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General context

Wild character varieties = moduli spaces of generalised monodromy data
(Stokes data) of meromorphic connections with irregular singularities.

They have rich geometric structures (symplectic, hyperkähler)

They are moduli spaces for different objects:
Irregular connections
Stokes data (via the Riemann-Hilbert-Birkhoff correspondence)
Irregular Higgs bundles (via the nonabelian Hodge correspondence)

Via isomonodromic deformations, they give rise to many interesting
systems of nonlinear ODE, e.g. Painlevé equations.
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Motivation: isomorphisms of WCVs

A WCV depends on a choice of "wild Riemann surface": a curve Σ
together with singularity data.

WCVs coming from different wild Riemann surfaces can be isomorphic.

A manifestation of this is the existence of dualities between different
isomonodromy systems, e.g. the existence of several Lax pairs for Painlevé
equations

More specifically: there is a notion of Fourier transform for connections on
P1 which induces such isomorphisms.

Question: how does the Fourier transform act on generalised monodromy
data?

Today: Describe this in some cases (j.w. A. Hohl)
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Outline

1 Stokes data and wild character varieties

2 Fourier transform of irregular connections
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Meromorphic connections

Let Σ be a smooth complex algebraic curve. Here
Σ = P1 = C ∪ {∞}.
Consider (E ,∇) vector bundle with algebraic connection on
Σ ∖ {a1, . . . , am}.
In a local trivialization and with a choice of coordinate z :

∇ = d − A(z)dz ,

with A(z) n × n matrix having poles at singular points.
This corresponds to the system of linear differential equations

dY
dz = A(z)Y .
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Monodromy

Consider a solution Y of the equation. If we go around one singularity:
Y (z) 7→ Y (z)M, with M ∈ GLn(C).

P1

E

•

•
•

γz γ

Ez

Y (z)
Y (z)M

Example: if ∇ = d − λ
z dz , solution y(z) = zλ, monodromy e2iπλ.

Here ∇ is flat so this only depends on the homotopy class of γ. To ∇ we
associate its monodromy representation ρ : π1(Σ)→ GLn(C).
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Moduli spaces of monodromy data: character varieties

Choose some paths γ1, . . . , γm around ai generating π1(Σo, b)

×a1 ×a2 . . . ×am

•
b

Let Mi = ρ(γi) ∈ G = GLn(C).

The moduli space of monodromy data is the character variety

MB(Σ, a) = {M1, . . . , Mm |M1 . . . Mm = 1}/G .

It is a Poisson manifold (Atiyah-Bott, Goldman).
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Regular Riemann-Hilbert correspondence

Case of regular singularities (i.e basically simple poles)

de Rham moduli space:

MdR(Σ, a) = {connections with regular singularities on Σ \ a} / ∼

Here ∼ corresponds to gauge transformations i.e. changes of trivialisation
g : Σo → GLn(C), doing

A 7→ gAg−1 − dg g−1.

For the system Y ′ = AY , it corresponds to change of variable Z = g(z)Y .

Riemann-Hilbert correspondence (Deligne):

MdR(Σ, a) ≃MB(Σ, a)
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Regular vs irregular singularities

Irregular singularities: higher order poles

∇ = d − A(z)dz , A(z) = As
zs + · · ·+ A1

z + . . .

Monodromy is not enough to reconstruct the connection.

Example:
Regular ∇ = d − λ

z dz , monodromy e2iπλ.
Irregular ∇ = d − dq − λ

z dz , with q ∈ z−1C[z−1] has monodromy
e2iπλ for any q.

⇒ need generalised monodromy data for a topological description of
irregular connections
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Formal data

Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using formal
gauge transformations to a normal form

∇0 = d − dQ − Λ
z dz , Q =




q1
. . .

qn


 , qi ∈ z−1/rC[z−1/r ],

where
qi : exponential factors of ∇,
Q: irregular type of ∇, r ramification order, Q is untwisted if r = 1.
Regular singularity if Q = 0.
Λ: exponent of formal monodromy (constant and block diagonal with
blocks corresponding to the distinct qi)

A fundamental solution of ∇0 is eQzΛ.
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Exponential factors as Stokes circles
∂ : circle of directions around singularity z = 0

Exponential factors q as germs of functions on ∂, sections of the
exponential local system π : I → ∂.

