Galois descent for generalized monodromy data

Andreas Hohl

Technische Universität Chemnitz

Painlevé Equations and related topics November 13th, 2024

•
$$z\frac{d}{dz}f(z) + f(z) = 0$$

•
$$z\frac{d}{dz}f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{z}$$

•
$$z \frac{d}{dz} f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{z}$$

sheaf of solutions: $\mathbb{C}_{X \setminus \{0\}}$

•
$$z \frac{d}{dz} f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{z}$$

sheaf of solutions: $\mathbb{C}_{X \setminus \{0\}}$

•
$$2z \frac{d}{dz}f(z) + f(z) = 0$$

•
$$z \frac{d}{dz} f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{z}$$

sheaf of solutions: $\mathbb{C}_{X \setminus \{0\}}$

•
$$2z \frac{d}{dz}f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{\sqrt{z}}$$

•
$$z \frac{d}{dz} f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{z}$$

sheaf of solutions: $\mathbb{C}_{X \setminus \{0\}}$

•
$$2z \frac{d}{dz} f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{\sqrt{z}}$$

sheaf of solutions: local system on $X \setminus \{0\}$ with stalk \mathbb{C} and monodromy -1

- $z \frac{d}{dz} f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{z}$ sheaf of solutions: $\mathbb{C}_{X \setminus \{0\}}$
- $2z\frac{d}{dz}f(z) + f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot \frac{1}{\sqrt{z}}$ sheaf of solutions: local system on $X \setminus \{0\}$ with stalk \mathbb{C} and monodromy -1
- $z \frac{d}{dz} f(z) + \gamma f(z) = 0 \quad \rightsquigarrow f(z) = c \cdot z^{-\gamma}$ sheaf of solutions: local system on $X \setminus \{0\}$ with stalk \mathbb{C} and monodromy $e^{-2\pi i \gamma}$

Idea (inspired by Hilbert's 21st problem):

Correspondence between differential equations and topological data (e.g. local systems = representations of the fundamental group)

Idea (inspired by Hilbert's 21st problem):

Correspondence between differential equations and topological data (e.g. local systems = representations of the fundamental group)

Theorem (Deligne '70)

X complex manifold, $D \subset X$ divisor

 $\left\{\begin{array}{c} \text{meromorphic connections on } X\\ \text{with regular poles at } D\end{array}\right\} \xrightarrow{\sim} \left\{\begin{array}{c} \text{local systems}\\ \text{on } X \setminus D\end{array}\right\}$

Two facts:

- Linear differential equations determine monodromy data (over $\mathbb{C})$
- Theory of local systems works over any field

Two facts:

- \bullet Linear differential equations determine monodromy data (over $\mathbb{C})$
- Theory of local systems works over any field

<u>Question</u>: When are the monodromy data of a differential equation defined over a subfield of $\mathbb{C}?$

Two facts:

- Linear differential equations determine monodromy data (over $\mathbb{C})$
- Theory of local systems works over any field

<u>Question</u>: When are the monodromy data of a differential equation defined over a subfield of \mathbb{C} ?

E.g. Mixed Hodge modules: Regular holonomic D-modules whose perverse sheaf is defined over \mathbb{Q} .

Two facts:

- Linear differential equations determine monodromy data (over $\mathbb{C})$
- Theory of local systems works over any field

<u>Question</u>: When are the monodromy data of a differential equation defined over a subfield of $\mathbb{C}?$

E.g. Mixed Hodge modules: Regular holonomic D-modules whose perverse sheaf is defined over \mathbb{Q} .

