UCSD
 Mathematics Department

The Tropical Vertex

Mark Gross

Directory

- Table of Contents
- Begin Article

Copyright © 2008 mgross@math.ucsd.edu
Last Revision Date: January 7, 2008

Goal. Explain both sides (the A and B-model sides) of a phenomenon which lies at the heart of mirror symmetry.

Section 1: The Tropical Vertex Group (B-model)

1. The Tropical Vertex Group (B-model)

Fix the following data:

$$
M=\mathbb{Z}^{2}, \quad N=\operatorname{Hom}(M, \mathbb{Z})
$$

$$
M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}, \quad N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}
$$

Section 1: The Tropical Vertex Group (B-model)

- \mathbb{k} a field of characteristic zero.
- \mathbb{k} a field of characteristic zero.
- R a local Artin \mathbb{k}-algebra or a complete local \mathbb{k}-algebra, with maximal ideal \mathfrak{m}.

Section 1: The Tropical Vertex Group (B-model)

- \mathbb{k} a field of characteristic zero.
- R a local Artin \mathbb{k}-algebra or a complete local \mathbb{k}-algebra, with maximal ideal \mathfrak{m}.

We will define a subgroup

$$
H(R) \subseteq \operatorname{Aut}\left(\mathbb{k}[M] \otimes_{\mathbb{k}} R\right)
$$

Section 1: The Tropical Vertex Group (B-model)

- \mathbb{k} a field of characteristic zero.
- R a local Artin \mathbb{k}-algebra or a complete local \mathbb{k}-algebra, with maximal ideal \mathfrak{m}.

We will define a subgroup

$$
H(R) \subseteq \operatorname{Aut}\left(\mathbb{k}[M] \otimes_{\mathbb{k}} R\right)
$$

We will sometimes write

$$
\mathbb{k}[M]=\mathbb{k}\left[x^{ \pm 1}, y^{ \pm 1}\right]
$$

so an element

$$
z^{m} \in \mathbb{k}[M]
$$

can be written as

$$
x^{a} y^{b}
$$

if

$$
m=(a, b)
$$

Definition. The tropical vertex group $H(R)$ is the subgroup of $\operatorname{Aut}\left(\mathbb{k}[M] \otimes_{\mathbb{k}} R\right)$ generated by automorphisms of the form

$$
z^{m} \mapsto z^{m} f^{\left\langle n_{0}, m\right\rangle}
$$

where

- $n_{0} \in N$
- $f \in \mathbb{k}\left[z^{m_{0}}\right] \otimes_{\mathbb{k}} R \subseteq \mathbb{k}[M] \otimes_{\mathbb{k}} R$ for some non-zero $m_{0} \in M$.
- $f-1 \in z^{m_{0}} \mathfrak{m}$.
- $\left\langle n_{0}, m_{0}\right\rangle=0$.

Section 1: The Tropical Vertex Group (B-model)

Remarks.

- This is a slight variant of a group introduced by Kontsevich and Soibelman.

Remarks.

- This is a slight variant of a group introduced by Kontsevich and Soibelman.
- Elements of $H(R)$ are symplectomorphisms, preserving the symplectic form

$$
\Omega=\frac{d x}{x} \wedge \frac{d y}{y}
$$

Remarks.

- This is a slight variant of a group introduced by Kontsevich and Soibelman.
- Elements of $H(R)$ are symplectomorphisms, preserving the symplectic form

$$
\Omega=\frac{d x}{x} \wedge \frac{d y}{y}
$$

- $z^{m_{0}}$ is left invariant by the automorphism

$$
z^{m} \mapsto z^{m} f^{\left\langle n_{0}, m\right\rangle}
$$

Typical example. With $R=\mathbb{k}[[t]]$,

$$
\begin{array}{rll}
x & \mapsto & x \\
y & \mapsto & y(1+t x)
\end{array}
$$

is a typical example of one of the generators of $H(R)$. Here

$$
\begin{aligned}
m_{0} & =(1,0) \\
n_{0} & =(0,1) \\
f & =1+t x
\end{aligned}
$$

