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Goal. Explain both sides (the A and B-model
sides) of a phenomenon which lies at the heart
of mirror symmetry.
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1. The Tropical Vertex Group (B-model)

Fix the following data:

M =72, N =Hom(M,Z),

MR:M®ZR, NR:N®ZR



Section 1: The Tropical Vertex Group (B-model)

e k a field of characteristic zero.



Section 1: The Tropical Vertex Group (B-model) 5

e k a field of characteristic zero.

e R a local Artin k-algebra or a complete local k-algebra, with
maximal ideal m.



Section 1: The Tropical Vertex Group (B-model) 6

e k a field of characteristic zero.

e R a local Artin k-algebra or a complete local k-algebra, with
maximal ideal m.

We will define a subgroup
H(R) C Aut(k[M] ®x R).



Section 1: The Tropical Vertex Group (B-model) 7

e k a field of characteristic zero.

e R a local Artin k-algebra or a complete local k-algebra, with
maximal ideal m.

We will define a subgroup
H(R) C Aut(k[M] ®x R).

We will sometimes write
k[M] = k[z*', y*],
so an element
2™ € k[M]

can be written as

xayb

if
m = (a,b).
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Definition. The tropical vertex group H(R)
is the subgroup of Aut(k[M] ®x R) generated
by automorphisms of the form

2™ me(no,m)
where
e ng e N

o f € k[z™]® R C k[M] ®k R for some
non-zero mg € M.

o f—1¢€z2"m,

o (ng, mo) = 0.
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Remarks.

e This is a slight variant of a group introduced by Kontsevich and
Soibelman.
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Remarks.

e This is a slight variant of a group introduced by Kontsevich and
Soibelman.

e Elements of H(R) are symplectomorphisms, preserving the sym-
plectic form
_dx A dy

z Y

Q

e 20 ig left invariant by the automorphism

UL me(no,m)
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Typical example. With R = k[[¢]],
T = X
y — y(l+tx)

is a typical example of one of the generators of
H(R). Here

mo = (1,0)
ng = (07 1)
f = 1+tx

12
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2. Scattering diagrams

Definition. A ray is a pair (9, fp) where 0 C
Mg is given by 0 = mgy —Rx>gmy for some my €
Mg and non-zero mg € M, and

fa € k[zmo] Rk R

satisfies
fa —1€z™m.
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Definition. A ray is a pair (9, f5) where 0 C
MR is given by 9 = my—R>omg for some my, €
Mg and non-zero mg € M, and

fo € k[z™] @k R

satisfies
fa —1€z™m.

Definition. A line is a pair (0, f;) where 0 C
Mg is given by 9 = m{, — Rmg for some m(, €
Mg and non-zero mg € M, and

fo €k[z™] @k R

satisfies
fa —1€z™m.

14
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Definition. A scattering diagram ® is a set of
lines and rays such that for any n > 0, there are
only a finite number of elements (9, f) with

fa 7_é 1 mod m".

15
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Consider any path
v:[0,1] - Mg
which

e is transversal to every element of © it intersects;

e does not pass through the endpoint of any ray or the intersection
of any two elements;

e only passes through any given ray a finite number of times.
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To such a path, we can associate a path-ordered product of auto-
morphisms, as follows.
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To such a path, we can associate a path-ordered product of auto-
morphisms, as follows.

First, when v crosses an element (9, f5), we obtain an element of
H(R) given by
2" sz;m’m),
where ng € N is primitive with (ng, mg) = 0 chosen with the following
sign convention:

(ng, ) <0
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To such a path, we can associate a path-ordered product of auto-
morphisms, as follows.

First, when v crosses an element (9, f5), we obtain an element of
H(R) given by
2" sz;m’m),
where ng € N is primitive with (ng, mg) = 0 chosen with the following
sign convention:

(ng, ) <0

This defines an element 6., , € H(R).
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The path-ordered product is then defined by

9@,'}/ = Heb,’yv

where the product runs over all ? crossed by -, in the order traversed
by ~.
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Example: Commutators

D = {(01, f1)7 (027 f2)}7

where 91, 02 are lines through the origin.
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Example: Commutators 1

D = {(01, /1), (02, f2)},

where 91, 02 are lines through the origin.