Our case of interest: Hypergeometric differential equations

Fedorov '18: Real structures of hypergeometric equations with regular singularities

Barco–Hien–H.–Sevenheck '23: Allow irregular singularities and consider more general subfields of $\mathbb C$

- Riemann-Hilbert correspondence for irregular singularities (d'après D'Agnolo-Kashiwara)
- ② Galois descent
- 8 Results for hypergeometric systems

D-modules: An algebraic theory of differential equations

X: complex manifold, \mathcal{O}_X : sheaf of holomorphic functions

D-modules: An algebraic theory of differential equations

X: complex manifold, \mathcal{O}_X : sheaf of holomorphic functions

 \mathcal{D}_X : sheaf of linear differential operators local sections: finite sums of the form

$$P = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} a_{\alpha}(z) \frac{\mathsf{d}^{\alpha_1}}{\mathsf{d} z_1^{\alpha_1}} \cdots \frac{\mathsf{d}^{\alpha_n}}{\mathsf{d} z_n^{\alpha_n}} \quad (a_{\alpha} \in \mathcal{O}_X)$$

D-modules: An algebraic theory of differential equations

X: complex manifold, \mathcal{O}_X : sheaf of holomorphic functions

 \mathcal{D}_X : sheaf of linear differential operators local sections: finite sums of the form

$$P = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} a_{\alpha}(z) \frac{\mathsf{d}^{\alpha_1}}{\mathsf{d} z_1^{\alpha_1}} \cdots \frac{\mathsf{d}^{\alpha_n}}{\mathsf{d} z_n^{\alpha_n}} \quad (a_{\alpha} \in \mathcal{O}_X)$$

Observation

Let $P \in \mathcal{D}_X$, then consider the \mathcal{D}_X -module $\mathcal{M} \coloneqq \mathcal{D}_X/(P)$. One has

$$\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\mathcal{O}_X)\simeq \{f\in\mathcal{O}_X; Pf=0\}$$

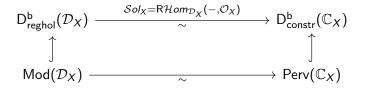
Regular Riemann-Hilbert correspondence

$$\mathsf{D}^{\mathsf{b}}(\mathcal{D}_X) \xrightarrow{\mathcal{S}ol_X = \mathsf{R}\mathcal{H}om_{\mathcal{D}_X}(-,\mathcal{O}_X)} \mathsf{D}^{\mathsf{b}}(\mathbb{C}_X)$$

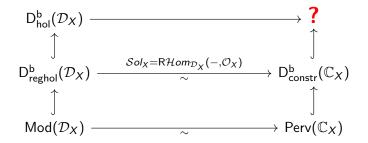
Kashiwara '81/'84, Mebkhout '84

$$\mathsf{D}^{\mathsf{b}}_{\mathsf{reghol}}(\mathcal{D}_X) \xrightarrow{\mathcal{Sol}_X = \mathsf{R}\mathcal{H}om_{\mathcal{D}_X}(-,\mathcal{O}_X)}{\sim} \mathsf{D}^{\mathsf{b}}_{\mathsf{constr}}(\mathbb{C}_X)$$

Kashiwara '81/'84, Mebkhout '84



Regular Riemann-Hilbert correspondence



A basic example of an irregular D-module

$$X=\mathbb{A}^1(\mathbb{C})$$

$$\begin{array}{l} \text{reg} \ \ \mathcal{M}_1 = \mathcal{D}_X / \mathcal{D}_X \big(z^2 \frac{\mathsf{d}}{\mathsf{d}z} + z \big) \\ \\ \text{solutions:} \ \ c \cdot \frac{1}{z} \rightsquigarrow \text{ local system } \mathbb{C}_{X \setminus \{0\}} \end{array}$$

A basic example of an irregular D-module

$$X=\mathbb{A}^1(\mathbb{C})$$

reg
$$\mathcal{M}_1 = \mathcal{D}_X / \mathcal{D}_X (z^2 \frac{d}{dz} + z)$$

solutions: $c \cdot \frac{1}{z} \rightsquigarrow \text{local system } \mathbb{C}_{X \setminus \{0\}}$
irreg $\mathcal{M}_2 = \mathcal{E}^{\frac{1}{z}} = \mathcal{D}_X / \mathcal{D}_X (z^2 \frac{d}{dz} + 1)$
solutions: $c \cdot e^{\frac{1}{z}} \rightsquigarrow \text{local system } \mathbb{C}_{X \setminus \{0\}}$

