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1. Melting crystal model

melting crystal corner = random plane partition

Okounkov, Reshetikhin & Vafa, “Quantum Calabi-Yau and classical
crystal”, hep-th/0309208



ordinary partition = Young diagram

A= (>\1,>\2, .. .), Aj > )‘H-l’ A; € ZZO (Iength of i-th I’OW). |>\| = Z)\i
(

(area).

plane partition = 3D Young diagram

T11 712
T = (mj)ig=1 = | 721 m22 -+ |, Wi = W41, T = Wid1 e Tij €
0. @)
Z>o (height of (i,7)-th stack). |r|= >  m;; (volume).
ii=1

partition function of random plane partition

©.@)
7 = qu = |] (1 —=¢")"" (McMahon function), 0 < ¢ <1
T

n=1




diagonal slices of plane partition (Okounkov & Reshetikhin)

The diagonal slices {w(m)}>°___ of the plane partition 7 is a se-
qunce of Young diagrams that satisfy “interlacing relations”
e 2m(=2) 2 (1) 2w(0) =A(l) =A(2) = -

m(0)

interlacing relation:

def
A:(A17>\27”')EM:(/*LIMMQM") =

= AL 2 UL Z A2 > pp > -
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plane partition 7 — pair (T,T') of semi-standard tableaux

The plane partition © determines a pair (T,7’) of semi-standard
tableaux of shape A = «(0) by putting “m+4 1" in boxes of the skew
diagram n(£m)/n(£(m + 1)).

T: A\=7(0) = n(=1) = w(=2) = ---
T: A=7n(0) = m(1) = 7(2) = ---

Nw|N|k
N |-
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partition function as sum over semi-standard tableaux

By the mapping = — (T,T’), the partition function Z = qu can
TT

be converted to a sum over T,7T' and their shape \:
z=% ¥ 44"
A T, T'.shape \
The weights are determined by entries of the tableaux:

L= [ mtL/Rm(-m)/m(-m-1)],
m=0

= [ qmty/2nm)/rim+1)

m=0



partition function in terms of Schur functions

The partial sums over the semi-standard tableaux T, T’ give a special
value of the Shur function:

Y = Y M=k, p=(

T:shape A T’:shape \
The partition function can be thus rewritten as

Z =Y sx(g")?
\

)

Y Y

N | O

3
2

N |+~

Remark: Hook formula for sy (g”)

sx(¢?) = WV TN2 T (1= N1 n) = 3 G- 1)\
(4,5)EN i=1



deformation by potential ®(t, ), p)

We consider a deformed model
o0
Zp(t) =3 53 (¢M)2ePUAP) oA p) = Y 4,2 (\,p)
A k=1
with potentials

m . m .
Cbk()\,p) — Z qk(p‘l‘)\z‘—’H'l) . Z qk(—z—|—1)

The right hand side of this definition of ®,(\,p) is understood to
be a finite sum (hence a rational function of ¢) by cancellation of
terms between the two sums:

pl—gP*

Or(p) = 3 (FPHNHD  pmit D) g kL
. —dq

=1



melting crysital model and 5D SUSY gauge theory

Melting crystal model with external potential:

Zp(t) = ZQIWIGCD(M(O),p) =Y SA(q,O)QqCD(t,)\,p)
u A

5D N =1 SUSY U(1) gauge theory:
Zp(t) = ZqIW\QW(O)QCD(tm(O),p) =y SA(qP)QQ\/\\QCD(t,A,p),
T A
g=c¢ " Q= (RrN)?

(5D analogue of Nekrasov's 4D instanton sum)

Goal: Show that 1D Toda hierarchy is a common integrable struc-
ture in these models.



2. Fermionic representation of partition function

complex fermion system

oo oo

W(z)= Y Ymz ™l 9*() = Y o,z ™ with anti-commutation
m=—o0 m=—oco

relations

{m, Y5} = Omano0r  {¥m, ¥n} = {tp, ¥} =0

Ground state (Fermi sea) |p) in charge p sector

Ymlp) =0 form > —p, plp)=0 form>p+1

Fock space spannded by states labelled by partitions (or Young di-
agrams)

o
F= @ K FRB=@CX\Dp)
A

p=—00
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States labelled by Young diagrams (charge O sector)

®» = (0,0,...), charge 0 — |0;0)

A= (A1,Ap,...), charge 0 — |X;0)

¢ oo
S A3 0 Ar2 A1

A= (A1, A,...) = {N\ —i}2, C Z (Maya diagram)
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States labelled by Young diagrams (charge p sector)