Then

O, =05 007" 00004,
where 01 and 0 are the elements of H(R) associated to the first two
crossings.
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Kontsevich-Soibelman Lemma. Given a
scattering diagram ®, there is a scattering dia-
gram ®’ containing © such that ®’\® consists
only of rays, and

9@/,7 =1id

for every closed loop «y for which 05/, is de-
fined.

23



Section 2: Scattering diagrams

Example: Commutators II

D
T 2(1+ty_1)

y—=y

24
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v y(1+ ta L)

T — T

Yy y/(+taTl)

e et

Yy =y
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Example: Commutators II

o/
x — x(1 4+ t'y*l)

y—=y

T — x(1 +t2m_1y_1)
Yy y/( 42y

T —

y— y(l+ tm*l)i‘v.

Yy =y

T — T

Yy y/(+taTl)

e et

25
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Example: Commutators 111

D

(14 ta—1)2

Tag w12
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Example: Commutators 111

D

1+ ta— 12

Ta+ w12

Lines of slope (n+1)/n, n > 1: (1 4 ¢2Hlg=ny=n-1)2
Lines of slope n/(n + 1), n > 1: (1 4 ¢2nHlg=n=1ly=n)2
Line of slope 1:

(1 +t2$_1y_1)4

(1— thg—2y-2)22°

(1 _ th_ly_l)_4 _
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Example: Commutators IV

D

(14 ta—1)3

a3
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Example: Commutators IV

(14 ta— 13

Ta+w 13

Have rays of slope 3,8/3,21/8, ... converging to (3 + v/5)/2.
Have rays of slope 1/3,3/8,8/21,. .. converging to (3 — v/5)/2.
Have rays of all rational slopes between (3—+/5)/2 and (3++/5)/2.
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Functions attached to rays are complicated.
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Section 2: Scattering diagrams
Functions attached to rays are complicated.
For example, the function attached to the line of slope 1 is

9
S 1 dn 2n, ,—n, —n
<Z 3n+1 ( n )t vy )

n=0
(1 + tQ:E_ly_l)g . (1 + tﬁx—3y—3)3~54 -
(1 _ t4x—2y—2)2'18 . (1 _ tsx—4y—4)4‘252 -

31
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Functions attached to rays are complicated.

For example, the function attached to the line of slope 1 is

9
i 1 dn thx—n —n
— 3n+1\ n Y

B (1+t2 -1 —1) (1+t6 -3 —3)3-54_,_
_(1—t4x Yy~ )218-(1—1583? Yy 4)4»252_,_

Remark. This description is based on computer calculations and
may not yet have been verified.
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3. The tropical vertex, A-model

[Work in progress, joint with Bernd Siebert.]
Consider a weighted projective space X given by the fan:

(a, b)
Dout

The three labelled rays correspond to three toric divisors, D1, Do,
and Dgqyt.
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Pick two integers di,ds > 0 and general sets of points

S Dy,
Sa Do

N 1N

with
#Sl = dlv#SQ = d?;
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Pick two integers di,ds > 0 and general sets of points
S1 € Dy,
Sz € Do
with
#51 = di, #52 = da,

Definition. Let Ny be the number of maps ¢ :
P! — X (up to reparametrization) satisfying
the following properties:

1. Whenever ¢(p) € D;, ¢ = 1,2, then
p(p) € S; and ¢ is transversal to D; at

o(p)-

2. There is a unique ¢ € P! such that ¢(q) €
Dout 0

3. The intersection multiplicity of ¢(P!)
with Dyt at ©(q) is d.
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Remark. This definition is rather vague at the moment, and needs
a more precise formulation. In particular, the main question is how
to count multiple covers.
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Examples. d; =ds =1, (a,b) = (1,1).
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Examples. d; =ds =1, (a,b) = (1,1).

Doyt
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Examples. d; =ds =1, (a,b) = (1,1).

Doyt

Ny =1, Ng=0,d>2.
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Examples. d; = ds =2, (a,b) = (1,1).

Doyt
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Examples. d; = ds =2, (a,b) = (1,1).

Doyt

/
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Examples. d; = ds =2, (a,b) = (1,1).

Ny =4 Ng=2 N;j=0,d2>3
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Examples. d; = ds =2, (a,b) = (1,1).

/// Dout
I S
C
——__\)
D3
Dy
Ny =4 Ng =2, Ng=0,d>3

Compare with the function attached to the ray of slope 1:
(14 221y~ 1)
(1— tig—2y2)22

43
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Examples. d; = ds =3, (a,b) = (1,1).