A basic example of an irregular D-module

$$X = \mathbb{A}^1(\mathbb{C})$$

reg
$$\mathcal{M}_1 = \mathcal{D}_X / \mathcal{D}_X (z^2 \frac{d}{dz} + z)$$

solutions: $c \cdot \frac{1}{z} \rightsquigarrow \text{local system } \mathbb{C}_{X \setminus \{0\}}$
irreg $\mathcal{M}_2 = \mathcal{E}^{\frac{1}{z}} = \mathcal{D}_X / \mathcal{D}_X (z^2 \frac{d}{dz} + 1)$
solutions: $c \cdot e^{\frac{1}{z}} \rightsquigarrow \text{local system } \mathbb{C}_{X \setminus \{0\}}$
In fact: $\mathcal{Sol}_X(\mathcal{M}_1) \simeq \mathcal{Sol}_X(\mathcal{M}_2)$

<u>Idea</u>: Use a different solution functor that takes into account the growth of the solutions.

Tempered solutions

<u>Idea</u> (Kashiwara–Schapira): Replace \mathcal{O}_X by \mathcal{O}_X^t , defined by

$$\mathcal{O}_X^{\mathrm{t}}(U) \coloneqq \left\{ f \in \mathcal{O}_X(U); \exists C, M \in \mathbb{R}_{>0} \, \forall z \in U : |f(z)| \leq rac{C}{\mathsf{dist}(z, \partial U)^M}
ight\}$$

(for $U \subset X$ relatively compact). $Sol_X^t := \mathbb{RHom}_{\mathcal{D}_X}(-, \mathcal{O}_X^t)$

Tempered solutions

Idea (Kashiwara–Schapira): Replace \mathcal{O}_X by \mathcal{O}_X^t , defined by

$$\mathcal{O}_X^{\mathrm{t}}(U) \coloneqq \left\{ f \in \mathcal{O}_X(U); \exists C, M \in \mathbb{R}_{>0} \, \forall z \in U : |f(z)| \leq rac{C}{\operatorname{dist}(z, \partial U)^M}
ight\}$$

(for $U \subset X$ relatively compact). $Sol_X^t := \mathbb{RHom}_{\mathcal{D}_X}(-, \mathcal{O}_X^t)$

Then for $U \subset X \setminus \{0\}$ $H^0 Sol_X^t(\mathcal{M}_1)(U) = \mathbb{C}$ $H^0 Sol_X^t(\mathcal{M}_2)(U) = \begin{cases} \mathbb{C} & \text{if } \operatorname{Re} \frac{1}{z} \text{ is bounded on } U \\ 0 & \text{otherwise} \end{cases}$

Technical problem: \mathcal{O}_X^t is not a sheaf!

Subanalytic sheaves

Technical problem: \mathcal{O}_X^t is not a sheaf

Subanalytic sheaves

Technical problem: \mathcal{O}_X^t is not a sheaf (for the usual topology)

Technical problem: \mathcal{O}_X^t is not a sheaf (for the usual topology)

 \mathcal{O}_X^t is a sheaf on the subanalytic site:

open sets: subanalytic relatively compact open subsets of *X* coverings: finite coverings

In this framework, we can write

$$\begin{split} \mathsf{H}^0 \mathcal{S}ol^{\mathsf{t}}(\mathcal{M}_1) &\simeq \mathbb{C}_{X \setminus \{0\}} \\ \mathsf{H}^0 \mathcal{S}ol^{\mathsf{t}}(\mathcal{E}^{\frac{1}{z}}) &\simeq \underset{a \to \infty}{``} \mathbb{C}_{\{z \in X \setminus \{0\}; \operatorname{Re} \frac{1}{z} < a\}} \end{split}$$

A further construction is needed to obtain a fully faithful functor. \rightsquigarrow Enhanced ind-sheaves $\mathsf{E}^{\mathsf{b}}(\mathbb{IC}_X) \approx$ Subanalytic sheaves on $X \times \overline{\mathbb{R}}$

A further construction is needed to obtain a fully faithful functor. \rightsquigarrow Enhanced ind-sheaves $\mathsf{E}^{\mathsf{b}}(\mathbb{IC}_X) \approx$ Subanalytic sheaves on $X \times \overline{\mathbb{R}}$

Theorem (D'Agnolo–Kashiwara '16)

