The Geometric P=W conjecture and

Thurston's compactification Mohannad F. Tehrani Joint with C. Frohman and A. A. Kutteri

Webinar on Painlevé Equations and related topics

May 2025

character Varieties of Surfaces

$$\sum_{g_{in}}$$
 : genus g surface with n punctures

G: Algebraic Reductive Lie group

$$\chi_{g,n}(G) = How(\pi_i(2g,n),G) //G$$

$$n = 0 \implies I \text{ will write } \chi_g(G)$$

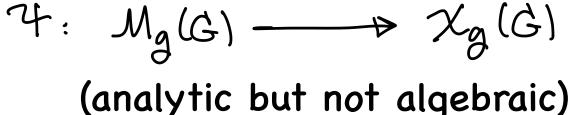
 $G = SL(2_1G) \implies I \text{ will write } \chi_g$

In arXiv: 2305.12306, Frohman & I studied punctured case I will review the results at the end Dolbeault moduli space & P=W conjecture

•
$$M_g(G) = Moduli \text{ space parametrizing flat}$$

Principal G- Higgs bundles on Σ_g

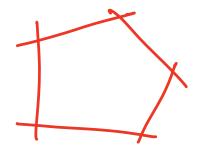
non-abelian Hodge correspondence



[Hitchin, Simpson, Corlette, Donaldson,... see Eper- Szabo for a survey of results and an extensive list of references] Geometric P=W conjecture aims to understand asymptotic behaviour of 7

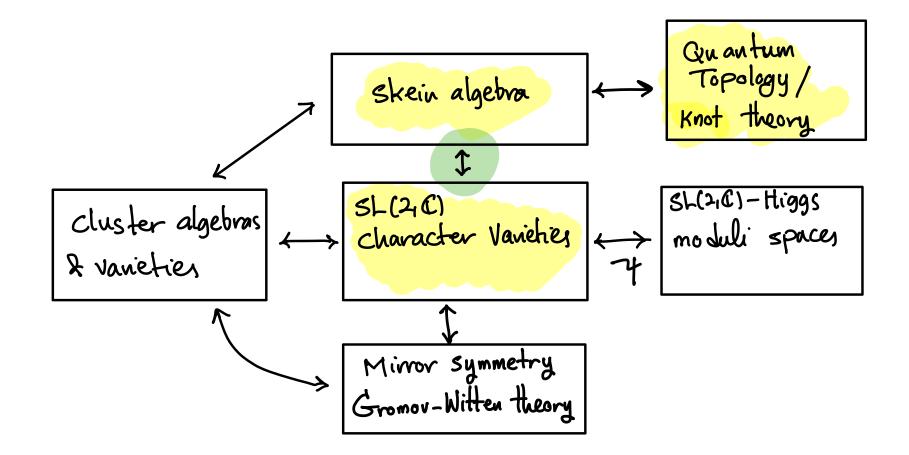
Conjecture [Mauri-Mazzon-Stevenson]

 \mathcal{X}_{g} admits a dlt log CY compactification such that the dual intersection complex of the boundary divisors is a polyhedral complex homeomorphic to a sphere (i.e. \leq^{69-5})



Focus of this talk:

Constructing a projective compactification of χ_g whose dual intersection complex is a sphere and even better!



1 $Sh(2_1 \mathbb{C})$ - character varieties vs. Skein algebra

Theorem (Bullock-Przytycki-Sikora, Charles-Marché + Barrett)

$$C[\chi_{g_{1n}}]$$

Ring of regular functions

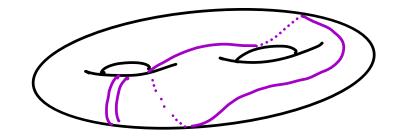
sk
$$(2g_{n})$$

classical limit q=1 of skeir
algebra

Sk(Igen) := Algebra generated as a vector space by multicurves on Igen , with multiplication * coming from taking union and resolving intersections

