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Goal. Explain both sides (the A and B-model
sides) of a phenomenon which lies at the heart
of mirror symmetry.
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1. The Tropical Vertex Group (B-model)

Fix the following data:

M = Z
2, N = Hom(M, Z),

MR = M ⊗Z R, NR = N ⊗Z R
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• k a field of characteristic zero.
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• k a field of characteristic zero.

• R a local Artin k-algebra or a complete local k-algebra, with
maximal ideal m.
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• k a field of characteristic zero.

• R a local Artin k-algebra or a complete local k-algebra, with
maximal ideal m.

We will define a subgroup

H(R) ⊆ Aut(k[M ] ⊗k R).
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• k a field of characteristic zero.

• R a local Artin k-algebra or a complete local k-algebra, with
maximal ideal m.

We will define a subgroup

H(R) ⊆ Aut(k[M ] ⊗k R).

We will sometimes write

k[M ] = k[x±1, y±1],

so an element
zm ∈ k[M ]

can be written as
xayb

if
m = (a, b).
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Definition. The tropical vertex group H(R)
is the subgroup of Aut(k[M ] ⊗k R) generated
by automorphisms of the form

zm 7→ zmf 〈n0,m〉

where

• n0 ∈ N

• f ∈ k[zm0 ] ⊗k R ⊆ k[M ] ⊗k R for some
non-zero m0 ∈ M .

• f − 1 ∈ zm0m.

• 〈n0, m0〉 = 0.
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Remarks.

• This is a slight variant of a group introduced by Kontsevich and
Soibelman.
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Remarks.

• This is a slight variant of a group introduced by Kontsevich and
Soibelman.

• Elements of H(R) are symplectomorphisms, preserving the sym-
plectic form

Ω =
dx

x
∧ dy

y
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Remarks.

• This is a slight variant of a group introduced by Kontsevich and
Soibelman.

• Elements of H(R) are symplectomorphisms, preserving the sym-
plectic form

Ω =
dx

x
∧ dy

y

• zm0 is left invariant by the automorphism

zm 7→ zmf 〈n0,m〉
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Typical example. With R = k[[t]],

x 7→ x

y 7→ y(1 + tx)

is a typical example of one of the generators of
H(R). Here

m0 = (1, 0)

n0 = (0, 1)

f = 1 + tx
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2. Scattering diagrams

Definition. A ray is a pair (d, fd) where d ⊆
MR is given by d = m′

0−R≥0m0 for some m′
0 ∈

MR and non-zero m0 ∈ M , and

fd ∈ k[zm0 ] ⊗k R

satisfies
fd − 1 ∈ zm0m.
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Definition. A ray is a pair (d, fd) where d ⊆
MR is given by d = m′

0−R≥0m0 for some m′
0 ∈

MR and non-zero m0 ∈ M , and

fd ∈ k[zm0 ] ⊗k R

satisfies
fd − 1 ∈ zm0m.

Definition. A line is a pair (d, fd) where d ⊆
MR is given by d = m′

0 − Rm0 for some m′
0 ∈

MR and non-zero m0 ∈ M , and

fd ∈ k[zm0 ] ⊗k R

satisfies
fd − 1 ∈ zm0m.
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Definition. A scattering diagram D is a set of
lines and rays such that for any n > 0, there are
only a finite number of elements (d, fd) with

fd 6≡ 1 mod m
n.
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Consider any path
γ : [0, 1] → MR

which

• is transversal to every element of D it intersects;

• does not pass through the endpoint of any ray or the intersection
of any two elements;

• only passes through any given ray a finite number of times.

γ
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To such a path, we can associate a path-ordered product of auto-
morphisms, as follows.
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To such a path, we can associate a path-ordered product of auto-
morphisms, as follows.

First, when γ crosses an element (d, fd), we obtain an element of
H(R) given by

zm 7→ zmf
〈m,n0〉
d ,

where n0 ∈ N is primitive with 〈n0, m0〉 = 0 chosen with the following
sign convention:

〈n0, ·〉 < 0

〈n0, ·〉 > 0
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To such a path, we can associate a path-ordered product of auto-
morphisms, as follows.