Let X be a complex manifold. There is a fully faithful functor

$$\mathcal{S}ol_X^{\mathsf{E}} \colon \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_X) \hookrightarrow \mathsf{E}^{\mathsf{b}}_{\mathbb{R}\text{-}\mathsf{c}}(\mathbb{IC}_X)$$

extending the Riemann–Hilbert functor for regular holonomic \mathcal{D}_X -modules

(relying on the classification of holonomic D-modules due to Sabbah, Kedlaya, T. Mochizuki)

A further construction is needed to obtain a fully faithful functor. \rightsquigarrow Enhanced ind-sheaves $\mathsf{E}^{\mathsf{b}}(\mathbb{IC}_X) \approx$ Subanalytic sheaves on $X \times \overline{\mathbb{R}}$

Theorem (D'Agnolo–Kashiwara '16)

Let X be a complex manifold. There is a fully faithful functor

$$\mathcal{S}ol_X^{\mathsf{E}} \colon \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_X) \hookrightarrow \mathsf{E}^{\mathsf{b}}_{\mathbb{R}\text{-}\mathsf{c}}(\mathbb{IC}_X)$$

extending the Riemann–Hilbert functor for regular holonomic \mathcal{D}_X -modules

(relying on the classification of holonomic D-modules due to Sabbah, Kedlaya, T. Mochizuki)

$$\mathbb{E}^{\frac{1}{z}} := \mathcal{S}ol_{X}^{\mathsf{E}}(\mathcal{E}^{\frac{1}{z}}) \simeq \underset{a \to \infty}{``\lim_{a \to \infty}``} \mathbb{C}_{\{(z,t) \in X \setminus \{0\} \times \mathbb{R}; t + \operatorname{Re} \frac{1}{z} \geq a\}}$$

A further construction is needed to obtain a fully faithful functor. \rightsquigarrow *Enhanced ind-sheaves* $E^{b}(\mathbb{IC}_{X}) \approx$ Subanalytic sheaves on $X \times \overline{\mathbb{R}}$ Six functors: $\stackrel{+}{\otimes}$, Ef_{*} , $Ef_{!!}$, etc.

Theorem (D'Agnolo–Kashiwara '16)

Let X be a complex manifold. There is a fully faithful functor

$$\mathcal{S}ol_X^{\mathsf{E}} \colon \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_X) \hookrightarrow \mathsf{E}^{\mathsf{b}}_{\mathbb{R}\text{-c}}(\mathsf{I}\mathbb{C}_X)$$

extending the Riemann–Hilbert functor for regular holonomic \mathcal{D}_X -modules and compatible with many of the six operations.

(relying on the classification of holonomic D-modules due to Sabbah, Kedlaya, T. Mochizuki)

$$\mathbb{E}^{\frac{1}{z}} := \mathcal{S}ol_X^{\mathsf{E}}(\mathcal{E}^{\frac{1}{z}}) \simeq \underset{a \to \infty}{`` \lim_{a \to \infty} `` \mathbb{C}_{\{(z,t) \in X \setminus \{0\} \times \mathbb{R}; t + \operatorname{Re} \frac{1}{z} \geq a\}}$$

Galois descent – the case \mathbb{C}/\mathbb{R}

- V: complex vector space
- \overline{V} : same underlying additive group, $\lambda \cdot v \coloneqq \overline{\lambda}v$ for $\lambda \in \mathbb{C}, v \in V$

Galois descent – the case \mathbb{C}/\mathbb{R}

V: complex vector space

 \overline{V} : same underlying additive group, $\lambda \cdot v \coloneqq \overline{\lambda} v$ for $\lambda \in \mathbb{C}, v \in V$

There is a correspondence

Galois descent – the case \mathbb{C}/\mathbb{R}

V: complex vector space

 \overline{V} : same underlying additive group, $\lambda \cdot v \coloneqq \overline{\lambda} v$ for $\lambda \in \mathbb{C}, v \in V$

There is a correspondence

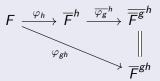
 $\begin{array}{lll} \text{isomorphisms} & \text{sub-}\mathbb{R}\text{-vector spaces} \\ \varphi \colon V \xrightarrow{\sim} \overline{V} & W \subset V \\ \text{such that} & \longleftrightarrow & \text{such that} \\ V \xrightarrow{\varphi} \overline{V} \xrightarrow{\overline{\varphi}} \overline{\overline{V}} = V & W \otimes_{\mathbb{R}} \mathbb{C} \longrightarrow V \\ \text{is the identity} & \text{is an isomorphism} \end{array}$

This generalizes to finite Galois extensions L/K.