A= (A1, Ao,...), charge p — |X; p)

oo
. PtA3-3 ptA,-2 pA-L

(AN p) —{p+ X\ —i}2, CZ (Maya diagram of charge p)

If A= (\{,...,\n,0,0,...),

Ap) =Y (pia-1)-1 P pan—n) 1Y (o)1 P (1) 41 1P)
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U(1) current and fermionic representation of tau function

J(2) = W)Y (z): = i Imz" ™1 g, = i Pm—ntr: With
k——0o0 n=—oo

commutation relations

[Jm, Jn] = mdp,4n0 (Heisenberg algebra)

Jm'S play the role of “Hamiltonians” in the usual fermionic formula
of tau functions of the KP and (2D) Toda hierarchies:

Tp(taf) — <p| eXp( Z thm)g exp(— Z fmJ—m)|p>> g c GI—(OO)
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Hamiltonians for fermionic representation of Z,(t)

00
Hy = Z qkn:w—nw;;:

n=——oo
The states |\; p) are eigenvectors of these “Hamiltonians” and the
potential functions ®. (A, p) are their eigenvalues:

Hi |\, p) = Pr(N\,p)|\; p)

ferminonic representation of Z,(t)
Zp(t) = (plG eV G_p)

where

oo
q
H(t) = ) tpHp, G+ = exp( > Jikz)

k=1 =1 k(1 — ")
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G4+ generate random plane partition (Okounkov & Reshetikhin)

(G4 are a product of vertex operators I+ (m):

—1 00
Gy = H ry(m), G-= H _(m),

M=—00 m=0
<1
kzlk
They generate a “half” of random plane partition

WG =YY o =Y s\ pl,
A

A T:shape

G_lpy=>" Y d'Ixp) =D s\(@)xp)
A

A T:shape )\

Consequently, (p|GeTWaG_|p) =3 5,(¢”)%ePEAP) = 7,(1).
A
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3. Quantum torus Lie algebra

basis vﬂ@ (k=0,1,..., meZ)

W= g2 S g,
d
= ¢ § () (g )
Y’

Remark: J;, = ,§P>, H, = Vo(k). Vﬂ(@k) coincides with Okounkov and
Pandharipande’s operator &,,(z) specialized to z = g,

commutation relations

qk—|—l
_ 5m—|—n,0 1 — qk+l)

[Vygk), Vn(l)] — (Q(Zm—kn)/Q - q(kn—lm)/2)(vrgil_‘|;ll)

Remark: This is a (central extension of) g-deformation of the Pois-
son algebra of functions on a 2-torus.
16



adjoint action by G+ (1)

Fermion fields ¥ (z),v*(z) transform as

Giy(2)G1™t = (¢Y?2 92w (2),
Gip*(2)GL™ 1 = (Y22 Q) ooth™ (2),

G_y(2)G-"1 = (%271 Q) ct(2),
G_y*(2)G-"1 = (¢V227Y ¢) 5l v*(2)

©.@)
where (z;9)c0 = [] (1 — 2¢").
n=0
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adjoint action by G+ (2)

The forgoing formulae for fermion fields imply that the fermion
bilinear ¥* (g %/22)4(g*/22) transforms as

Gv* (g 22)p(d"22) a4t

1/2 . 0=k/2, 0)
(E]ql/? -qqk/Q;’qq)) IR

k
= I == TVt (g 20"/ 22)
m=1

A similar transformation law holds for the adjoint action by G_ as
well.
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shift symmetry among Vf,gk)’s

From the foregoing formulae, one can deduce the following symme-
try among the basis of the quantum torus Lie algebra:

K k
G_G+< Tgk) a 5m’01 z qk)(G_G—I-)_l — (—1>k<vn(zk—|)—k — 5m—|—k,01 i qk>
In particular,
k
k
(G_GJr)_l(vo(k) - qk)G—GJr = (VP

This is a key to identification of the integrable structure.
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4. Integrable structure

rewriting partition function of melting crystal model (1)
Zp(t) = (p|G eV |p)
Split G_|_eH(t)G_ into several pieces as
G_l_eH(t)G_ — G_|_€H(t)/2€H(t)/2g_
G W2, —1. g q .q_~1efW/2G_

and use the formulae (a special case of shift symmetry)

k

G-G4 (Hk 1 . qk>(G—G+)_1 = (—DMv",

k
(G_GJ“)_I(H’“ 1 z qk)G—G+ = (—1)kv)
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rewriting partition function of melting crystal model (2)