∂

⟨q⟩

π

Connected components of I: Stokes circles ⟨q⟩
The map ⟨q⟩ → ∂ is r : 1 with r=ramification index of q (=3 on the
picture)

Jean Douçot Fourier transform of Stokes data



Geometric description of formal data

⟨q⟩

∂

π

d

V 0
d ,k1

V 0
d ,k2

V 0
d ,k3

Irregular class Θ = ∑
i ni⟨qi⟩, n ≥ 1.

Local system of formal solutions V 0 → ∂, with a grading
V 0

d = ⊕
π(i)=d V 0

d ,i , and dim(V 0
d ,k) = ni if k ∈ ⟨qi⟩.

The formal monodromy correponds to the monodromy of V 0.

Jean Douçot Fourier transform of Stokes data



Stokes phenomenon

Regular singularities: formal solutions are actually convergent

Irregular singularities: when resumming formal solutions, we get analytic
solutions which jump at singular (or anti-Stokes) directions.

Stokes diagram: draw growth rate Re(qi(z)) for |z | → 0 as a function of
the direction (here q1 = z−2, q2 = −z−2)

Stokes arrow i ← j at d if eqi −qj has maximal decay when z → 0 along d .
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Gluing formal and analytic solutions
Modified surface Σ̃(Θ):

Take the real blow up at z = 0 (i.e. replace the singularity by ∂)
Add tangential puncture e(d) for each singular direction d

H
∂

e(d)

Consider:
On the halo H: Formal local system V 0

Outside: Local system of analytic solutions V
⇒ Canonical way to glue them except at tangential punctures (Martinet-Ramis,

Loday-Richaud).
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Stokes local systems

One gets a "Stokes local system" (Boalch) V on Σ̃(Θ).

H
∂

e(d)

Properties: if ρ is the parallel transport in V,
For γd loop around e(d), ρ(γd) belongs to the Stokes group
Stod ⊂ GL(V 0

d )
▶ Identity blocks on the diagonal
▶ Other nontrivial blocks V 0

d,j → V 0
d,i for each Stokes arrow i ←d j .

Formal monodromy ρ(∂) compatible with grading of V 0.
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Explicit description
Doing this for each singularity ai , get global modified surface Σ̃(Θ)

Choosing a basepoint b, get wild monodromy representation
ρ : π1(Σ̃(Θ), b)→ G .

bi b
C (i)

h(i)

S(i)
1

S(i)
2

S(i)
s

The monodromy around ai is the product Mi = C (i)−1h(i)S(i)
ki

. . . S(i)
1 C (i).
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Wild character varieties

Get the wild character variety

MB(a, Θ) =
{

(C (i), h(i), S(i)
k )

∣∣∣∣∣
∏

i
(C (i)−1h(i)S(i)

ki
. . . S(i)

1 C (i)) = 1
}

/G×H

where H = ∏
i Hi and Hi ⊂ G corresponding to changes of graded

framings of Vbi .

It has a quasi-Hamiltonian structure (Boalch)

Riemann-Hilbert-Birkhoff correspondence (Deligne-Malgrange):

MdR(a, Θ) ∼=MB(a, Θ).
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Untwisted example (Pure gaussian case)

Singularity at infinity, two exponential factors q1 = z2, q2 = −z2, 4
singular directions, 4 Stokes matrices.
Moduli space

MB = {hS4S3S2S1 = 1}/H

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
∗ 0
0 ∗

)
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Twisted example (Painlevé I)
Singularity at infinity, one exponential factor z5/2, 5 singular
directions, 5 Stokes matrices.
Moduli space (of dimension 2)

MB = {hS5S4S3S2S1 = 1}/H

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
0 ∗
∗ 0

)
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Geometric POV on (irregular) isomonodromic deformations
Let’s move the positions of singularities and irregular classes (regular and
irregular "times"): how should ∇ change for the Stokes data to remain
constant?

This can be viewed as a flat (Ehresmann) connection on an admissible
family of wild character varieties (MdR(Σ, ab, Θb))b∈B.

νRHB

B B

MdR MB

·b

MdR(Σ, ab , Θb)

·b

MB(Σ, ab , Θb)

B : space of "times"

All Painlevé equations can be obtained in that way
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1 Stokes data and wild character varieties

2 Fourier transform of irregular connections
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The Fourier transform

Weyl algebra A1 = C[z ]⟨∂z⟩ of differential operators with [∂z , z ] = 1.
Fourier transform: automorphism of the Weyl algebra:

{
z 7→ −∂z
∂z 7→ z

If M is a module over the Weyl algebra → Fourier transform FM
Connections on the affine line C = P1 ∖∞ are closely related to
A1-modules, and this induces (with a few restrictions) a
transformation of connections on C.
More generally: we can act with any matrix A ∈ SL2(C)

{
z 7→ az + b∂z
∂z 7→ cz + d∂z

, with ad − bc = 1.
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The stationary phase formula [Malgrange 91, Fang 09, Sabbah 08]

It relates the formal data of a connection and its Fourier transform.