2. Scattering diagrams

Definition. A ray is a pair $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ where $\mathfrak{d} \subseteq$ $M_{\mathbb{R}}$ is given by $\mathfrak{d}=m_{0}^{\prime}-\mathbb{R}_{\geq 0} m_{0}$ for some $m_{0}^{\prime} \in$ $M_{\mathbb{R}}$ and non-zero $m_{0} \in M$, and

$$
f_{\mathfrak{d}} \in \mathbb{k}\left[z^{m_{0}}\right] \otimes_{\mathbb{k}} R
$$

satisfies

$$
f_{\mathfrak{o}}-1 \in z^{m_{0}} \mathfrak{m} .
$$

Definition. A ray is a pair $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ where $\mathfrak{d} \subseteq$ $M_{\mathbb{R}}$ is given by $\mathfrak{d}=m_{0}^{\prime}-\mathbb{R}_{\geq 0} m_{0}$ for some $m_{0}^{\prime} \in$ $M_{\mathbb{R}}$ and non-zero $m_{0} \in M$, and

$$
f_{\mathfrak{o}} \in \mathbb{k}\left[z^{m_{0}}\right] \otimes_{\mathbb{k}} R
$$

satisfies

$$
f_{\mathfrak{d}}-1 \in z^{m_{0}} \mathfrak{m} .
$$

Definition. A line is a pair $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ where $\mathfrak{d} \subseteq$ $M_{\mathbb{R}}$ is given by $\mathfrak{d}=m_{0}^{\prime}-\mathbb{R} m_{0}$ for some $m_{0}^{\prime} \in$ $M_{\mathbb{R}}$ and non-zero $m_{0} \in M$, and

$$
f_{\mathfrak{o}} \in \mathbb{k}\left[z^{m_{0}}\right] \otimes_{\mathbb{k}} R
$$

satisfies

$$
f_{\mathfrak{o}}-1 \in z^{m_{0}} \mathfrak{m} .
$$

Section 2: Scattering diagrams
Definition. A scattering diagram \mathfrak{D} is a set of lines and rays such that for any $n>0$, there are only a finite number of elements $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ with

$$
f_{\mathfrak{v}} \not \equiv 1 \quad \bmod \quad \mathfrak{m}^{n} .
$$

Section 2: Scattering diagrams
Consider any path

$$
\gamma:[0,1] \rightarrow M_{\mathbb{R}}
$$

which

- is transversal to every element of \mathfrak{D} it intersects;
- does not pass through the endpoint of any ray or the intersection of any two elements;
- only passes through any given ray a finite number of times.

To such a path, we can associate a path-ordered product of automorphisms, as follows.

To such a path, we can associate a path-ordered product of automorphisms, as follows.

First, when γ crosses an element $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$, we obtain an element of $H(R)$ given by

$$
z^{m} \mapsto z^{m} f_{\mathfrak{d}}^{\left\langle m, n_{0}\right\rangle},
$$

where $n_{0} \in N$ is primitive with $\left\langle n_{0}, m_{0}\right\rangle=0$ chosen with the following sign convention:

$$
\left\langle n_{0}, \cdot\right\rangle<0
$$

$$
\left\langle n_{0}, \cdot\right\rangle>0
$$

To such a path, we can associate a path-ordered product of automorphisms, as follows.

First, when γ crosses an element $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$, we obtain an element of $H(R)$ given by

$$
z^{m} \mapsto z^{m} f_{\mathfrak{d}}^{\left\langle m, n_{0}\right\rangle},
$$

where $n_{0} \in N$ is primitive with $\left\langle n_{0}, m_{0}\right\rangle=0$ chosen with the following sign convention:

$$
\left\langle n_{0}, \cdot\right\rangle<0
$$

$$
\left\langle n_{0}, \cdot\right\rangle>0
$$

This defines an element $\theta_{\gamma, \mathfrak{d}} \in H(R)$.