The forgoing formulae imply that
k
Ga( - ot = (vfavBa
—q
k
G__l(Hk— 1 1 k)G_ = (—1)kG_|_V_(Z)G_|__1
—q

Vi(],? on the right hand side can be transformed to Ji; as
k) — 0 - 5 O
qW/QVk( )q W/2 _ Vk( ) Ju,  q W/2V_(k)qW/2 — V_(k) = J_g

where W is a special element of W algebra:

w=w= S a2y

nN——oo
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rewriting partition function of melting crystal model (3)

Thus we have the relation

k

q —1
N (Hk -4 qk)G+

k
— q
G_ 1(Hk— - k)G_
—q

(—1)kG__1q_W/2quW/2G_,

hence

Gl ®/2g, 1
k

O

_ tra 1wy (OO (=1)"t )"
— exp(];::l 2(1_qk)>G_ q exp kzzjl 5 Je 1" =G _,

and a similar expression for G_—1eH®)/2q_.
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rewriting partition function of melting crystal model (4)

We can thus eventually rewrite G+eH(t>G_ as

X tpq” > (—1)kt
GyelDa. = e><p< Sk k)G_—lq—W/Q exp( 3 (1) kjk)
k=114 k=1 2

X

2 (—1)k
y gexp<z (1) k:J_k>q—W/2G+—1

k=1 2

where

g=q"?(G_G1)%¢"? e GL(0)
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rewriting partition function of melting crystal model (5)

Since (p|G_~1¢W/2 = ¢ P+ DCr+1/12(p and ¢ W/2G L tp) =
g PPt (2p+1)/12)1)  the partition function Z,(¢) can be expressed
as

oo

k
Zy(t) = exp<z 1tkq k>q—p(p+1>(2p+1)/6 "
k=1-+ 9

<wlow( Y C g ) gem( 3 UM

k=1 k=1 2
The last piece (p|---|p) may be interpreted as a special value of the
tau function

mp(t, 1) = (plexp( ) trJr)gexp(— > txJ_i)|p)
k=1 k=1

of 2D Toda hierarchy. However, this is not the end of the story.
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identities of expectation values

Actually, we can start from different splitting of G+eH(t>G_ as well:
GrefWg_ =g MWa, . g 6 =66 -a_~tHBDag

This leads to apparently different expressions of Z,(t), which imply
that the following identities hold:

(p| exp(i (_1)ktk=fk>ge><p< io: (_1)ktkj—k) p)

k=1 2 k=1 2
e k

= <p|exp(z (-1) thk>glp>
k=1

= (lgexp( X (~D it x)lp

k=1
What do they mean?
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g = q"/?(G_G1)%¢"/? determines solution of 1D Toda hierarchy

The foregoing identities can be directly derived from the relations
Jk,g =gJ_k, k= 1,2,3,...

(a consequence of the shift symmetry of V,%k)’s). From these rela-
tions one can derive the identities

Tp(t,t) = mp(t — ¢,0) = 7(0,t — t)

for the tau function m,(¢,t) of 2D Toda hierarchy, which thereby
reduces to a tau function of 1D Toda hierarchy. Thus 1D Toda
hierarchy turns out to be an underlying integrable structure of the
partition function Z,(t) of the melting crystal model.
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integrable structure in 5D SUSY U(1) gauge theory

Zp(t) has a fermionic representation of the form

Zp(t) = (p|G4 Q0T DG _|p)

oo
where Lg = Z n:p_npr . (element of Virasoro algebra). The

nN=——oo
foregoing calculations can be repeated for this case as well and lead

to a similar conclusion. The counterpart of g is given by
g = qW/2G_G+QLOG_G+qW/2
and satisfies the relation
Jkg =gJ_k, k= 1,2,3,...

Thus a relevant integrable structure is again 1D Toda hierarchy.
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Concluding remarks

4D limit (R — 0) (cf. Marshakov and Nekrasov's work on 4D case)
Not straightforward

relation to topological strings

1. Another interpretation of (p|GLQLoeHMG _|p) (¢ = e 9, Q =
e~®) as A-model amplitude on ©® & O(-2) — CP!

2. Generating function of W), ~ c),e as solution of 2D Toda hier-
archy with g = ¢W/2GG_¢W/? (Zhou)

thermodynamic limit (rescaling ¢.'s and letting & — 0 in ¢ = e 1)
Dispersionless Toda hierarchy? (work in progress)

more relations satisfied by g Constraints with quantum/classical
torus algebraic structure? (work in progress)
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