The geometry of the basic instanton moduli space over the multi-Taub–NUT space (joint work with G.Etesi)

Szilárd Szabó

Rényi Institute of Mathematics

Budapest University of Technology

Kobe July 20th, 2009

通 ト イヨト イヨト

OUTLINE

The multi-Taub-NUT space

-

OUTLINE

THE MULTI-TAUB-NUT SPACE

INSTANTON THEORY ON ALF SPACES

OUTLINE

THE MULTI-TAUB-NUT SPACE

INSTANTON THEORY ON ALF SPACES

TWISTOR THEORY

Instanton theory well understood over ALE 4-manifolds using quivers (Kronheimer, Nakajima). What about the ALF case?

- Instanton theory well understood over ALE 4-manifolds using quivers (Kronheimer, Nakajima). What about the ALF case?
- Similarity with the theory for compact manifolds (Hausel-Hunsicker-Mazzeo compactification).

- Instanton theory well understood over ALE 4-manifolds using quivers (Kronheimer, Nakajima). What about the ALF case?
- Similarity with the theory for compact manifolds (Hausel-Hunsicker-Mazzeo compactification).
- Instanton moduli spaces over the multi-Taub–NUT space appear in electric-magnetic duality (Witten, Cherkis).

- Instanton theory well understood over ALE 4-manifolds using quivers (Kronheimer, Nakajima). What about the ALF case?
- Similarity with the theory for compact manifolds (Hausel-Hunsicker-Mazzeo compactification).
- Instanton moduli spaces over the multi-Taub–NUT space appear in electric-magnetic duality (Witten, Cherkis).
- Possible topological applications...

CONSTRUCTION OF THE SPACE

Fix $p_1, \ldots, p_k \in \mathbf{R}^3$ distinct points (the "nuts"). Denote by l_{ij} the straight line segment connecting p_i to p_j . Consider the principal bundle

$$\mathsf{P} o \mathsf{R}^3 \setminus \{p_1, \dots, p_k\}$$

with, for all $j \in \{1, \ldots, k\}$ and ε sufficiently small

$$c_1(P|_{S^2_\varepsilon(p_j)}) = -1.$$

Let

$$M=\coprod_j B^4_{\varepsilon}(p_j)\coprod P/\sim,$$

where \sim is the equivalence relation induced by the Hopf-fibration.

TOPOLOGICAL PROPERTIES

▶ *M* inherits a smooth manifold structure and projection

$$\pi: M \to \mathbf{R}^3.$$

Denote the preimages $\pi^{-1}(p_j)$ by p_j .

- There exists on *M* a smooth S¹-action with fixed points {*p*₁,...,*p_k*}, free on *M* \ {*p*₁,...,*p_k*}. Denote by *τ* the infinitesimal generator of this action; *τ* is a smooth vector-field on *M* \ {*p*₁,...,*p_k*}.
- M is non-compact, complete, simply-connected, orientable and spin.
- H₂(M, Z) is generated by k − 1 spheres S_j² = π⁻¹(I_{j,j+1}), intersecting along A_{k-1}.

CONSTRUCTION OF THE METRIC

Consider the potential function

$$V(\mathbf{x}) = 1 + rac{1}{2} \sum_{j=1}^{k} rac{1}{|\mathbf{x} - p_j|}$$

where $\textbf{x} \in \textbf{R}^3$ and |.| stands for the Euclidean norm. Notice:

$$\blacktriangleright \Delta_{\mathbf{R}^3} V = \delta_{p_1} + \dots + \delta_{p_k};$$

► the differential form $*_{3}dV$ represents $2\pi c_{1}(P) \in H^{2}(P, \mathbb{Z})$. It follows that there exists a connection 1-form $\omega \in \Omega^{1}(\mathbb{R}^{3} \setminus \{p_{1}, \ldots, p_{k}\}, ad(P))$ such that

$$*_{3}\mathrm{d}V = \mathrm{d}\omega.$$

Denoting by (x, y, z) standard orthonormal coordinates in \mathbb{R}^3 , set

$$\mathsf{g}_V = V(\mathrm{d} x^2 + \mathrm{d} y^2 + \mathrm{d} z^2) + rac{1}{V}(\mathrm{d} au + \omega)^2.$$

METRIC PROPERTIES

- g_V extends smoothly to M.
- Gibbons-Hawking ansatz ⇒ g_V is hyperKähler (W⁺ = 0, s = 0).
- Asymptotically locally flat (ALF): near infinity, up to a finite cover,

$$g_V \asymp \mathrm{d}r^2 + r^2 g_{S^2} + \mathrm{d}\tau^2,$$

where $r = |\pi(\mathbf{x}) - \pi(\mathbf{x}_0)|$ for any fixed $\mathbf{x}_0 \in M$.

