On the Fourier transform of Stokes data of irregular connections

Jean Douçot

Grupo de Física Matemática, Instituto Superior Técnico, Lisboa

May 29, 2024

General context

Wild character varieties = moduli spaces of generalised monodromy data (Stokes data) of meromorphic connections with irregular singularities.

They have rich geometric structures (symplectic, hyperkähler)

They are moduli spaces for different objects:

- Irregular connections
- Stokes data (via the Riemann-Hilbert-Birkhoff correspondence)
- Irregular Higgs bundles (via the nonabelian Hodge correspondence)

Via isomonodromic deformations, they give rise to many interesting systems of nonlinear ODE, e.g. Painlevé equations.

Motivation: isomorphisms of WCVs

A WCV depends on a choice of "wild Riemann surface": a curve Σ together with singularity data.

WCVs coming from different wild Riemann surfaces can be isomorphic.

A manifestation of this is the existence of dualities between different isomonodromy systems, e.g. the existence of several Lax pairs for Painlevé equations

More specifically: there is a notion of Fourier transform for connections on \mathbb{P}^1 which induces such isomorphisms.

Question: how does the Fourier transform act on generalised monodromy data?

Today: Describe this in some cases (j.w. A. Hohl)

Outline

1 Stokes data and wild character varieties

2 Fourier transform of irregular connections

Meromorphic connections

- Let Σ be a smooth complex algebraic curve. Here $\Sigma = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}.$
- Consider (E, ∇) vector bundle with algebraic connection on $\Sigma \setminus \{a_1, \ldots, a_m\}$.
- In a local trivialization and with a choice of coordinate z:

$$\nabla = d - A(z)dz,$$

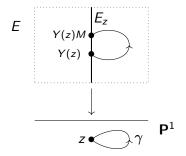
with A(z) $n \times n$ matrix having poles at singular points.

• This corresponds to the system of linear differential equations

$$\frac{dY}{dz} = A(z)Y.$$

Monodromy

Consider a solution Y of the equation. If we go around one singularity: $Y(z) \mapsto Y(z)M$, with $M \in GL_n(\mathbb{C})$.

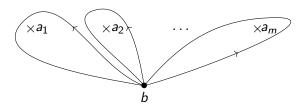


Example: if $\nabla = d - \frac{\lambda}{z} dz$, solution $y(z) = z^{\lambda}$, monodromy $e^{2i\pi\lambda}$.

Here ∇ is flat so this only depends on the homotopy class of γ . To ∇ we associate its monodromy representation $\rho: \pi_1(\Sigma) \to GL_n(\mathbb{C})$.

Moduli spaces of monodromy data: character varieties

Choose some paths $\gamma_1, \ldots, \gamma_m$ around a_i generating $\pi_1(\Sigma^o, b)$



Let
$$M_i = \rho(\gamma_i) \in G = GL_n(\mathbb{C})$$
.

The moduli space of monodromy data is the character variety

$$\mathcal{M}_B(\Sigma, \mathbf{a}) = \{M_1, \dots, M_m \mid M_1 \dots M_m = 1\}/G.$$

It is a Poisson manifold (Atiyah-Bott, Goldman).

Regular Riemann-Hilbert correspondence

Case of regular singularities (i.e basically simple poles) de Rham moduli space:

$$\mathcal{M}_{\textit{dR}}(\Sigma, a) = \{ \text{connections with regular singularities on } \Sigma \setminus a \} \: / \sim$$

Here \sim corresponds to gauge transformations i.e. changes of trivialisation $g:\Sigma^o\to GL_n(\mathbb{C})$, doing

$$A \mapsto gAg^{-1} - dg g^{-1}.$$

For the system Y' = AY, it corresponds to change of variable Z = g(z)Y.

Riemann-Hilbert correspondence (Deligne):

$$\mathcal{M}_{\textit{dR}}(\Sigma, \boldsymbol{a}) \simeq \mathcal{M}_{\textit{B}}(\Sigma, \boldsymbol{a})$$

Regular vs irregular singularities

Irregular singularities: higher order poles

$$\nabla = d - A(z)dz, \qquad A(z) = \frac{A_s}{z^s} + \cdots + \frac{A_1}{z} + \ldots$$

Monodromy is not enough to reconstruct the connection.