First, when γ crosses an element (d, fd), we obtain an element of
H(R) given by

zm 7→ zmf
〈m,n0〉
d ,

where n0 ∈ N is primitive with 〈n0, m0〉 = 0 chosen with the following
sign convention:

〈n0, ·〉 < 0

〈n0, ·〉 > 0

This defines an element θγ,d ∈ H(R).
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The path-ordered product is then defined by

θD,γ =
∏

θd,γ ,

where the product runs over all d crossed by γ, in the order traversed
by γ.
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Example: Commutators

D = {(d1, f1), (d2, f2)},
where d1, d2 are lines through the origin.

γ
d1

d2
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Example: Commutators I

D = {(d1, f1), (d2, f2)},
where d1, d2 are lines through the origin.

γ
d1

d2

Then
θD,γ = θ−1

2 ◦ θ−1
1 ◦ θ2 ◦ θ1,

where θ1 and θ2 are the elements of H(R) associated to the first two
crossings.
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Kontsevich-Soibelman Lemma. Given a
scattering diagram D, there is a scattering dia-
gram D

′ containing D such that D
′\D consists

only of rays, and

θD′,γ = id

for every closed loop γ for which θD′,γ is de-
fined.
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Example: Commutators II

x 7→ x

x 7→ x/(1 + ty−1)
y 7→ y

y 7→ y/(1 + tx−1)

D

γ

x 7→ x
y 7→ y(1 + tx−1)

x 7→ x(1 + ty−1)
y 7→ y
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Example: Commutators II

x 7→ x

x 7→ x/(1 + ty−1)
y 7→ y

y 7→ y/(1 + tx−1)

γ

x 7→ x
y 7→ y(1 + tx−1)

D
′

x 7→ x(1 + ty−1)

y 7→ y x 7→ x(1 + t2x−1y−1)

y 7→ y/(1 + t2x−1y−1)
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Example: Commutators III

D

(1 + tx−1)2

(1 + ty−1)2

γ
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Example: Commutators III

$1/2$

$2/3$$3/4$

$1$

$4/3$
$3/2$

$2$D

(1 + tx−1)2

(1 + ty−1)2

γ

· · ·
.
.
.

Lines of slope (n + 1)/n, n ≥ 1: (1 + t2n+1x−ny−n−1)2

Lines of slope n/(n + 1), n ≥ 1: (1 + t2n+1x−n−1y−n)2

Line of slope 1:

(1 − t2x−1y−1)−4 =
(1 + t2x−1y−1)4

(1 − t4x−2y−2)2·2
.
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Example: Commutators IV

D

γ

(1 + tx−1)3

(1 + ty−1)3
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Example: Commutators IV

D

γ

(1 + tx−1)3

(1 + ty−1)3

Have rays of slope 3, 8/3, 21/8, . . . converging to (3 +
√

5)/2.
Have rays of slope 1/3, 3/8, 8/21, . . . converging to (3 −

√
5)/2.

Have rays of all rational slopes between (3−
√

5)/2 and (3+
√

5)/2.
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Functions attached to rays are complicated.
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Functions attached to rays are complicated.

For example, the function attached to the line of slope 1 is
(

∞
∑

n=0

1

3n + 1

(

4n
n

)

t2nx−ny−n

)9

=
(1 + t2x−1y−1)9 · (1 + t6x−3y−3)3·54 · · ·

(1 − t4x−2y−2)2·18 · (1 − t8x−4y−4)4·252 · · ·
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Functions attached to rays are complicated.