Doyt

44
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Examples. d; = ds =3, (a,b) = (1,1).

Dout

Do

Dy

45
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Examples. d; = ds =3, (a,b) = (1,1).

Ni =9, Ng=3x3x2=18
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Examples. d; = ds =3, (a,b) = (1,1).

L
C Doyt

N1 =9, Ny =3x3x2=18

18 such cubics.
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Examples. d; = ds =3, (a,b) = (1,1).

\
Q Doyt

\ S

Dy

N1 =9, Ny =3x3x2=18, N3 =18+36 =54, ...

2 X 3 X 2 X 3 = 36 such cubics
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Summary. d; =ds =3, (a,b) = (1,1).

Ny =9,Ny =18, N3 = 54, N, = 252, . ..

49
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Summary. d; =ds =3, (a,b) = (1,1).
N1 =9,Ny =18 N3 =54, Ny =252, ...,
Compare with

(14 2z~ 1y=1)2 - (1 + 02 ~3y—3)354. ..
(1 — thg—2y—2)218 . (1 — (8g—4y—4)4252 ...
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Conjecture. Let © be the scattering di-
agram consisting of two lines with attached
functions (1 + tz~1)% and (1 + ty~1)% and
let ®’ be the scattering diagram obtained from
the Kontsevich-Soibelman Lemma. Then the
function attached to the ray generated by a
primitive vector (a,b) is

o0

H(]- + (_1)d+1td(a+b)x—day—db)(—1)d+1d.Nd’
d=1

51
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Remark. We can prove this conjecture modulo the correct definition
of the Ny’s. We use tropical techniques to prove it.
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4. The B-model for the mirror of P?

Recall. The mirror of P2 is a Landau-Ginzburg model, which can be
represented as

(C*)?* = SpecClz, y, 2]/ (zyz — q)
where ¢ is a non-zero parameter, and the Landau-Ginzburg potential
is
W:=x+y+ =z
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The small quantum cohomology ring is the Jacobian ring of W,

Clz,y,2]/(x — y,x — z,2yz — q) = C[H]/(H® — q).
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The small quantum cohomology ring is the Jacobian ring of W,
Clz,y,2]/(x —y,x — z,xyz — q) = C[H]/(H? — q).

Small quantum cohomology of P? just captures the fact that there
is one line through two points.
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Tropically, we can imagine these two points coming together along
a line of generic slope, hence forcing the vertex of the line to lie at a
given point in R?:
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Tropically, we can imagine these two points coming together along
a line of generic slope, hence forcing the vertex of the line to lie at a
given point in R?:

The Jacobian ring essentially just reads off the existence of one
tropical curve with one ray in each of the three directions correspond-
ing to z, y and z. (Chan and Leung).
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For big quantum cohomology, need to put a Frobenius manifold
structure on the universal unfolding of W.
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For big quantum cohomology, need to put a Frobenius manifold
structure on the universal unfolding of W.
Here we work on X = Spec C[z, vy, 2]/ (zyz — 1),
W=x+y+z,
and the universal unfolding is parametrized by (to, t1,t2):

to + (1 + tl)W + t2W2

We want a Frobenius manifold structure on M = Spec C[[to, t1, t2]]-
(K. Saito, Barannikov, Sabbah, Hertling)
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One key point is get flat (canonical) coordinates (yo,y1,y2) on M.
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One key point is get flat (canonical) coordinates (yo,y1,y2) on M.

e.g. to fourth order,

27 27 27
yo = to— Etg + Eht% - ?t%tg 4o
3 135 3 405
Y1 = 3t1 - 51% + ti’ — Ttg - Zt% + Ttltg +
81

Yo = Oto(1 — 2t + 33 — 413 + Ztg + )
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(Conjectural) method for producing a canonical unfolding to order
3d:
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(Conjectural) method for producing a canonical unfolding to order
3d:

We will build a scattering diagram over the ring

Clgts -+, 9d,T1y -+, Tdy b1y - -, bd]

R:
2 2 2 2 72 2
(93,595,711, -..,r3,b1,...,b3)
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(Conjectural) method for producing a canonical unfolding to order
3d:

We will build a scattering diagram over the ring

Clgts -+, 9d,T1y -+, Tdy b1y - -, bd]