Example:

- Regular $\nabla = d \frac{\lambda}{z} dz$, monodromy $e^{2i\pi\lambda}$.
- Irregular $\nabla=d-dq-\frac{\lambda}{z}dz$, with $q\in z^{-1}\mathbb{C}[z^{-1}]$ has monodromy $e^{2i\pi\lambda}$ for any q.

 \Rightarrow need generalised monodromy data for a topological description of irregular connections

Formal data

Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using formal gauge transformations to a normal form

$$\nabla^0 = d - dQ - \frac{\Lambda}{z} dz, \quad Q = \begin{pmatrix} q_1 & & \\ & \ddots & \\ & & q_n \end{pmatrix}, \quad q_i \in z^{-1/r} \mathbb{C}[z^{-1/r}],$$

where

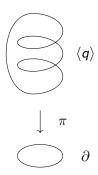
- q_i : exponential factors of ∇ ,
- Q: irregular type of ∇ , r ramification order, Q is untwisted if r = 1.
- Regular singularity if Q = 0.
- Λ : exponent of formal monodromy (constant and block diagonal with blocks corresponding to the distinct q_i)

A fundamental solution of ∇^0 is $e^Q z^{\Lambda}$.

Exponential factors as Stokes circles

 ∂ : circle of directions around singularity z = 0

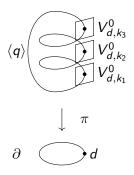
Exponential factors q as germs of functions on ∂ , sections of the exponential local system $\pi: \mathcal{I} \to \partial$.



Connected components of \mathcal{I} : Stokes circles $\langle q \rangle$

The map $\langle q \rangle \to \partial$ is r:1 with r=ramification index of q (=3 on the picture)

Geometric description of formal data

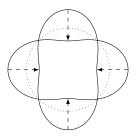


- Irregular class $\Theta = \sum_i n_i \langle q_i \rangle$, $n \geq 1$.
- Local system of formal solutions $V^0 \to \partial$, with a grading $V^0_d = \bigoplus_{\pi(i)=d} V^0_{d,i}$, and $\dim(V^0_{d,k}) = n_i$ if $k \in \langle q_i \rangle$.
- ullet The formal monodromy correponds to the monodromy of V^0 .

Stokes phenomenon

Regular singularities: formal solutions are actually convergent

Irregular singularities: when resumming formal solutions, we get analytic solutions which jump at singular (or anti-Stokes) directions.



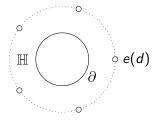
Stokes diagram: draw growth rate $\text{Re}(q_i(z))$ for $|z| \to 0$ as a function of the direction (here $q_1 = z^{-2}$, $q_2 = -z^{-2}$)

Stokes arrow $i \leftarrow j$ at d if $e^{q_i - q_j}$ has maximal decay when $z \rightarrow 0$ along d.

Gluing formal and analytic solutions

Modified surface $\tilde{\Sigma}(\Theta)$:

- Take the real blow up at z = 0 (i.e. replace the singularity by ∂)
- Add tangential puncture e(d) for each singular direction d

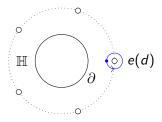


Consider:

- ullet On the halo $\mathbb H$: Formal local system V^0
- ullet Outside: Local system of analytic solutions V
- ⇒ Canonical way to glue them except at tangential punctures (Martinet-Ramis, Loday-Richaud).

Stokes local systems

One gets a "Stokes local system" (Boalch) \mathbb{V} on $\tilde{\Sigma}(\Theta)$.