Section 2: Scattering diagrams
The path-ordered product is then defined by

$$
\theta_{\mathfrak{D}, \gamma}=\prod \theta_{\mathfrak{d}, \gamma},
$$

where the product runs over all \mathfrak{d} crossed by γ, in the order traversed by γ.

Section 2: Scattering diagrams
Example: Commutators

$$
\mathfrak{D}=\left\{\left(\mathfrak{d}_{1}, f_{1}\right),\left(\mathfrak{d}_{2}, f_{2}\right)\right\}
$$

where $\mathfrak{d}_{1}, \mathfrak{d}_{2}$ are lines through the origin.

Section 2: Scattering diagrams

Example: Commutators I

$$
\mathfrak{D}=\left\{\left(\mathfrak{d}_{1}, f_{1}\right),\left(\mathfrak{d}_{2}, f_{2}\right)\right\}
$$

where $\mathfrak{d}_{1}, \mathfrak{d}_{2}$ are lines through the origin.

Then

$$
\theta_{\mathfrak{D}, \gamma}=\theta_{2}^{-1} \circ \theta_{1}^{-1} \circ \theta_{2} \circ \theta_{1},
$$

where θ_{1} and θ_{2} are the elements of $H(R)$ associated to the first two crossings.

Kontsevich-Soibelman Lemma. Given a scattering diagram \mathfrak{D}, there is a scattering diagram \mathfrak{D}^{\prime} containing \mathfrak{D} such that $\mathfrak{D}^{\prime} \backslash \mathfrak{D}$ consists only of rays, and

$$
\theta_{\mathfrak{D}^{\prime}, \gamma}=i d
$$

for every closed loop γ for which $\theta_{\mathfrak{D}^{\prime}, \gamma}$ is defined.

Section 2: Scattering diagrams
Example: Commutators II

Section 2: Scattering diagrams
Example: Commutators II

Section 2: Scattering diagrams
Example: Commutators III

Section 2: Scattering diagrams

Example: Commutators III

Lines of slope $(n+1) / n, n \geq 1:\left(1+t^{2 n+1} x^{-n} y^{-n-1}\right)^{2}$ Lines of slope $n /(n+1), n \geq 1:\left(1+t^{2 n+1} x^{-n-1} y^{-n}\right)^{2}$ Line of slope 1 :

$$
\left(1-t^{2} x^{-1} y^{-1}\right)^{-4}=\frac{\left(1+t^{2} x^{-1} y^{-1}\right)^{4}}{\left(1-t^{4} x^{-2} y^{-2}\right)^{2 \cdot 2}}
$$

Section 2: Scattering diagrams
Example: Commutators IV

Section 2: Scattering diagrams

Example: Commutators IV

Have rays of slope $3,8 / 3,21 / 8, \ldots$ converging to $(3+\sqrt{5}) / 2$. Have rays of slope $1 / 3,3 / 8,8 / 21, \ldots$ converging to $(3-\sqrt{5}) / 2$. Have rays of all rational slopes between $(3-\sqrt{5}) / 2$ and $(3+\sqrt{5}) / 2$.

Section 2: Scattering diagrams
Functions attached to rays are complicated.

Functions attached to rays are complicated.
For example, the function attached to the line of slope 1 is

$$
\begin{gathered}
\left(\sum_{n=0}^{\infty} \frac{1}{3 n+1}\binom{4 n}{n} t^{2 n} x^{-n} y^{-n}\right)^{9} \\
=\frac{\left(1+t^{2} x^{-1} y^{-1}\right)^{9} \cdot\left(1+t^{6} x^{-3} y^{-3}\right)^{3 \cdot 54} \cdots}{\left(1-t^{4} x^{-2} y^{-2}\right)^{2 \cdot 18} \cdot\left(1-t^{8} x^{-4} y^{-4}\right)^{4 \cdot 252} \cdots}
\end{gathered}
$$