Theorem (BHHS '23, H. '24)

Let L/K be a finite Galois extension. Let G be its Galois group. Then there is a correspondence between

- objects of $E^{b}_{\mathbb{R}-c}(\mathsf{I}K_X)$ and
- pairs $(F, (\varphi_g)_{g \in G})$, where $F \in \mathsf{E}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathsf{IL}_X)$ and $\varphi_g \colon F \xrightarrow{\sim} \overline{F}^g$ such that for any $g, h \in G$ the diagram

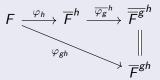


commutes.

Theorem (BHHS '23, H. '24)

Let L/K be a finite Galois extension. Let G be its Galois group. Then there is a correspondence between

- objects of $E^{b}_{\mathbb{R}-c}(\mathsf{I}K_X)$ and
- pairs $(F, (\varphi_g)_{g \in G})$, where $F \in \mathsf{E}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathsf{IL}_X)$ and $\varphi_g \colon F \xrightarrow{\sim} \overline{F}^g$ such that for any $g, h \in G$ the diagram



commutes.

In other words, if we are given F and we can find such a collection of φ_g 's, then there exists an object F_K such that $F \simeq L_X \otimes_{K_X} F_K$.

Hypergeometric differential equations

 $X = \mathbb{G}_{m,q}$: one-dimensional complex algebraic torus, coordinate q. For $\alpha_1, \ldots, \alpha_n, \beta_1 \ldots, \beta_m \in [0, 1) \subset \mathbb{R}$, set

$$P := \prod_{i=1}^{n} (q\partial_q - \alpha_i) - q \prod_{j=1}^{m} (q\partial_q - \beta_j); \qquad \mathcal{H}(\alpha; \beta) := \mathcal{D}_X/(P).$$

We assume $\alpha_i \neq \beta_j$ for any i, j.

Hypergeometric differential equations

 $X = \mathbb{G}_{m,q}$: one-dimensional complex algebraic torus, coordinate q. For $\alpha_1, \ldots, \alpha_n, \beta_1 \ldots, \beta_m \in [0, 1) \subset \mathbb{R}$, set

$$P := \prod_{i=1}^{n} (q\partial_q - \alpha_i) - q \prod_{j=1}^{m} (q\partial_q - \beta_j); \qquad \mathcal{H}(\alpha; \beta) := \mathcal{D}_X/(P).$$

We assume $\alpha_i \neq \beta_j$ for any i, j.

Theorem (Barco–Hien–H.–Sevenheck 2023)

If the non-zero α_i come in pairs that sum up to 1 (and the same for the β_j), then there exists $F \in E^b_{\mathbb{R}-c}(\mathbb{R}_X)$ such that $\mathcal{Sol}^{\mathsf{E}}_X(\mathcal{H}(\alpha;\beta)) \simeq \mathbb{C}_X \otimes_{\mathbb{R}_X} F.$

Idea of the proof

"Proposition" (close to reality)

$$\mathcal{H}(\alpha;\beta)\simeq p_+(\mathcal{E}^{\varphi}\otimes\mathcal{R})$$

$$p: (\mathbb{G}_{m})^{n+m} \times \mathbb{G}_{m,q} \to \mathbb{G}_{m,q} \text{ projection,}$$

$$\varphi = \frac{1}{x_{1}} + \ldots + \frac{1}{x_{n}} + x_{n+1} + \ldots + x_{n+m} + q \cdot x_{1} \cdots x_{n+m},$$

$$\mathcal{R} \text{ regular with solutions } c \cdot x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot x_{n+1}^{\beta_{1}} \cdots x_{n+m}^{\beta_{m}}.$$