METRIC PROPERTIES

- g_V extends smoothly to M.
- Gibbons-Hawking ansatz ⇒ g_V is hyperKähler (W⁺ = 0, s = 0).
- Asymptotically locally flat (ALF): near infinity, up to a finite cover,

$$g_V \asymp \mathrm{d}r^2 + r^2 g_{S^2} + \mathrm{d}\tau^2,$$

where $r = |\pi(\mathbf{x}) - \pi(\mathbf{x}_0)|$ for any fixed $\mathbf{x}_0 \in M$.

 (M, g_V) : multi-Taub-NUT space with nuts in $\{p_1, \ldots, p_k\}$, aka. ALF A_{k-1} gravitational instanton.

INSTANTONS ON 4-MANIFOLDS

Let (X, g) be an arbitrary orientable Riemannian 4-manifold. Fix an SU(2)-vector bundle

$$E \rightarrow X$$
.

Let ∇ denote a Hermitian connection on *E*, and *F* stand for its curvature. Denote by * the 4-dimensional Hodge operator. The anti-self-duality (ASD) equation for ∇ is

$$*F = -F.$$

INSTANTONS ON 4-MANIFOLDS

Let (X, g) be an arbitrary orientable Riemannian 4-manifold. Fix an SU(2)-vector bundle

$$E \rightarrow X$$
.

Let ∇ denote a Hermitian connection on *E*, and *F* stand for its curvature. Denote by * the 4-dimensional Hodge operator. The anti-self-duality (ASD) equation for ∇ is

$$*F = -F.$$

The energy of ∇ is

$$\frac{1}{3\pi^2}\int_X |F|^2 \mathrm{d}\mathsf{vol}_g,$$

where $dvol_g$ stands for the volume form of g.

INSTANTONS ON 4-MANIFOLDS

Let (X, g) be an arbitrary orientable Riemannian 4-manifold. Fix an SU(2)-vector bundle

$$E \rightarrow X$$
.

Let ∇ denote a Hermitian connection on *E*, and *F* stand for its curvature. Denote by * the 4-dimensional Hodge operator. The anti-self-duality (ASD) equation for ∇ is

$$*F = -F.$$

The energy of ∇ is

$$\frac{1}{3\pi^2}\int_X |F|^2 \mathrm{d}\mathsf{vol}_g,$$

where $dvol_g$ stands for the volume form of g. An ASD connection ∇ of finite energy is called an (anti-)instanton on E.

MODULI SPACES OF INSTANTONS ON ALF SPACES Assume X is ALF. Write $\nabla = d + A$ for $A \in \Omega^1(X \setminus B_R(\mathbf{x}_0), \operatorname{ad}(E))$ (or $A = \nabla - \Gamma$ for some flat SU(2)-connection Γ on $X \setminus B_R(\mathbf{x}_0)$). We say ∇ satisfies the

1. weak holonomy condition for Γ if for some C>0 and any R>>0 we have

$$\|A\|_{L^2_1(M\setminus B_R(\mathbf{x}_0))} \leq C \|F\|_{L^2(M\setminus B_R(\mathbf{x}_0))};$$

2. rapid decay condition if

$$\lim_{r\to\infty}\sqrt{r}\|F\|_{L^2(M\setminus B_r(\mathbf{x}_0))}=0.$$

MODULI SPACES OF INSTANTONS ON ALF SPACES Assume X is ALF. Write $\nabla = d + A$ for $A \in \Omega^1(X \setminus B_R(\mathbf{x}_0), \operatorname{ad}(E))$ (or $A = \nabla - \Gamma$ for some flat SU(2)-connection Γ on $X \setminus B_R(\mathbf{x}_0)$). We say ∇ satisfies the

1. weak holonomy condition for Γ if for some C>0 and any R>>0 we have

$$\|A\|_{L^2_1(M\setminus B_R(\mathbf{x}_0))} \leq C \|F\|_{L^2(M\setminus B_R(\mathbf{x}_0))};$$

2. rapid decay condition if

$$\lim_{r\to\infty}\sqrt{r}\|F\|_{L^2(M\setminus B_r(\mathbf{x}_0))}=0.$$

THEOREM (G.ETESI – M.JARDIM, 2008)

There exists a smooth moduli space $\mathcal{M}^{irr}(X, E, \Gamma, e)$ of gauge equivalence classes of rapidly decaying instantons of energy e on E satisfying the weak holonomy condition for Γ .

THE MODULI SPACE

Furthermore: for *E* the only smooth SU(2)-bundle on *M* and Γ the trivial connection over $M \setminus B_R(\mathbf{x}_0)$ a dimension count gives

 $\dim(\mathcal{M}^{\mathsf{irr}}(M,1))=5.$

12 N 4 12 N

THE MODULI SPACE

Furthermore: for *E* the only smooth SU(2)-bundle on *M* and Γ the trivial connection over $M \setminus B_R(\mathbf{x}_0)$ a dimension count gives

 $\dim(\mathcal{M}^{\mathrm{irr}}(M,1))=5.$

THEOREM (G.ETESI – SZ.SZABÓ, 2008)

One connected component of the moduli space $\mathcal{M}(M, 1)$ is

 $M \times]0, \infty] / \sim,$

where for any $\mathbf{x} \in M$ and $e^{i\theta} \in S^1$ we have $(\mathbf{x}, \infty) \sim (e^{i\theta}\mathbf{x}, \infty)$. In particular, $\mathcal{M}(M, 1)$ is a singular filling of M, with k singular points (p_j, ∞) (corresponding to reducible solutions). A neighborhood of a reducible point is a cone over $\overline{\mathbf{CP}^2}$.