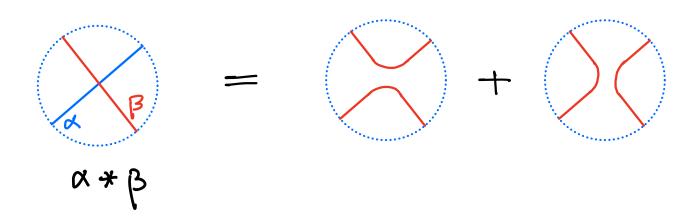
[Lets dig into this a bit]

• Multicurve: (Isotropy class of) a disjoint union of simple closed curves on $\mathbb{Z}_{g,n}$

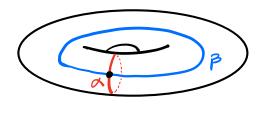


Convention: trivial curve = -2

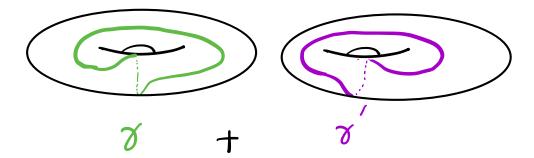
Product *:

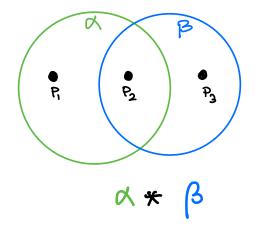


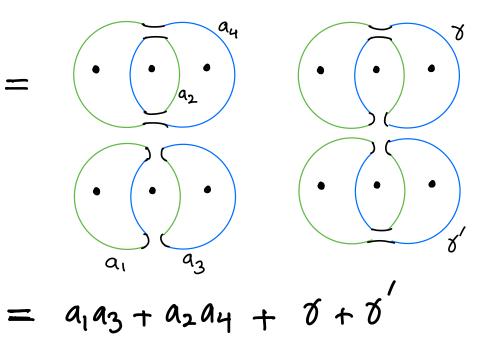
Example:



X * B







There is a one-to-one correspondence

Projective Compactifications $\overline{\chi}_{q} \leftrightarrow$ Projective Filtrations on $\mathbb{C}[\chi_{q}]$ Given $F_0 \subseteq F_1 \subseteq \cdots \subseteq \bigcup_{d \ge 0} F_1 = \mathbb{C}[\chi_g]$ we get a compactification a compactification formal variable $\overline{X}_g = Proj \quad (\mathbb{C}[X_g][u] = F_0 \oplus F_1 u \oplus F_2 u^2 \oplus \cdots)$ with $\partial \overline{\chi}_g = (\mathcal{U} = 0) = \operatorname{Proj} (\mathbb{C} [\chi_g]^{\mathscr{P}})$ $\mathbb{C}[x_g]^{gr} = F_0 \oplus F_{f_1} \oplus F_{f_2} \oplus F_{f_3} \oplus \cdots$

idea: use Geometric intersection number with a collection of carves to define a filtration

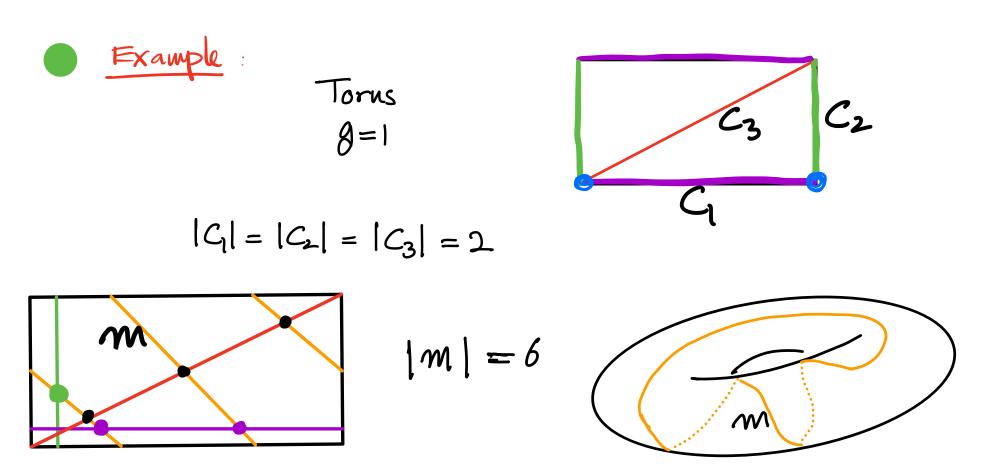
Geometric intersection number:

Fix k curves
$$G \cdots C_{\kappa} \Longrightarrow$$

wap any multicurve M to $(i(m,c_1), \dots, i(m,c_N)) \in N$

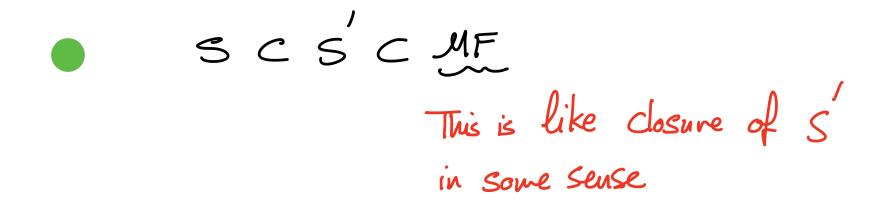
•
$$|m| = \sum_{\substack{j=1 \ j \in m_i \subset j}}^{k} i(m_i \subset j)$$

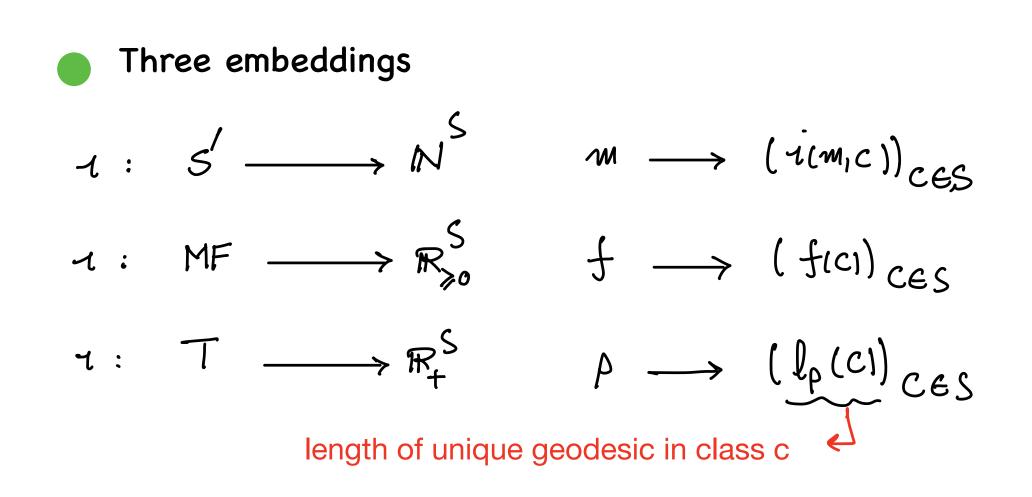
 $\overline{F_j} = \left\{ \sum_{\substack{a_s m_s \\ a_s m_s}} : max(|m_s|) \leqslant d^2 \right\} \subseteq Sk(\overline{z_g})$



Question: What collection of curves results in a nice compactification Look into quantum topology & the construction of Thurston's compactification On Ig:

- S: isotopy classes of simple closed curves
- S: isotopy classes of multicurves
- MF: space of measured Foliations
- T: Teichmüller space





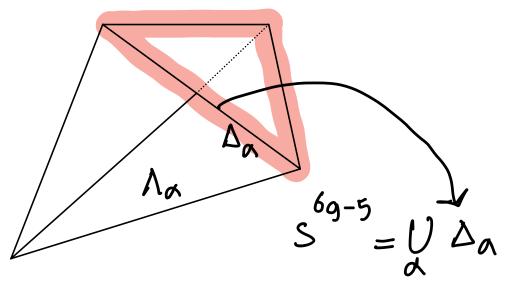
• Theorem :
$$T \cup MF \longrightarrow P(\mathbb{R}_{>0}^{S})$$