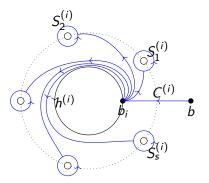
Properties: if ρ is the parallel transport in \mathbb{V} ,

- For γ_d loop around e(d), $\rho(\gamma_d)$ belongs to the Stokes group $\operatorname{Sto_d} \subset \operatorname{GL}(V_d^0)$
 - Identity blocks on the diagonal
 - ▶ Other nontrivial blocks $V_{d,j}^0 o V_{d,i}^0$ for each Stokes arrow $i \leftarrow_d j$.
- Formal monodromy $\rho(\partial)$ compatible with grading of V^0 .

Explicit description

Doing this for each singularity a_i , get global modified surface $\tilde{\Sigma}(\Theta)$

Choosing a basepoint b, get wild monodromy representation $\rho: \pi_1(\tilde{\Sigma}(\Theta), b) \to G$.



The monodromy around a_i is the product $M_i = C^{(i)^{-1}} h^{(i)} S_{k_i}^{(i)} \dots S_1^{(i)} C^{(i)}$.

Wild character varieties

Get the wild character variety

$$\mathcal{M}_{B}(\mathbf{a}, \mathbf{\Theta}) = \left\{ (C^{(i)}, h^{(i)}, S_{k}^{(i)}) \; \middle| \; \prod_{i} (C^{(i)^{-1}} h^{(i)} S_{k_{i}}^{(i)} \dots S_{1}^{(i)} C^{(i)}) = 1 \right\} / G \times \mathbf{H}$$

where $\mathbf{H} = \prod_i H_i$ and $H_i \subset G$ corresponding to changes of graded framings of \mathbb{V}_{b_i} .

It has a quasi-Hamiltonian structure (Boalch)

Riemann-Hilbert-Birkhoff correspondence (Deligne-Malgrange):

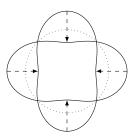
$$\mathcal{M}_{dR}(\mathbf{a}, \mathbf{\Theta}) \cong \mathcal{M}_{B}(\mathbf{a}, \mathbf{\Theta}).$$

Untwisted example (Pure gaussian case)

- Singularity at infinity, two exponential factors $q_1 = z^2$, $q_2 = -z^2$, 4 singular directions, 4 Stokes matrices.
- Moduli space

$$\mathcal{M}_{B} = \{ hS_{4}S_{3}S_{2}S_{1} = 1 \}/H$$

with
$$S_{2i+1}=\begin{pmatrix}1&*\\0&1\end{pmatrix}$$
, $S_{2i}=\begin{pmatrix}1&0*&1\end{pmatrix}$, $h=\begin{pmatrix}*&0\\0&*\end{pmatrix}$

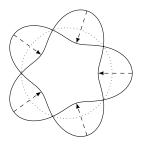


Twisted example (Painlevé I)

- Singularity at infinity, one exponential factor $z^{5/2}$, 5 singular directions, 5 Stokes matrices.
- Moduli space (of dimension 2)

$$\mathcal{M}_B = \{hS_5S_4S_3S_2S_1 = 1\}/H$$

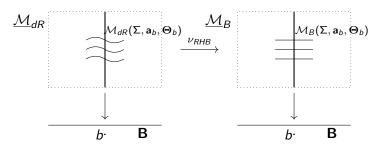
with
$$S_{2i+1}=\begin{pmatrix}1&*\\0&1\end{pmatrix}$$
, $S_{2i}=\begin{pmatrix}1&0*&1\end{pmatrix}$, $h=\begin{pmatrix}0&**&0\end{pmatrix}$



Geometric POV on (irregular) isomonodromic deformations

Let's move the positions of singularities and irregular classes (regular and irregular "times"): how should ∇ change for the Stokes data to remain constant?

This can be viewed as a flat (Ehresmann) connection on an admissible family of wild character varieties $(\mathcal{M}_{dR}(\Sigma, \mathbf{a}_b, \Theta_b))_{b \in \mathbf{B}}$.