Functions attached to rays are complicated.
For example, the function attached to the line of slope 1 is

$$
\begin{gathered}
\left(\sum_{n=0}^{\infty} \frac{1}{3 n+1}\binom{4 n}{n} t^{2 n} x^{-n} y^{-n}\right)^{9} \\
=\frac{\left(1+t^{2} x^{-1} y^{-1}\right)^{9} \cdot\left(1+t^{6} x^{-3} y^{-3}\right)^{3 \cdot 54} \cdots}{\left(1-t^{4} x^{-2} y^{-2}\right)^{2 \cdot 18} \cdot\left(1-t^{8} x^{-4} y^{-4}\right)^{4 \cdot 252} \cdots}
\end{gathered}
$$

Remark. This description is based on computer calculations and may not yet have been verified.
3. The tropical vertex, A-model
[Work in progress, joint with Bernd Siebert.]
Consider a weighted projective space X given by the fan:

The three labelled rays correspond to three toric divisors, D_{1}, D_{2}, and $D_{\text {out }}$.

Section 3: The tropical vertex, A-model
Pick two integers $d_{1}, d_{2}>0$ and general sets of points

$$
\begin{aligned}
& S_{1} \subseteq D_{1}, \\
& S_{2} \subseteq D_{2}
\end{aligned}
$$

with

$$
\# S_{1}=d_{1}, \# S_{2}=d_{2}
$$

Pick two integers $d_{1}, d_{2}>0$ and general sets of points

$$
\begin{aligned}
& S_{1} \subseteq D_{1}, \\
& S_{2} \subseteq D_{2}
\end{aligned}
$$

with

$$
\# S_{1}=d_{1}, \# S_{2}=d_{2}
$$

Definition. Let N_{d} be the number of maps φ : $\mathbb{P}^{1} \rightarrow X$ (up to reparametrization) satisfying the following properties:

1. Whenever $\varphi(p) \in D_{i}, i=1,2$, then $\varphi(p) \in S_{i}$ and φ is transversal to D_{i} at $\varphi(p)$.
2. There is a unique $q \in \mathbb{P}^{1}$ such that $\varphi(q) \in$ $D_{\text {out }}$.
3. The intersection multiplicity of $\varphi\left(\mathbb{P}^{1}\right)$ with $D_{\text {out }}$ at $\varphi(q)$ is d.

Section 3: The tropical vertex, A-model
Remark. This definition is rather vague at the moment, and needs a more precise formulation. In particular, the main question is how to count multiple covers.

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=1,(a, b)=(1,1)$.

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=1,(a, b)=(1,1)$.

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=1,(a, b)=(1,1)$.

$$
N_{1}=1, N_{d}=0, d \geq 2
$$

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=2,(a, b)=(1,1)$.

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=2,(a, b)=(1,1)$.

$$
N_{1}=4
$$

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=2,(a, b)=(1,1)$.

$$
N_{1}=4 \quad N_{2}=2, N_{d}=0, d \geq 3
$$

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=2,(a, b)=(1,1)$.

$$
N_{1}=4 \quad N_{2}=2, N_{d}=0, d \geq 3
$$

Compare with the function attached to the ray of slope 1 :

$$
\frac{\left(1+t^{2} x^{-1} y^{-1}\right)^{4}}{\left(1-t^{4} x^{-2} y^{-2}\right)^{2 \cdot 2}}
$$

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

$$
N_{1}=9, N_{2}=3 \times 3 \times 2=18
$$

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

$$
\begin{aligned}
& N_{1}=9, N_{2}=3 \times 3 \times 2=18 \\
& 18 \text { such cubics. }
\end{aligned}
$$

Section 3: The tropical vertex, A-model
Examples. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

$$
\begin{aligned}
& N_{1}=9, N_{2}=3 \times 3 \times 2=18, N_{3}=18+36=54, \ldots \\
& 2 \times 3 \times 2 \times 3=36 \text { such cubics }
\end{aligned}
$$