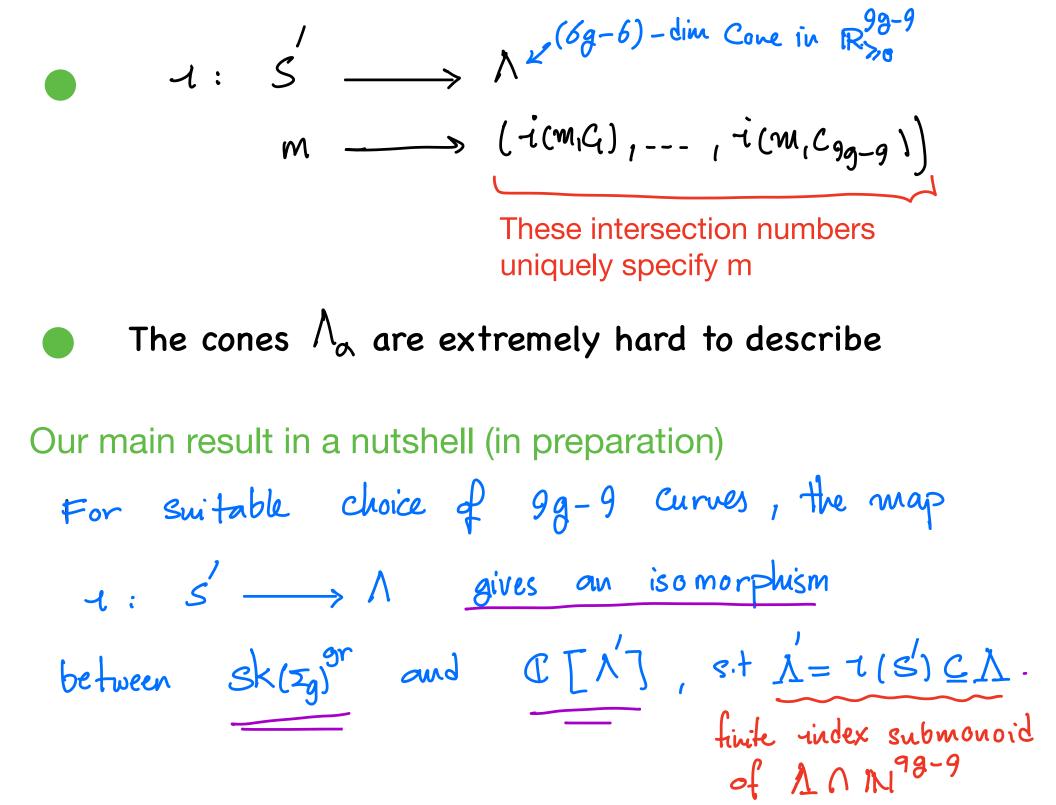
is an embedding that vealizes the union as a
compactification of T homeomorphic to a disk.
In particular $-1(MF)$ is a cone over S^{69-5} in $\mathbb{R}_{>0}^{S}$
M (1)
 M (1

- Go from the entire S to a finite collection $\{\mathcal{C}_{H} \mathcal{C}_{K}\}$ such that $\neg: MF \longrightarrow \mathbb{R}_{\geq 0}^{k}$ is still an embedding
 - Theorem. There are 9g-9 curves for which the result above is true Infact: thats how the theorem before is proved

$$1(MF) = \Lambda = \bigcup_{\alpha} \Lambda_{\alpha}$$

Union of rational 6g-6 dimensional rational polyhedral cones





Corollary The compactification coming from the associated filtration has toric boundary divisors with moment polytopes Δ_{α}

$$\implies \text{The dual intersection Couplex of } \partial \overline{\chi}_g$$
is $S^{\delta g-5}$
dual of the sphere in
Thurston compactification

Comments on steps of the proof
1. What are those
$$9g-9$$
 curves:
We have $\left\{ (G', G', G'') \right\}_{j=1}^{3g-3}$ such that
 $\left\{ (G'_{j}, G', G''_{j}) \right\}_{j=1}^{3g-3}$ such that
 $\left\{ (G'_{j})_{j=1}^{3g-3} \right\}$ defines a pants decomposition, G' are
as shown in the picture
and G'' are Dehn Twists
of G' w.r.t G

