois extension such that the natural action of
the Galois group Gal(L/K ) on L induces actions on the sets
{e2πiα1 , . . . , e2πiαn}, {e2πiβ1 , . . . , e2πiβm}. Then there exists
F ∈ Eb

R-c(IKX ) such that

SolEX (H(α;β)) ≃ CX ⊗KX
F .

One can make this explicit for concrete examples of K , e.g. K = Q.
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Generalized monodromy data — Stokes data

X = disk around the origin, D = {0}

Recall:{
meromorphic connections on X

with regular pole at 0

}
←→

{
local systems
on X \ {0}

}

The general (i.e. not necessarily regular) case:{
meromorphic connections on X

with pole at 0

}
←→

{
Stokes data
around 0

}
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Generalized monodromy data — Stokes data

X = disk around the origin, D = {0}

Recall:{
meromorphic connections on X

with regular pole at 0

}
←→

{
local systems
on X \ {0}

}

σ1
σ2

σ3

σ4

σ5 σ6

σ7

σ8Stokes data

M
monodromy

The general (i.e. not necessarily regular) case:{
meromorphic connections on X

with pole at 0

}
←→

{
Stokes data
around 0

}
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Descent for Stokes data

Theorem (H. ’24)

LetM be a holonomic DX -module. If SolE(M) comes from an
object over K , then its Stokes data can be represented by matrices
with entries in K .
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Related results

Theorem (H.–Schapira ’23)

Let f : X → Y be a morphism of real analytic manifolds and L/K
a field extension. Let F (resp. G ) be a sheaf of K -vector spaces on
X (resp. Y ). Under weak constructibility assumptions on F , G and
f , one has isomorphisms

f∗(F ⊗KX
LX )

∼←− (f∗F )⊗KY
LY ,

f !(G ⊗KY
LY )

∼←− (f !G )⊗KX
LX .

Theorem (H. ’24)

Kashiwara’s conjugation functor for DX -modules corresponds to
complex conjugation on enhanced ind-sheaves via the
Riemann–Hilbert functor

SolEX : Db
hol(DX ) −→ Eb

R-c(ICX ).
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Thank You!
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