B: space of "times"

All Painlevé equations can be obtained in that way

Stokes data and wild character varieties

2 Fourier transform of irregular connections

The Fourier transform

- Weyl algebra $A_1=\mathbb{C}[z]\langle\partial_z\rangle$ of differential operators with $[\partial_z,z]=1$.
- Fourier transform: automorphism of the Weyl algebra:

$$\begin{cases}
z & \mapsto -\partial_z \\
\partial_z & \mapsto z
\end{cases}$$

- ullet If M is a module over the Weyl algebra o Fourier transform $\mathcal{F}M$
- Connections on the affine line $\mathbb{C} = \mathbb{P}^1 \setminus \infty$ are closely related to A_1 -modules, and this induces (with a few restrictions) a transformation of connections on \mathbb{C} .
- ullet More generally: we can act with any matrix $A\in SL_2(\mathbb C)$

$$\left\{ egin{array}{ll} z & \mapsto \mathsf{a}\mathsf{z} + \mathsf{b}\partial_{\mathsf{z}} \ \partial_{\mathsf{z}} & \mapsto \mathsf{c}\mathsf{z} + \mathsf{d}\partial_{\mathsf{z}} \end{array}
ight., \qquad ext{with } \mathsf{a}\mathsf{d} - \mathsf{b}\mathsf{c} = 1.$$

The stationary phase formula [Malgrange 91, Fang 09, Sabbah 08]

It relates the formal data of a connection and its Fourier transform.

Heuristic idea:

Solutions are linear combinations of terms of the form

$$f(z)=e^{q(z)}g(z),$$

- ullet The Fourier transform is an integral $\widehat{f}(\xi)=\int_{\gamma}e^{q(z)-\xi z}g(z)$
- The behaviour of the integral when $\xi \to \infty$ is determined by the critical point of the exponential factor, i.e. z_0 such that

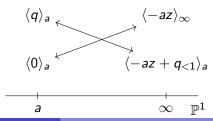
$$\frac{\partial q}{\partial z}(z_0) = \xi.$$

• New exponential factor $\tilde{q}(\xi) = q(z_0(\xi)) - \xi z_0(\xi)$ \Rightarrow Legendre transform of q.

The stationary phase formula

Different types of circles:

- **1** The pure circles at infinity, of the form $\langle \alpha z \rangle_{\infty}$, with $\alpha \in \mathbb{C}$.
- ② Other circles of slope ≤ 1 at infinity, of the form $\langle \alpha z + q \rangle_{\infty}$, with $\alpha \in \mathbb{C}$, and $q \neq 0$ of slope < 1,
- **3** Circles $\langle q \rangle_{\infty}$ of slope > 1 at infinity,
- **1** Irregular circles at finite distance $\langle q \rangle_a$, with $q \neq 0$, $a \in \mathbb{C}$.
- **5** The tame circles $\langle 0 \rangle_a$, $a \in \mathbb{C}$ at finite distance.



Fourier transform of Stokes data: some history

Well-known case (Balser-Jurkat-Lutz, Malgrange, Boalch, d'Agnolo-Hien-Morando-Sabbah)

- One singularity of order 2 at ∞ ,
- Regular singularities at finite distance.

Other known case: "pure gaussian type": (Sabbah, Hohl)

- Just one singularity at infinity
- All exponential factors of the form $q = az^2$.

In general, not many explicit examples.

In the "simply-laced case" (one pole of order less than 3 at infinity + regular singularities at finite distance), some symplectic isomorphisms obtained (Boalch), but unclear if there are the ones induced by Fourier.

General approaches (Malgrange 1991, T. Mochizuki 2010, 2018): general results but not very explicit

The setting

Joint work with A. Hohl: we use results of T. Mochizuki to obtain explicit isomorphisms in a large class of cases.

In brief:

- Translate a class of cases of Mochizuki's "Stokes shells and Fourier transform" (2018) into the language of Stokes local systems
- Get explicit formulas for the transformation of Stokes matrices

Assumption:

- ullet Only Stokes circles of slope >1 at ∞
- Circles of pure level r/s > 1 with s, r coprime $q_i = a_i z^{s/r}$.
- Extra hypothesis $|a_i| = 1$.