3 It is easier to describe multicurvey Using Dehn - Thurston Coordinates $DT(m) = (N_1 - N_{3g-3}, t_1 - t_{3g-3})$ $\int n_j = i(m_i c_j)$ [tj = twist parameter along G (This is discrete version of FN coordinates on T) We find explicit function F for expressing 1(m) as a function of D((m) F is a piece-wise linear function defining different A

Rest of talk: A quick review of the result
in the punctured setting
Taking trace at punctures defines a fibration
$$\chi_{q,n}$$

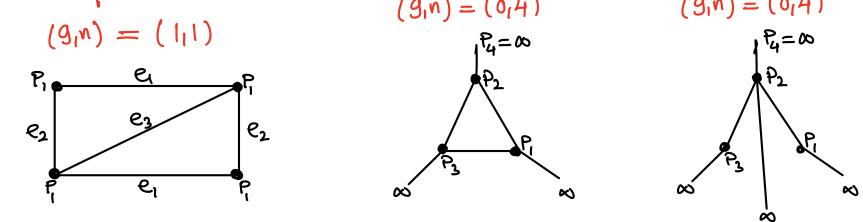
 $\pi \int_{\mathbb{C}^{n}}$
Geometric P=W is expected for slices
 $\chi_{q,n}^{\dagger} = \pi(t)$

Main Results:

Well-known example:
$$(g_1n) = (0_14)$$

 $\chi_{0_14} \cong \left\{ y_1y_2y_3 = y_1^2 + y_2^2 + y_3^2 + f_1(tr)y_1 + f_2(tr)y_2 + f_3(tr)y_3 + f_1(tr)\right\}$
 $\subseteq C_y^3 \times C_t^4$
Relative Compactification $\overline{\chi}_{0,4}^{rel} \subseteq CP^3 \times C_t$ $D_t = \left\{ y_1y_2y_3 = 0 \right\} \subseteq CP^2$
Semi-universal family of cubic surfaces A cycle of (-1)-curves

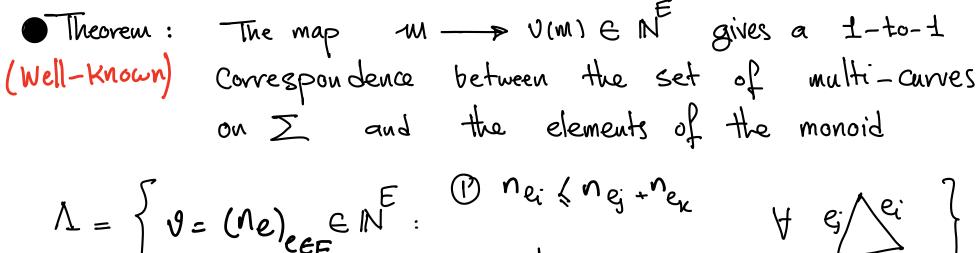
Putting Coordinates on Skein Algebra of punctured surfaces



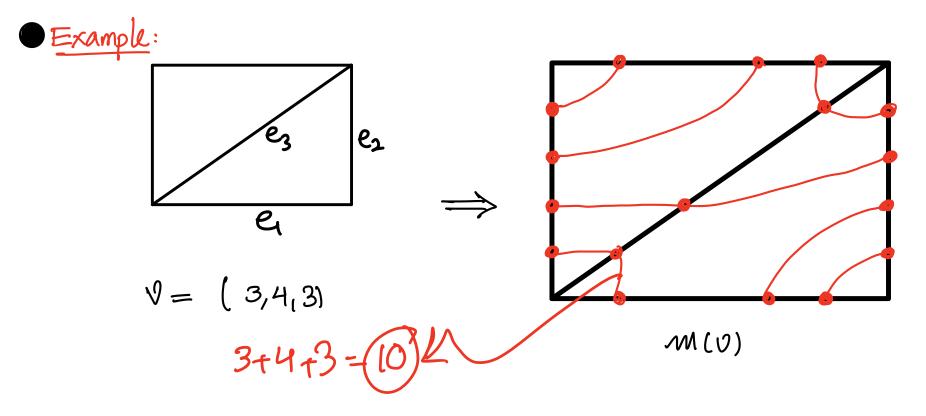
Intersection Coordinates:

• Multi-curve
$$\mathcal{M} \longrightarrow \mathcal{V} = (\operatorname{Ne}_{e\in E} \in \operatorname{N}^{E})$$

 $\operatorname{Ne} = \operatorname{minimal}$ intersection number of \mathcal{M} with the arc e
• Fact: the intersection number $[\operatorname{MRe}]$ is minimum if
(Bigon there is no bigon in the complement of \mathcal{M} ue
criterion)
• Example: $\operatorname{Ares}_{e_1} e_2$ P $\operatorname{Ars}_{\mathcal{S}}$ $\operatorname{Ars}_{\mathcal{S}} = (1, 1, 2)$
 Notice that $\mathcal{V}(\mathcal{S}) = \operatorname{V}(21 + \operatorname{V}(\mathcal{B}))$ Also $\operatorname{ArB} = \mathfrak{F} + \mathfrak{F}$



$$\frac{1}{2} = \frac{1}{2} \frac{1}{2} \left[\frac{1}{2} \frac{1}{2}$$



P_ = {VG A_R: V. I = constant c}
A_R
() What are the Z-generators of A?
Questions: (2) What are the generators of A_R?
(ric. vertices of P_A)
(3) How does the closure of
$$\chi_{g_{1n}}^{t}$$
 in
 $\overline{\chi}_{g_{1n}}$ look like?

Compactification of Slices / relative Compactification
$$\overline{x}_{g,n}$$

 $\mathbb{C}[x_{g,n}^{\dagger}]$ can be identified, as a vector space, with
 $\mathrm{Sk}(\Xi_{g,n}) = \mathrm{Sk}^{nd}(\Xi_{g,n}) = \langle \begin{array}{c} \mathrm{multi-} \mathrm{Curres} & \mathrm{that} & \mathrm{don't} & \mathrm{contain} & \mathrm{the} \\ \mathrm{peripheral} & \mathrm{Curres} & q_1 - a_n & \mathrm{around} & P_1 \cdots & P_n \\ \end{array} \rangle$
The product structure t_{\pm} on $\mathbb{C}[x_{g,n}^{\dagger}]$ corresponds to
replacing a_i with t_i whenever a_i shows up in the
outcome of the usual product $\mathrm{sut} * \mathrm{suf}$
The filtration on $\mathrm{Sk}(\Xi_{g,n})$ is the restriction of F

• In the graded algebra:

$$M *_{\pm} ni' = \begin{bmatrix} 0 & \text{if } M \# m' \text{ contains one of } q_1 - -a_n \\ M *_{\pm} ni' & \text{otherwise} \end{bmatrix}$$

• $\partial \times_{q_1n}^{\pm}$ is a toric subvariety independent of \pm
• Moment polytope complex $P_{\Delta}^{\text{rel}} \circ f$ $D^{\text{rel}} = \partial \times_{q_1n}^{\pm}$
is the union of those faces in P_{B} that
do not contain the point corresponding to $q_1 - q_n$
Why is P_{Δ}^{rel} a sphere?

Some Examples:

$$(g_{1}\Lambda) = (0_{1}4) \text{ revisited}$$

$$- \vee (a_{1}) \vee (a_{2}) \vee (a_{3}) \vee (a_{4})$$

$$\vee (c_{2}) \vee (c_{3}) \vee (c_{23})$$
generate $\Lambda \subseteq \Lambda^{6}$ and $\Lambda_{\mathbb{R}}$

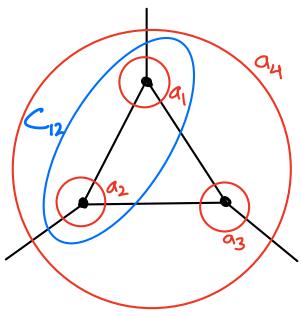
$$- |a_{i}| = 3 |c_{ij}| = 4$$

$$- \text{The only relation is} c_{12} c_{13} c_{23} = c_{12}^{2}$$

$$f_{ij}|_{kl} = a_{i}a_{j} + a_{k}a_{l}$$

$$+ f_{12}$$

$$f_{i} = a_{i}a_{2}a_{3}a_{4} + a_{1}^{2}+a_{2}^{2}+a_{4}^{2} - 4$$



$$- |a_{i}| = 3 |C_{ij}| = 4$$

$$- \text{The only relation is} C_{12} C_{13} C_{23} = C_{12}^{2} + C_{23}^{2} + C_{13}^{2} + f_{13|24} C_{13} + f_{14|24} C_{13|24} + f_{14|24} C_{13|24} + f_$$