Idea of the proof

"Proposition" (close to reality)

$$\mathcal{H}(\alpha;\beta) \simeq p_{+}(\mathcal{E}^{\varphi} \otimes \mathcal{R})$$

$$p: (\mathbb{G}_{m})^{n+m} \times \mathbb{G}_{m,q} \rightarrow \mathbb{G}_{m,q} \text{ projection,}$$

$$\varphi = \frac{1}{x_{1}} + \ldots + \frac{1}{x_{n}} + x_{n+1} + \ldots + x_{n+m} + q \cdot x_{1} \cdots x_{n+m},$$

$$\mathcal{R} \text{ regular with solutions } c \cdot x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot x_{n+1}^{\beta_{1}} \cdots x_{n+m}^{\beta_{m}}.$$

Hence

$$\mathcal{S}ol_{X}^{\mathsf{E}}(\mathcal{H}(\alpha;\beta)) \simeq \mathsf{E}p_{!!}(\mathbb{E}^{\varphi} \overset{+}{\otimes} \mathcal{L})$$

$$\uparrow^{\uparrow}$$

$$\mathsf{local system with monodromies}$$

$$e^{2\pi i \alpha_{1}}, \dots, e^{2\pi i \alpha_{n}}, e^{2\pi i \beta_{1}}, \dots, e^{2\pi i \beta_{m}}, \mathsf{id}$$

Idea of the proof

"Proposition" (close to reality)

$$\mathcal{H}(\alpha;\beta) \simeq p_{+}(\mathcal{E}^{\varphi} \otimes \mathcal{R})$$

$$p: (\mathbb{G}_{m})^{n+m} \times \mathbb{G}_{m,q} \rightarrow \mathbb{G}_{m,q} \text{ projection,}$$

$$\varphi = \frac{1}{x_{1}} + \ldots + \frac{1}{x_{n}} + x_{n+1} + \ldots + x_{n+m} + q \cdot x_{1} \cdots x_{n+m},$$

$$\mathcal{R} \text{ regular with solutions } c \cdot x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot x_{n+1}^{\beta_{1}} \cdots x_{n+m}^{\beta_{m}}.$$

$$Sol_X^{\mathsf{E}}(\mathcal{H}(\alpha;\beta)) \simeq \mathsf{E}_{p_{!!}}(\mathbb{E}^{\varphi} \overset{\times}{\otimes} \mathcal{L})$$

$$\uparrow$$

$$\mathsf{local system with monodromies}$$

$$e^{2\pi i \alpha_1}, \dots, e^{2\pi i \alpha_n}, e^{2\pi i \beta_1}, \dots, e^{2\pi i \beta_m}, \mathsf{id}$$

$$\overline{Sol_X^{\mathsf{E}}(\mathcal{H}(\alpha;\beta))} \simeq \mathsf{E}_{p_{!!}}(\mathbb{E}^{\varphi} \overset{\times}{\otimes} \overline{\mathcal{L}})$$

$$\uparrow$$

$$\mathsf{local system with monodromies}$$

$$e^{2\pi i \alpha_1}, \dots, e^{2\pi i \beta_n}, \mathsf{id}$$

$$\mathsf{Andreas Holl} \qquad \mathsf{Galois descent and Stokes data}$$

i.

Theorem (Barco–Hien–H.–Sevenheck 2023)

Let $L \subset \mathbb{C}$ be a field containing $e^{2\pi i\alpha_i}$, $e^{2\pi i\beta_j}$ for any i, j. Let $K \subset L$ be a finite Galois extension such that the natural action of the Galois group $\operatorname{Gal}(L/K)$ on L induces actions on the sets $\{e^{2\pi i\alpha_1}, \ldots, e^{2\pi i\alpha_n}\}$, $\{e^{2\pi i\beta_1}, \ldots, e^{2\pi i\beta_m}\}$. Then there exists $F \in \operatorname{E}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\operatorname{I} K_X)$ such that $\operatorname{Sol}^{\mathrm{E}}_X(\mathcal{H}(\alpha;\beta)) \simeq \mathbb{C}_X \otimes_{K_X} F.$

One can make this explicit for concrete examples of K, e.g. $K = \mathbb{Q}$.