Heuristic idea:
Solutions are linear combinations of terms of the form

f (z) = eq(z)g(z),

The Fourier transform is an integral f̂ (ξ) =
∫

γ eq(z)−ξzg(z)
The behaviour of the integral when ξ →∞ is determined by the
critical point of the exponential factor, i.e. z0 such that

∂q
∂z (z0) = ξ.

New exponential factor q̃(ξ) = q(z0(ξ))− ξz0(ξ)
⇒ Legendre transform of q.
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The stationary phase formula
Different types of circles:

1 The pure circles at infinity, of the form ⟨αz⟩∞, with α ∈ C.
2 Other circles of slope ≤ 1 at infinity, of the form ⟨αz + q⟩∞, with

α ∈ C, and q ̸= 0 of slope < 1,
3 Circles ⟨q⟩∞ of slope > 1 at infinity,
4 Irregular circles at finite distance ⟨q⟩a, with q ̸= 0, a ∈ C.
5 The tame circles ⟨0⟩a, a ∈ C at finite distance.

P1a ∞

⟨0⟩a

⟨q⟩a

⟨−az + q<1⟩a

⟨−az⟩∞

⟨q>1⟩∞
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Fourier transform of Stokes data: some history

Well-known case (Balser-Jurkat-Lutz, Malgrange, Boalch, d’Agnolo-Hien-Morando-Sabbah)

One singularity of order 2 at ∞,
Regular singularities at finite distance.

Other known case: "pure gaussian type": (Sabbah, Hohl)

Just one singularity at infinity
All exponential factors of the form q = az2.

In general, not many explicit examples.

In the "simply-laced case" (one pole of order less than 3 at infinity +
regular singularities at finite distance), some symplectic isomorphisms
obtained (Boalch), but unclear if there are the ones induced by Fourier.

General approaches (Malgrange 1991, T. Mochizuki 2010, 2018): general results but not very
explicit
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The setting

Joint work with A. Hohl: we use results of T. Mochizuki to obtain explicit
isomorphisms in a large class of cases.

In brief:
Translate a class of cases of Mochizuki’s "Stokes shells and Fourier
transform" (2018) into the language of Stokes local systems
Get explicit formulas for the transformation of Stokes matrices

Assumption:
Only Stokes circles of slope >1 at ∞
Circles of pure level r/s > 1 with s, r coprime qi = aizs/r .
Extra hypothesis |ai | = 1.
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Stronger version of Legendre transform

Main idea: the Legendre transform as an homeomorphism between circles
ℓ : ⟨q⟩ ∼= ⟨q̂⟩.

One can use ℓ to transport the nontrivial entries of Stokes data (up to
signs)
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Distinguished intervals
On each Stokes circle, intervals Ji where q is either increasing or
decreasing when |z | → 0.

Increasing intervals are sent by ℓ to decreasing ones and vice versa

J1

J2

J3

J4

J ′
1

J ′
2

J ′
3 J ′

4

Ĵ1

Ĵ2

Ĵ3

Ĵ4

Ĵ ′
1

Ĵ ′
2

Ĵ ′
3

Ĵ ′
4
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Stokes paths
Nontrivial entry of Stokes matrix ↔ entry of parallel transport in Stokes
local system along a path γi→j

If the Stokes arrow goes from sector I to J , i , j ∈ ∂ are the midpoints of
I, J .

Stokes arrow

Associated path

The Stokes local system can be reconstructed from these entries of the
parallel transport along these Stokes paths
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The algorithm

Start with connection (E ,∇) on C with irregular class Θ, formal local
system V 0, Stokes local system V.

The corresponding objets Θ̂, V̂ 0, V̂ for the Fourier transform are
determined as follows:

Formal part: V̂ 0 obtained from ℓ∗V 0 by adding some signs when
passing from one distinguished sector to the next
Stokes data: for any Stokes path γi→j , the parallel transport is

ρ̂(γi→j) = ±ρ(γℓ−1(i)→ℓ−1(j))

with an explicitly determined sign.
The nontrivial entries of Stokes matrices are exactly the "deformation
data" considered by Mochizuki
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Example : pure gaussian case
Initial irregular class Θ = ⟨z2⟩+ ⟨1+i√

2 z2⟩.