Stronger version of Legendre transform

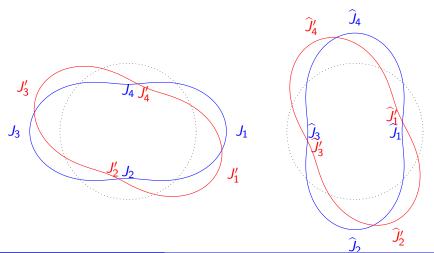
Main idea: the Legendre transform as an homeomorphism between circles $\ell:\langle q\rangle\cong\langle\hat{q}\rangle.$

One can use ℓ to transport the nontrivial entries of Stokes data (up to signs)

Distinguished intervals

On each Stokes circle, intervals J_i where q is either increasing or decreasing when $|z| \to 0$.

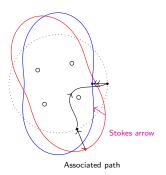
Increasing intervals are sent by ℓ to decreasing ones and vice versa



Stokes paths

Nontrivial entry of Stokes matrix \leftrightarrow entry of parallel transport in Stokes local system along a path $\gamma_{i \to j}$

If the Stokes arrow goes from sector I to J, $i,j \in \partial$ are the midpoints of I,J.



The Stokes local system can be reconstructed from these entries of the parallel transport along these Stokes paths

The algorithm

Start with connection (E, ∇) on $\mathbb C$ with irregular class Θ , formal local system V^0 , Stokes local system $\mathbb V$.

The corresponding objets $\widehat{\Theta}$, \widehat{V}^0 , $\widehat{\mathbb{V}}$ for the Fourier transform are determined as follows:

- \bullet Formal part: \widehat{V}^0 obtained from ℓ_*V^0 by adding some signs when passing from one distinguished sector to the next
- Stokes data: for any Stokes path $\gamma_{i \to j}$, the parallel transport is

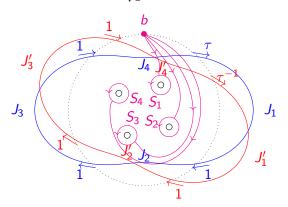
$$\widehat{\rho}(\gamma_{i\to j}) = \pm \rho(\gamma_{\ell^{-1}(i)\to\ell^{-1}(j)})$$

with an explicitly determined sign.

The nontrivial entries of Stokes matrices are exactly the "deformation data" considered by Mochizuki

Example: pure gaussian case

Initial irregular class $\Theta = \langle z^2 \rangle + \langle \frac{1+i}{\sqrt{2}} z^2 \rangle$.

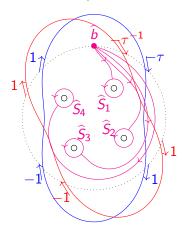


$$S_1 = \begin{pmatrix} 1 & 0 \\ s_1 & 1 \end{pmatrix} \quad S_2 = \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix} \quad S_3 = \begin{pmatrix} 1 & 0 \\ s_3 & 1 \end{pmatrix} \quad S_4 = \begin{pmatrix} 1 & s_4 \\ 0 & 1 \end{pmatrix} \quad h = \begin{pmatrix} \tau & 0 \\ 0 & \tau' \end{pmatrix}$$

 $\mathcal{M}_{B}(\Theta) = \{h, S_{1}, S_{2}, S_{3}, S_{4} \mid hS_{4}S_{3}S_{2}S_{1} = 1\}/H.$

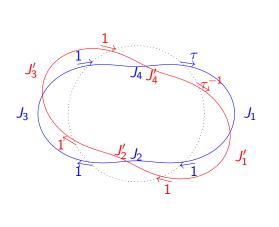
Jean Doucot

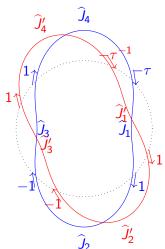
New irregular class $\widehat{\Theta} = \langle -z^2 \rangle + \langle \frac{-1+i}{\sqrt{2}}z^2 \rangle$.