R:
2 2 2 2 72 2
(93,595,711, -..,r3,b1,...,b3)

We begin with ® consisting of 3d lines, with attached functions

1+ g1z, ..., 14+gax
1+rmy, ..., 1l4+rqy
1+b1z, ..., 14byz

(with zyz = q.)
We have three groups of d parallel lines.
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The Kontsevich-Soibelman Lemma then gives a new scattering
diagram D’.
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d=2
bibar
17253012
g1b2
b
91922 r bibarkaflg2
491925153 g1b1b2
9192b1
by bor bpbar
91937102 92012 g3 lpb2 1 4 })gﬁ gl 2791
b1bory 1b27
bybara
g192b272
bibar
91927101 e
91
rIgTIIbT . byr2
92

biry
I67 6571 T

r2b2

bibarirags

r1b2

b1bariragy

birirag2

1
g&r291b2

271729171292

byrira

r1r2bo
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We now construct W by picking a point, and considering all ways
of “transporting” the monomials z, y and z to arrive at a chosen
base-point.
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We now construct W by picking a point, and considering all ways
of “transporting” the monomials z, y and z to arrive at a chosen
base-point.

We “transport” a monomial ¢z(%?) along a straight line whose
tangent direction is —(a, b).
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We now construct W by picking a point, and considering all ways
of “transporting” the monomials z, y and z to arrive at a chosen
base-point.

We “transport” a monomial ¢z(%?) along a straight line whose
tangent direction is —(a, b).

When a monomial crosses a line or ray of the scattering diagram,
we apply the corresponding automorphism to the monomial, and then
are allowed to replace the monomial with any monomial which appears
in the resulting expression.
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by b T
1 2-‘71!729215"115"22
91b2
b 17 ) b
9LIR2 o 291 281838 aflan
! i
3 91b1b2
9192b1
b1bgrigz bibarign
91927102 b1 b b1bargg
10272
bybara
9192ba72
bibor
91927101 12
91,
rIgTI2OT byra
by
R bogors

0171pg ge
615 pT43 0310

Tobo 2b1 bago
b2

bibariT2g2

729192
9192717

fRn)
r1bg r1b1b292

1729192

birir292

27172 P

byrira

1717292 P1roby
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W is now a sum of a new parameter yy and all the monomials
appearing in this way.
W = wy+
T+ xzzbggg + 2b2g2x2z2b1 + 22by + bozx + 222b by
+b1b2T1Z2$y + r1x222yb1b2g2
+roxy + rox’yzbags + gab12?2%ybars + y + xygr + bagrgar”zy
+b1bag1 9222y + ragray” + 292012y bagn
+z 4+ goxz + ggbla:z2 + zr1y + r1z2xy61g2 + 7’17‘291.133/22’

and
xyz = e,



Section 4: The B-model for the mirror of P? 72

This deformation of = + y 4+ z over

Spec(c[[y()vylvglv" -5 9d,T1, - "7rd;b1a' e ,bd]]/(gf,rf,bf),

and hence gives a map to the universal unfolding (in canonical coor-
dinates)

Spec(c[[y()vylaglv" -5 9d,T1,5 - "7rd;b1a' o ,bd]]/(gf,rf,bf)

—  SpecCl[yo, y1,¥2]]-
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Conjecture. This map is given by

Yo — Yo
y = U

d
Y2 = Zgi+7’¢+bi
i=1

Checked “by hand” in the d = 1,2 cases.

73
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Why does W contain the information we want?

74
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Why does W contain the information we want?

Intution: Whenever three monomials in W multiply to give a term
of the form
f(gla T4, bl)(xyz)da
we obtain a tropical curve in tropical P? of degree d + 1, which passes
at infinity passes through 3d points, and through “two points” at the
chosen base-point.
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T2

bixz 'I'2b2g1g2wzyzz 1Yz
by b T
1 2-‘71!729215"115"22
91b2
9192b2 2818308 g1l92
92fb2i9l1
924103 91b1b2
9192b1
bibprigs bibarig
91957153 1b2r192 bibarigr
9192ba72
91927101
TIYTIIYT
L.
- bogors

2171pg ge
615 pT43 0310

Tobo 2b1 bago
b2

bibariT292

12 b1bogo

9192 .2
9192717

r1b2

142017 "o g
1T29192

2®

birir292

1717292

byrira

r172b3
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