Section 3: The tropical vertex, A-model
Summary. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

$$
N_{1}=9, N_{2}=18, N_{3}=54, N_{4}=252, \ldots
$$

Section 3: The tropical vertex, A-model
Summary. $d_{1}=d_{2}=3,(a, b)=(1,1)$.

$$
N_{1}=9, N_{2}=18, N_{3}=54, N_{4}=252, \ldots
$$

Compare with

$$
\frac{\left(1+t^{2} x^{-1} y^{-1}\right)^{9} \cdot\left(1+t^{6} x^{-3} y^{-3}\right)^{3 \cdot 54} \cdots}{\left(1-t^{4} x^{-2} y^{-2}\right)^{2 \cdot 18} \cdot\left(1-t^{8} x^{-4} y^{-4}\right)^{4 \cdot 252} \cdots}
$$

Conjecture. Let \mathfrak{D} be the scattering diagram consisting of two lines with attached functions $\left(1+t x^{-1}\right)^{d_{1}}$ and $\left(1+t y^{-1}\right)^{d_{2}}$ and let \mathfrak{D}^{\prime} be the scattering diagram obtained from the Kontsevich-Soibelman Lemma. Then the function attached to the ray generated by a primitive vector (a, b) is

$$
\prod_{d=1}^{\infty}\left(1+(-1)^{d+1} t^{d(a+b)} x^{-d a} y^{-d b}\right)^{(-1)^{d+1} d \cdot N_{d}}
$$

Section 3: The tropical vertex, A-model
Remark. We can prove this conjecture modulo the correct definition of the N_{d} 's. We use tropical techniques to prove it.

Section 4: The B-model for the mirror of \mathbb{P}^{2}

4. The B-model for the mirror of \mathbb{P}^{2}

Recall. The mirror of \mathbb{P}^{2} is a Landau-Ginzburg model, which can be represented as

$$
\left(\mathbb{C}^{\times}\right)^{2}=\operatorname{Spec} \mathbb{C}[x, y, z] /(x y z-q)
$$

where q is a non-zero parameter, and the Landau-Ginzburg potential is

$$
W:=x+y+z
$$

Section 4: The B-model for the mirror of \mathbb{P}^{2}
The small quantum cohomology ring is the Jacobian ring of W,

$$
\mathbb{C}[x, y, z] /(x-y, x-z, x y z-q) \cong \mathbb{C}[H] /\left(H^{3}-q\right)
$$

Section 4: The B-model for the mirror of \mathbb{P}^{2}
The small quantum cohomology ring is the Jacobian ring of W,

$$
\mathbb{C}[x, y, z] /(x-y, x-z, x y z-q) \cong \mathbb{C}[H] /\left(H^{3}-q\right) .
$$

Small quantum cohomology of \mathbb{P}^{2} just captures the fact that there is one line through two points.

Section 4: The B-model for the mirror of \mathbb{P}^{2}
Tropically, we can imagine these two points coming together along a line of generic slope, hence forcing the vertex of the line to lie at a given point in \mathbb{R}^{2} :

Tropically, we can imagine these two points coming together along a line of generic slope, hence forcing the vertex of the line to lie at a given point in \mathbb{R}^{2} :

The Jacobian ring essentially just reads off the existence of one tropical curve with one ray in each of the three directions corresponding to x, y and z. (Chan and Leung).

Section 4: The B-model for the mirror of \mathbb{P}^{2}
For big quantum cohomology, need to put a Frobenius manifold structure on the universal unfolding of W.

Section 4: The B-model for the mirror of \mathbb{P}^{2}
For big quantum cohomology, need to put a Frobenius manifold structure on the universal unfolding of W.