For example, the function attached to the line of slope 1 is
(

∞
∑

n=0

1

3n + 1

(

4n
n

)

t2nx−ny−n

)9

=
(1 + t2x−1y−1)9 · (1 + t6x−3y−3)3·54 · · ·

(1 − t4x−2y−2)2·18 · (1 − t8x−4y−4)4·252 · · ·

Remark. This description is based on computer calculations and
may not yet have been verified.
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3. The tropical vertex, A-model

[Work in progress, joint with Bernd Siebert.]
Consider a weighted projective space X given by the fan:

(a, b)

(−1, 0)

(0, −1)

D1

D2

Dout

The three labelled rays correspond to three toric divisors, D1, D2,
and Dout.
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Pick two integers d1, d2 > 0 and general sets of points

S1 ⊆ D1,

S2 ⊆ D2

with
#S1 = d1, #S2 = d2,
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Pick two integers d1, d2 > 0 and general sets of points

S1 ⊆ D1,

S2 ⊆ D2

with
#S1 = d1, #S2 = d2,

Definition. Let Nd be the number of maps ϕ :
P1 → X (up to reparametrization) satisfying
the following properties:

1. Whenever ϕ(p) ∈ Di, i = 1, 2, then
ϕ(p) ∈ Si and ϕ is transversal to Di at
ϕ(p).

2. There is a unique q ∈ P1 such that ϕ(q) ∈
Dout.

3. The intersection multiplicity of ϕ(P1)
with Dout at ϕ(q) is d.
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Remark. This definition is rather vague at the moment, and needs
a more precise formulation. In particular, the main question is how
to count multiple covers.
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Examples. d1 = d2 = 1, (a, b) = (1, 1).
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Examples. d1 = d2 = 1, (a, b) = (1, 1).

Dout

D2

D1
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Examples. d1 = d2 = 1, (a, b) = (1, 1).

Dout

D2

D1

N1 = 1, Nd = 0, d ≥ 2.
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Examples. d1 = d2 = 2, (a, b) = (1, 1).

Dout

D2

D1
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Examples. d1 = d2 = 2, (a, b) = (1, 1).

Dout

D2

D1

N1 = 4
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Examples. d1 = d2 = 2, (a, b) = (1, 1).

Dout

D2

D1

N2 = 2, Nd = 0, d ≥ 3N1 = 4
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Examples. d1 = d2 = 2, (a, b) = (1, 1).

Dout

D2

D1

N2 = 2, Nd = 0, d ≥ 3N1 = 4

Compare with the function attached to the ray of slope 1:

(1 + t2x−1y−1)4

(1 − t4x−2y−2)2·2
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Examples. d1 = d2 = 3, (a, b) = (1, 1).

Dout

D2

D1
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Examples. d1 = d2 = 3, (a, b) = (1, 1).

Dout

D2

D1

N1 = 9
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Examples. d1 = d2 = 3, (a, b) = (1, 1).

Dout

D2

D1

N1 = 9, N2 = 3 × 3 × 2 = 18
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Examples. d1 = d2 = 3, (a, b) = (1, 1).

Dout

D2

D1

N1 = 9, N2 = 3 × 3 × 2 = 18

18 such cubics.
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Examples. d1 = d2 = 3, (a, b) = (1, 1).

Dout

D2

D1

N1 = 9, N2 = 3 × 3 × 2 = 18, N3 = 18 + 36 = 54, . . .

2 × 3 × 2 × 3 = 36 such cubics
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Summary. d1 = d2 = 3, (a, b) = (1, 1).

N1 = 9, N2 = 18, N3 = 54, N4 = 252, . . . ,
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Summary. d1 = d2 = 3, (a, b) = (1, 1).

N1 = 9, N2 = 18, N3 = 54, N4 = 252, . . . ,

Compare with

(1 + t2x−1y−1)9 · (1 + t6x−3y−3)3·54 · · ·
(1 − t4x−2y−2)2·18 · (1 − t8x−4y−4)4·252 · · ·
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Conjecture. Let D be the scattering di-
agram consisting of two lines with attached
functions (1 + tx−1)d1 and (1 + ty−1)d2 and
let D

′ be the scattering diagram obtained from
the Kontsevich-Soibelman Lemma. Then the
function attached to the ray generated by a
primitive vector (a, b) is

∞
∏

d=1

(1 + (−1)d+1td(a+b)x−day−db)(−1)d+1d·Nd .
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Remark. We can prove this conjecture modulo the correct definition
of the Nd’s. We use tropical techniques to prove it.
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4. The B-model for the mirror of P2

Recall. The mirror of P2 is a Landau-Ginzburg model, which can be
represented as

(C×)2 = Spec C[x, y, z]/(xyz − q)

where q is a non-zero parameter, and the Landau-Ginzburg potential
is

W := x + y + z.
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The small quantum cohomology ring is the Jacobian ring of W ,

C[x, y, z]/(x − y, x − z, xyz − q) ∼= C[H ]/(H3 − q).
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The small quantum cohomology ring is the Jacobian ring of W ,

C[x, y, z]/(x − y, x − z, xyz − q) ∼= C[H ]/(H3 − q).