X =disk around the origin, $D = \{0\}$

Recall:

$$\left\{\begin{array}{c} \text{meromorphic connections on } X\\ \text{with regular pole at } 0\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{local systems}\\ \text{on } X \setminus \{0\}\end{array}\right\}$$

$$X = \text{disk around the origin, } D = \{0\}$$

Recall:
$$\left\{\begin{array}{c} \text{meromorphic connections on } X\\ \text{with regular pole at } 0\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{local systems}\\ \text{on } X \setminus \{0\}\end{array}\right\}$$

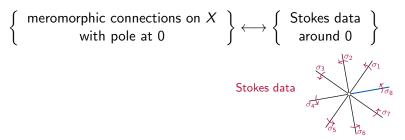
 $X = \text{disk around the origin, } D = \{0\}$ Recall: $\begin{cases} \text{ meromorphic connections on } X \\ \text{ with regular pole at } 0 \end{cases} \longleftrightarrow \begin{cases} \text{ local systems} \\ \text{ on } X \setminus \{0\} \end{cases}$

The general (i.e. not necessarily regular) case:

$$\left\{\begin{array}{c} \text{meromorphic connections on } X\\ \text{with pole at } 0\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Stokes data}\\ \text{around } 0\end{array}\right\}$$

 $X = \text{disk around the origin, } D = \{0\}$ Recall: $\begin{cases} \text{ meromorphic connections on } X \\ \text{ with regular pole at } 0 \end{cases} \longleftrightarrow \begin{cases} \text{ local systems} \\ \text{ on } X \setminus \{0\} \end{cases}$

The general (i.e. not necessarily regular) case:



Theorem (H. '24)

Let \mathcal{M} be a holonomic \mathcal{D}_X -module. If $Sol^{\mathsf{E}}(\mathcal{M})$ comes from an object over K, then its Stokes data can be represented by matrices with entries in K.

Theorem (H.–Schapira '23)

Let $f: X \to Y$ be a morphism of real analytic manifolds and L/Ka field extension. Let F (resp. G) be a sheaf of K-vector spaces on X (resp. Y). Under weak constructibility assumptions on F, G and f, one has isomorphisms

$$f_*(F \otimes_{K_X} L_X) \xleftarrow{\sim} (f_*F) \otimes_{K_Y} L_Y,$$

$$f^!(G \otimes_{K_Y} L_Y) \xleftarrow{\sim} (f^!G) \otimes_{K_X} L_X.$$

Theorem (H.–Schapira '23)

Let $f: X \to Y$ be a morphism of real analytic manifolds and L/Ka field extension. Let F (resp. G) be a sheaf of K-vector spaces on X (resp. Y). Under weak constructibility assumptions on F, G and f, one has isomorphisms

$$f_*(F \otimes_{K_X} L_X) \xleftarrow{\sim} (f_*F) \otimes_{K_Y} L_Y,$$

$$f^!(G \otimes_{K_Y} L_Y) \xleftarrow{\sim} (f^!G) \otimes_{K_X} L_X.$$

Theorem (H. '24)

Kashiwara's conjugation functor for \mathcal{D}_X -modules corresponds to complex conjugation on enhanced ind-sheaves via the Riemann–Hilbert functor

$$Sol_X^{\mathsf{E}} \colon \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathcal{D}_X) \longrightarrow \mathsf{E}^{\mathsf{b}}_{\mathbb{R}\text{-}\mathsf{c}}(\mathsf{I}\mathbb{C}_X).$$

THANK YOU!

- D. Barco, M. Hien, A. Hohl and C. Sevenheck, *Betti* Structures of Hypergeometric Equations, Int. Math. Res. Not. 2023 (2023), 10641–10701.
- A. Hohl, An introduction to field extensions and Galois descent for sheaves of vector spaces, 2023, arXiv:2302.14837.
- A. Hohl and P. Schapira, *Unusual functorialities for weakly constructible sheaves*, 2023, arXiv:2303.11189.
- A. Hohl, Kashiwara conjugation and the enhanced Riemann-Hilbert correspondence, Port. Math. 81 (2024), 347–387.