$$\rightarrow D = (u=0) : (C_{12}C_{13}C_{23} = a_1a_2a_3a_4) \subseteq P(4:4:4:3:3:3:3)$$

$$Corresponds \quad \text{to the linear relation}$$

$$V(C_{12}) + V(C_{13}) + V(C_{23}) = V(a_1) + V(a_2) + V(a_3) + V(a_4)$$

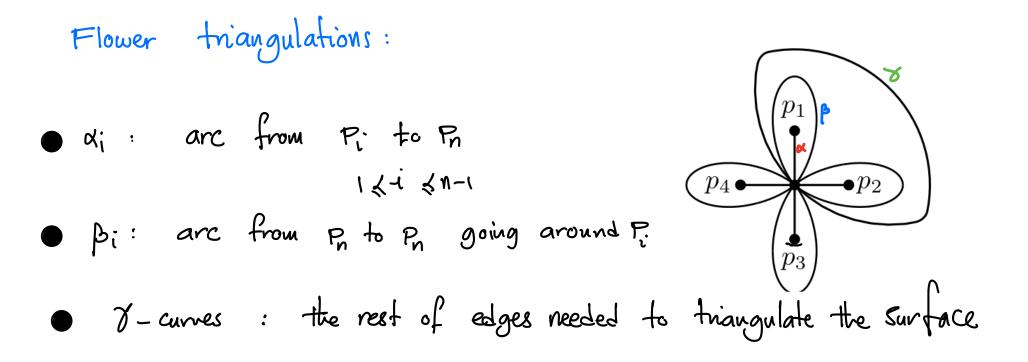
$$in \mathcal{I}_{4}^{6}$$

$$\rightarrow D^{\text{rel}} = D \cap (a_i=0) : \quad c_2 c_3 c_{23} = 0$$

Proof of sphere property Prel

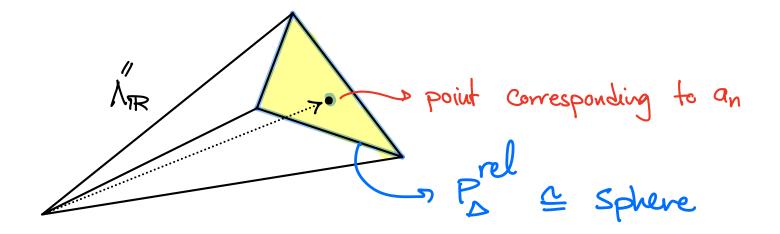
1 We prove it for a particular (type of)
$$\Delta$$

2 We show the property is preserved under mutations



•
$$\forall = [v^{\alpha}, v^{\beta}, v^{\gamma}] \in \mathbb{Z}^{n+1} \times \mathbb{Z}^{n-1} \times \mathbb{Z}^{d_{\beta}+n-4} = \mathbb{Z}^{d_{\beta}}$$

• It is easy to see that $\forall (a_{i}) = (\overline{\exists_{i}}, 0_{i}0)$ for $i = 1, ..., n-1$ and
 $\forall (cm) = (v^{\alpha}, 2v^{\alpha}, v^{\beta})$ for multicurves that do not include $a_{i} \cdots a_{n-1}$
 $\Lambda' = monoid$ generated by $\forall (a_{1}) \longrightarrow \forall (a_{n-1})$
 $\Lambda' = n n n m$ that do not contain $a_{i} \cdots a_{n-1}$
 $\downarrow N = \Lambda \oplus \Lambda$
 $\downarrow 0 \Lambda \oplus \forall (a_{n}) \longrightarrow \forall (a_{n}) \oplus \forall$



Look at the paper for the example of 5-punctured sphere & the explicit triangulated S^3 we get

The End