Small quantum cohomology of P
2 just captures the fact that there

is one line through two points.
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Tropically, we can imagine these two points coming together along
a line of generic slope, hence forcing the vertex of the line to lie at a
given point in R

2:
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Tropically, we can imagine these two points coming together along
a line of generic slope, hence forcing the vertex of the line to lie at a
given point in R

2:

The Jacobian ring essentially just reads off the existence of one
tropical curve with one ray in each of the three directions correspond-
ing to x, y and z. (Chan and Leung).



Section 4: The B-model for the mirror of P
2 58

For big quantum cohomology, need to put a Frobenius manifold
structure on the universal unfolding of W .
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For big quantum cohomology, need to put a Frobenius manifold
structure on the universal unfolding of W .

Here we work on X = Spec C[x, y, z]/(xyz − 1),

W = x + y + z,

and the universal unfolding is parametrized by (t0, t1, t2):

t0 + (1 + t1)W + t2W
2

We want a Frobenius manifold structure on M = Spec C[[t0, t1, t2]].
(K. Saito, Barannikov, Sabbah, Hertling)
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One key point is get flat (canonical) coordinates (y0, y1, y2) on M.
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One key point is get flat (canonical) coordinates (y0, y1, y2) on M.

e.g. to fourth order,

y0 = t0 −
27

2
t22 +

27

2
t1t

2
2 −

27

2
t21t

2
2 + · · ·

y1 = 3t1 −
3

2
t21 + t31 −

135

2
t32 −

3

4
t41 +

405

2
t1t

3
2 + · · ·

y2 = 9t2(1 − 2t1 + 3t21 − 4t31 +
81

4
t32 + · · ·)
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(Conjectural) method for producing a canonical unfolding to order
3d:
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(Conjectural) method for producing a canonical unfolding to order
3d:

We will build a scattering diagram over the ring

R =
C[g1, . . . , gd, r1, . . . , rd, b1, . . . , bd]

(g2
1 , . . . , g

2
d, r

2
1 , . . . , r

2
d, b2

1, . . . , b
2
d)
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(Conjectural) method for producing a canonical unfolding to order
3d:

We will build a scattering diagram over the ring

R =
C[g1, . . . , gd, r1, . . . , rd, b1, . . . , bd]

(g2
1 , . . . , g

2
d, r

2
1 , . . . , r

2
d, b2

1, . . . , b
2
d)

We begin with D consisting of 3d lines, with attached functions

1 + g1x, . . . , 1 + gdx

1 + r1y, . . . , 1 + rdy

1 + b1z, . . . , 1 + bdz

(with xyz = q.)
We have three groups of d parallel lines.
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The Kontsevich-Soibelman Lemma then gives a new scattering
diagram D

′.
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g1

g2

r2

b1

b2

g2b2g1b1

b1r1

b1r2

g2b1

r1b2

r2b2

r1g1r2g1

r1g2

r2g2

g1b2
g2b1b2

b1b2r2g2

b1b2r2g1g2

g1b1b2

b1b2r1

b1b2r1g1

b1b2r2

b1b2r2g1

b1r1r2
b1r1r2g2

b1b2r1r2g2

r1r2b2

r1r2g2

b1r1r2g2

r1r2g1

b1b2r1r2g1

r2g1g2b1

r1g1g2

r1
g1g2b2

4g1g2b1b2
g1g2b1

g1g2r1b2

g1g2r1b1

g1g2b2r2

g1g2r1r2b2

r2g1g2

4r1r2g1g2

4b1b2r1r2

b2r1r2g1

b1b2r1g2

b1b2r1g1g2

r1r2g1g2b1

d = 2

r1r2g1b2
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We now construct W by picking a point, and considering all ways
of “transporting” the monomials x, y and z to arrive at a chosen
base-point.
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We now construct W by picking a point, and considering all ways
of “transporting” the monomials x, y and z to arrive at a chosen
base-point.