J1

J2

J3

J4

J ′
1

J ′
2

J ′
3 J ′

4

τ

11

1

τ−1

1

1

1 •
b

S1
S2S3

S4

S1 =
(

1 0
s1 1

)
S2 =

(
1 s2
0 1

)
S3 =

(
1 0
s3 1

)
S4 =

(
1 s4
0 1

)
h =

(
τ 0
0 τ ′

)

MB(Θ) = {h, S1, S2, S3, S4 | hS4S3S2S1 = 1}/H.
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New irregular class Θ̂ = ⟨−z2⟩+ ⟨−1+i√
2 z2⟩.

−τ

1−1

1
−τ−1

1

−1

1

•b̂

Ŝ1

Ŝ2Ŝ3

Ŝ4

MB(Θ̂) = {ĥ, Ŝ1, Ŝ2, Ŝ3, Ŝ4 | hS4S3S2S1 = 1}/H.
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Correspondence between distinguished intervals and transformation of the
formal data

J1

J2

J3

J4

J ′
1

J ′
2

J ′
3 J ′

4

τ

11

1

τ−1

1

1

1

Ĵ1

Ĵ2

Ĵ3

Ĵ4

Ĵ ′
1

Ĵ ′
2

Ĵ ′
3

Ĵ ′
4

−τ

1−1

1
−τ−1

1

−1

1

Jean Douçot Fourier transform of Stokes data



τ

11

1
τ−1

1

1

1

Inverse image ℓ−1(γ)

−τ

1−1

1
−τ−1

1

−1

1

Stokes arrow

Associated Stokes path γ

With the Legendre transform, transport γ to the initial Stokes diagram
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One obtains the entries of the parallel transport along the Stokes paths

−τ

1−1

1
−τ−1

1

−1

1
−s1/τ

−s2τ 2
−s3/τ 2

−s4τ 2
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Finally we get the new Stokes matrices

−τ

1−1

1
−τ−1

1

−1

1

•
b̂

Ŝ1

Ŝ2Ŝ3

Ŝ4

Ŝi = Si , ĥ = h.

(consistent with Sabbah, Hohl)
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Example: Painlevé I case
Θ = ⟨−z5/2⟩

S1

S2

S3

S4

S5

J0

J1

J2

J3

J4

J5

J6

J7

J8

J9

MB = {hS5S4S3S2S1 = 1} with h =
(

0 −1
1 0

)
, S1 =

(
1 s1
0 1

)
, S2 =

(
1 0
s2 1

)
, . . .
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Fourier transform Θ̂ = ⟨z5/3⟩.

Ĵ0

Ĵ1

Ĵ2

Ĵ3

Ĵ4

Ĵ5

Ĵ6

Ĵ7

Ĵ8

Ĵ9

Ŝ1

Ŝ2

Ŝ3
Ŝ4

Ŝ5

Ŝ6

Ŝ7

Ŝ8

Ŝ9
Ŝ10

M′
B =

{
ĥŜ10 . . . Ŝ1 = 1

}
with ĥ =

(
0 0 1
1 0 0
0 1 0

)
, Ŝ1 =

(
1 0 0
0 1 0
t1 0 1

)
, Ŝ2 =

(
1 0 0
0 1 0
0 t2 1

)
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MB ≃M′
B via Φ : (s1, s2, s3, s4, s5) 7→ (s3,−s5,−s2, s4, s1,−s3, s5, s2,−s4,−s1)

Computation of the isomorphism

coefficient Stokes arrow Stokes matrix entry extra sign
t1 3→ 0 −s5 +
t2 7→ 0 −s2 +
t3 7→ 4 s4 +
t4 1→ 4 −s1 −
t5 1→ 8 s3 −
t6 5→ 8 −s5 −
t7 5→ 2 s2 +
t8 9→ 2 −s4 +
t9 9→ 6 −s1 +
t10 3→ 6 −s3 −

The isomorphism is symplectic!
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Questions

Conjecture: the isomorphisms induced by the Fourier transform preserve
the symplectic structure of the WCVs.

Further questions:
Can we show this?
Obtain explicit isomorphisms for more general situations (several
irregular singularities, several levels...)?
How these isomorphisms behave in families: can we relate the
corresponding spaces of times and isomonodromy systems?
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