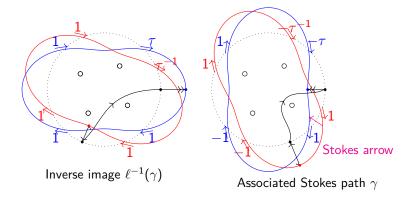


 $\mathcal{M}_{\textit{B}}(\widehat{\Theta}) = \{\widehat{\textit{h}}, \widehat{\textit{S}}_{1}, \widehat{\textit{S}}_{2}, \widehat{\textit{S}}_{3}, \widehat{\textit{S}}_{4} \mid \textit{hS}_{4}\textit{S}_{3}\textit{S}_{2}\textit{S}_{1} = 1\}/\textit{H}.$

Correspondence between distinguished intervals and transformation of the formal data

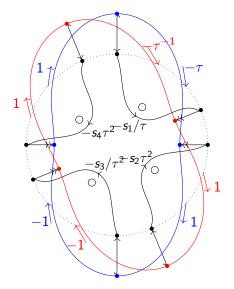




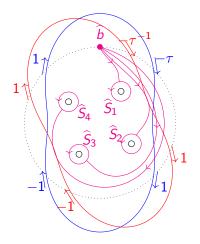


With the Legendre transform, transport γ to the initial Stokes diagram

One obtains the entries of the parallel transport along the Stokes paths



Finally we get the new Stokes matrices

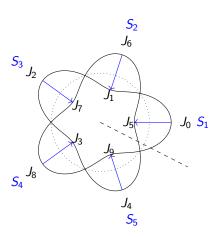


$$\widehat{S}_i = S_i, \qquad \widehat{h} = h.$$

(consistent with Sabbah, Hohl)

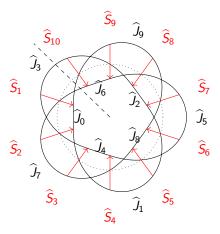
Example: Painlevé I case

$$\Theta = \langle -z^{5/2} \rangle$$



$$\mathcal{M}_B = \left\{ \textit{hS}_5 \textit{S}_4 \textit{S}_3 \textit{S}_2 \textit{S}_1 = 1 \right\} \; \text{with} \; _{\textit{h}} = \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right), \textit{S}_1 = \left(\begin{smallmatrix} 1 & s_1 \\ 0 & 1 \end{smallmatrix} \right), \textit{S}_2 = \left(\begin{smallmatrix} 1 & 0 \\ s_2 & 1 \end{smallmatrix} \right), \ldots$$

Fourier transform $\widehat{\Theta} = \langle z^{5/3} \rangle$.



$$\mathcal{M}_{B}' = \left\{\hat{\textit{h}}\hat{\textit{S}}_{10}\dots\hat{\textit{S}}_{1} = 1\right\} \text{ with } \hat{\textit{h}} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \hat{\textit{S}}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{1} & 0 & 1 \end{pmatrix}, \hat{\textit{S}}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t_{2} & 1 \end{pmatrix}$$

 $\mathcal{M}_{B} \simeq \mathcal{M}_{B}' \text{ via } \Phi : (s_{1}, s_{2}, s_{3}, s_{4}, s_{5}) \mapsto (s_{3}, -s_{5}, -s_{2}, s_{4}, s_{1}, -s_{3}, s_{5}, s_{2}, -s_{4}, -s_{1})$

Computation of the isomorphism

coefficient	Stokes arrow	Stokes matrix entry	extra sign
t_1	$3 \rightarrow 0$	$-s_5$	+
t_2	7 o 0	$-s_2$	+
<i>t</i> ₃	7 o 4	<i>S</i> ₄	+
t_4	1 o 4	$-s_1$	_
t_5	1 o 8	<i>s</i> ₃	_
t_6	5 o 8	$-s_5$	_
t ₇	5 o 2	<i>s</i> ₂	+
t_8	9 o 2	$-s_4$	+
t_9	9 o 6	$-s_1$	+
t_{10}	3 → 6	$-s_3$	_

The isomorphism is symplectic!

Questions

Conjecture: the isomorphisms induced by the Fourier transform preserve the symplectic structure of the WCVs.

Further questions:

- Can we show this?
- Obtain explicit isomorphisms for more general situations (several irregular singularities, several levels...)?
- How these isomorphisms behave in families: can we relate the corresponding spaces of times and isomonodromy systems?