We “transport” a monomial cz(a,b) along a straight line whose
tangent direction is −(a, b).
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We now construct W by picking a point, and considering all ways
of “transporting” the monomials x, y and z to arrive at a chosen
base-point.

We “transport” a monomial cz(a,b) along a straight line whose
tangent direction is −(a, b).

When a monomial crosses a line or ray of the scattering diagram,
we apply the corresponding automorphism to the monomial, and then
are allowed to replace the monomial with any monomial which appears
in the resulting expression.
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g1

g2

r2

b1

b2

g2b2g1b1

b1r1

b1r2

g2b1

r1b2

r2b2

r1g1r2g1

r1g2

r2g2

g1b2
g2b1b2

b1b2r2g2

b1b2r2g1g2

g1b1b2

b1b2r1

b1b2r1g1

b1b2r2

b1b2r2g1

b1r1r2
b1r1r2g2

b1b2r1r2g2

r1r2b2

r1r2g2

b1r1r2g2

r1r2g1

r1r2g1b2

b1b2r1r2g1

r2g1g2b1

r1g1g2

r1
g1g2b2

4g1g2b1b2
g1g2b1

g1g2r1b2

g1g2r1b1

g1g2b2r2

g1g2r1r2b2

r2g1g2

4r1r2g1g2

4b1b2r1r2

b2r1r2g1

b1b2r1g2

b1b2r1g1g2

r1r2g1g2b1

1

r2

b1
b2g2r2

b2g2b1b2g2r2

b2

b1b2

2b1b2g2

b1b2r1

r1b1b2g2

1r2g1g1

r2g1g2b2

g2b2g1

r1r2g1

1 g2r1r1g2b1

g2b1

b1b2g1g2
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W is now a sum of a new parameter y0 and all the monomials
appearing in this way.

W = y0 +

x + x2zb2g2 + 2b2g2x
2z2b1 + xzb1 + b2zx + xz2b1b2

+b1b2r1z
2xy + r1x

2z2yb1b2g2

+r2xy + r2x
2yzb2g2 + g2b1x

2z2yb2r2 + y + xyg1 + b2g1g2x
2zy

+b1b2g1g2z
2x2y + r2g1xy2 + zg2x

2r2y
2b2g1

+z + g2xz + g2b1xz2 + zr1y + r1z
2xyb1g2 + r1r2g1xy2z

and
xyz = ey1 .
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This deformation of x + y + z over

Spec C[[y0, y1, g1, . . . , gd, r1, . . . , rd, b1, . . . , bd]]/(g2
i , r2

i , b2
i ),

and hence gives a map to the universal unfolding (in canonical coor-
dinates)

Spec C[[y0, y1, g1, . . . , gd, r1, . . . , rd, b1, . . . , bd]]/(g2
i , r2

i , b2
i )

→ Spec C[[y0, y1, y2]].
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Conjecture. This map is given by

y0 7→ y0

y1 7→ y1

y2 7→
d
∑

i=1

gi + ri + bi

Checked “by hand” in the d = 1, 2 cases.
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Why does W contain the information we want?
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Why does W contain the information we want?

Intution: Whenever three monomials in W multiply to give a term
of the form

f(gi, ri, bi)(xyz)d,

we obtain a tropical curve in tropical P2 of degree d+1, which passes
at infinity passes through 3d points, and through “two points” at the
chosen base-point.
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g1

g2

r2

b1

b2

g2b2g1b1

b1r1

b1r2

g2b1

r1b2

r2b2

r1g1r2g1

r1g2

r2g2

g1b2
g2b1b2

b1b2r2g2

b1b2r2g1g2

g1b1b2

b1b2r1

b1b2r1g1

b1b2r2

b1b2r2g1

b1r1r2
b1r1r2g2

b1b2r1r2g2
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