Here we work on $X=\operatorname{Spec} \mathbb{C}[x, y, z] /(x y z-1)$,

$$
W=x+y+z
$$

and the universal unfolding is parametrized by $\left(t_{0}, t_{1}, t_{2}\right)$:

$$
t_{0}+\left(1+t_{1}\right) W+t_{2} W^{2}
$$

We want a Frobenius manifold structure on $\mathcal{M}=\operatorname{Spec} \mathbb{C}\left[\left[t_{0}, t_{1}, t_{2}\right]\right]$.
(K. Saito, Barannikov, Sabbah, Hertling)

Section 4: The B-model for the mirror of \mathbb{P}^{2}
One key point is get flat (canonical) coordinates $\left(y_{0}, y_{1}, y_{2}\right)$ on \mathcal{M}.

Section 4: The B-model for the mirror of \mathbb{P}^{2}
One key point is get flat (canonical) coordinates $\left(y_{0}, y_{1}, y_{2}\right)$ on \mathcal{M}.
e.g. to fourth order,

$$
\begin{aligned}
& y_{0}=t_{0}-\frac{27}{2} t_{2}^{2}+\frac{27}{2} t_{1} t_{2}^{2}-\frac{27}{2} t_{1}^{2} t_{2}^{2}+\cdots \\
& y_{1}=3 t_{1}-\frac{3}{2} t_{1}^{2}+t_{1}^{3}-\frac{135}{2} t_{2}^{3}-\frac{3}{4} t_{1}^{4}+\frac{405}{2} t_{1} t_{2}^{3}+\cdots \\
& y_{2}=9 t_{2}\left(1-2 t_{1}+3 t_{1}^{2}-4 t_{1}^{3}+\frac{81}{4} t_{2}^{3}+\cdots\right)
\end{aligned}
$$

Section 4: The B-model for the mirror of \mathbb{P}^{2}
(Conjectural) method for producing a canonical unfolding to order $3 d$:

Section 4: The B-model for the mirror of \mathbb{P}^{2}
(Conjectural) method for producing a canonical unfolding to order $3 d$:

We will build a scattering diagram over the ring

$$
R=\frac{\mathbb{C}\left[g_{1}, \ldots, g_{d}, r_{1}, \ldots, r_{d}, b_{1}, \ldots, b_{d}\right]}{\left(g_{1}^{2}, \ldots, g_{d}^{2}, r_{1}^{2}, \ldots, r_{d}^{2}, b_{1}^{2}, \ldots, b_{d}^{2}\right)}
$$

(Conjectural) method for producing a canonical unfolding to order $3 d$:

We will build a scattering diagram over the ring

$$
R=\frac{\mathbb{C}\left[g_{1}, \ldots, g_{d}, r_{1}, \ldots, r_{d}, b_{1}, \ldots, b_{d}\right]}{\left(g_{1}^{2}, \ldots, g_{d}^{2}, r_{1}^{2}, \ldots, r_{d}^{2}, b_{1}^{2}, \ldots, b_{d}^{2}\right)}
$$

We begin with \mathfrak{D} consisting of $3 d$ lines, with attached functions

$$
\begin{array}{lll}
1+g_{1} x, & \ldots, & 1+g_{d} x \\
1+r_{1} y, & \ldots, & 1+r_{d} y \\
1+b_{1} z, & \ldots, & 1+b_{d} z
\end{array}
$$

(with $x y z=q$.)
We have three groups of d parallel lines.

Section 4: The B-model for the mirror of \mathbb{P}^{2}
The Kontsevich-Soibelman Lemma then gives a new scattering diagram \mathfrak{D}^{\prime}.

Section 4: The B-model for the mirror of \mathbb{P}^{2}

Section 4: The B-model for the mirror of \mathbb{P}^{2}
We now construct W by picking a point, and considering all ways of "transporting" the monomials x, y and z to arrive at a chosen base-point.

Section 4: The B-model for the mirror of \mathbb{P}^{2}
We now construct W by picking a point, and considering all ways of "transporting" the monomials x, y and z to arrive at a chosen base-point.

We "transport" a monomial $c z^{(a, b)}$ along a straight line whose tangent direction is $-(a, b)$.

We now construct W by picking a point, and considering all ways of "transporting" the monomials x, y and z to arrive at a chosen base-point.

We "transport" a monomial $c z^{(a, b)}$ along a straight line whose tangent direction is $-(a, b)$.

When a monomial crosses a line or ray of the scattering diagram, we apply the corresponding automorphism to the monomial, and then are allowed to replace the monomial with any monomial which appears in the resulting expression.

Section 4: The B-model for the mirror of \mathbb{P}^{2}

Section 4: The B-model for the mirror of \mathbb{P}^{2}
W is now a sum of a new parameter y_{0} and all the monomials appearing in this way.

$$
\begin{aligned}
W= & y_{0}+ \\
& x+x^{2} z b_{2} g_{2}+2 b_{2} g_{2} x^{2} z^{2} b_{1}+x z b_{1}+b_{2} z x+x z^{2} b_{1} b_{2} \\
& +b_{1} b_{2} r_{1} z^{2} x y+r_{1} x^{2} z^{2} y b_{1} b_{2} g_{2} \\
& +r_{2} x y+r_{2} x^{2} y z b_{2} g_{2}+g_{2} b_{1} x^{2} z^{2} y b_{2} r_{2}+y+x y g_{1}+b_{2} g_{1} g_{2} x^{2} z y \\
& +b_{1} b_{2} g_{1} g_{2} z^{2} x^{2} y+r_{2} g_{1} x y^{2}+z g_{2} x^{2} r_{2} y^{2} b_{2} g_{1} \\
& +z+g_{2} x z+g_{2} b_{1} x z^{2}+z r_{1} y+r_{1} z^{2} x y b_{1} g_{2}+r_{1} r_{2} g_{1} x y^{2} z
\end{aligned}
$$

$$
x y z=e^{y_{1}}
$$

Section 4: The B-model for the mirror of \mathbb{P}^{2}
This deformation of $x+y+z$ over
$\operatorname{Spec} \mathbb{C}\left[\left[y_{0}, y_{1}, g_{1}, \ldots, g_{d}, r_{1}, \ldots, r_{d}, b_{1}, \ldots, b_{d}\right]\right] /\left(g_{i}^{2}, r_{i}^{2}, b_{i}^{2}\right)$,
and hence gives a map to the universal unfolding (in canonical coordinates)

$$
\begin{aligned}
& \operatorname{Spec} \mathbb{C}\left[\left[y_{0}, y_{1}, g_{1}, \ldots, g_{d}, r_{1}, \ldots, r_{d}, b_{1}, \ldots, b_{d}\right]\right] /\left(g_{i}^{2}, r_{i}^{2}, b_{i}^{2}\right) \\
\rightarrow \quad & \operatorname{Spec} \mathbb{C}\left[\left[y_{0}, y_{1}, y_{2}\right]\right] .
\end{aligned}
$$

Section 4: The B-model for the mirror of \mathbb{P}^{2}
Conjecture. This map is given by

$$
\begin{array}{rll}
y_{0} & \mapsto & y_{0} \\
y_{1} & \mapsto y & y_{1} \\
y_{2} & \mapsto & \sum_{i=1}^{d} g_{i}+r_{i}+b_{i}
\end{array}
$$

Checked "by hand" in the $d=1,2$ cases.

Section 4: The B-model for the mirror of \mathbb{P}^{2}
Why does W contain the information we want?

Why does W contain the information we want?
Intution: Whenever three monomials in W multiply to give a term of the form

$$
f\left(g_{i}, r_{i}, b_{i}\right)(x y z)^{d}
$$

we obtain a tropical curve in tropical \mathbb{P}^{2} of degree $d+1$, which passes at infinity passes through $3 d$ points, and through "two points" at the chosen base-point.

Section 4: The B-model for the mirror of \mathbb{P}^{2}