The conformal rescaling method

Suppose X is hyperKähler and spin, and let $f : X \to \mathbf{R}_+$ be a function with finitely many point-like singularities. Denote by Δ_g the Laplace-Beltrami operator.

Define $\tilde{g} = f^2 g$ to be the conformally rescaled Riemannian metric. Construct the Levi-Cività connection $\nabla_{\tilde{g}}^{LC} \rightsquigarrow \nabla_{\tilde{g}}^{+}$ the corresponding connection on the positive spinor bundle $S^+ \to X$.

Facts

▶
$$\nabla^+_{\tilde{g}}$$
 is independent of $f \mapsto cf$ for $c \in \mathbf{R}_+$;

• If
$$W_g^+ = 0$$
 then $\nabla_{\tilde{g}}^+$ is $ASD \Leftrightarrow (\Delta_g + \frac{1}{6}s_g)f = 0$.

The conformal rescaling method

Suppose X is hyperKähler and spin, and let $f : X \to \mathbf{R}_+$ be a function with finitely many point-like singularities. Denote by Δ_g the Laplace-Beltrami operator.

Define $\tilde{g} = f^2 g$ to be the conformally rescaled Riemannian metric. Construct the Levi-Cività connection $\nabla_{\tilde{g}}^{LC} \rightsquigarrow \nabla_{\tilde{g}}^{+}$ the corresponding connection on the positive spinor bundle $S^+ \to X$.

Facts

▶
$$\nabla^+_{\tilde{p}}$$
 is independent of $f \mapsto cf$ for $c \in \mathbf{R}_+$;

• If
$$W_g^+ = 0$$
 then $\nabla_{\tilde{g}}^+$ is $ASD \Leftrightarrow (\Delta_g + \frac{1}{6}s_g)f = 0$.

Furthermore, we have $e(\nabla_{\tilde{g}}^+) = \# \operatorname{Sing}(f)$ (supposing some conditions on f...)

GREEN FUNCTION

Fix $\mathbf{x}_0 \in X$, and call *r* the distance function to x_0 in *X*. A function $G_{\mathbf{x}_0} : X \setminus \mathbf{x}_0 \to \mathbf{R}_+$ is called the minimal positive Green function centered at \mathbf{x}_0 if

1.
$$\Delta_g G_{\mathbf{x}_0} = \delta_{\mathbf{x}_0};$$

2. $G_{\mathbf{x}_0} = O(r^{-2}), \ \mathrm{d}G_{\mathbf{x}_0} = O(r^{-3}) \ \mathrm{as} \ r \to 0;$
3. $G_{\mathbf{x}_0} \to 0 \ \mathrm{as} \ r \to \infty;$

THEOREM (VAROPOULOS, 1983)

Suppose $\operatorname{Ric}_g \geq 0$ and for some \mathbf{x}_0 the following holds:

$$\int_1^\infty \frac{r}{\operatorname{Vol}_g(B_r(\mathbf{x}_0))} < \infty.$$

Then at all $\mathbf{x} \in X$ the minimal positive Green function $G_{\mathbf{x}}$ exists.

A 5-PARAMETER FAMILY OF SOLUTIONS

For the multi-Taub–NUT space M, we have $\operatorname{Ric}_{g_V} = 0$ and

 $\operatorname{Vol}_{g_V}(B_r(\mathbf{x}_0)) \asymp cr^3,$

so for all $\mathbf{x} \in M$ we get $G_{\mathbf{x}}$. We obtain a family

$$f_{\mathbf{x},\lambda} = rac{1}{\lambda} + \mathcal{G}_{\mathbf{x}}$$

of harmonic functions and by conformal rescaling corresponding solutions $\nabla^+_{f_{\mathbf{x},\lambda}}$, parametrized by

$$(\mathbf{x}, \lambda) \in M \times]0, \infty].$$

Near $\lambda = 0$: infinitely concentrated ("Dirac-type") solutions, near $\lambda = \infty$: "centerless" solutions.

TWISTOR THEORY

THE TWISTOR SPACE OF A HYPERKÄHLER MANIFOLD Let (X, g) be a simply connected hyperKähler 4-manifold: I, J, K

Kähler structures satisfying the relations of the quaternion group

$$I^2 = J^2 = K^2 = - \operatorname{Id}, \quad IJ = -JI = K.$$

For all $(x, y, z) \in S^2$ the endomorphism

$$I_{(x,y,z)} = xI + yJ + zK$$

is also a Kähler structure.

Let i stand for the standard complex structure on \mathbf{CP}^1 , and set

$$Z_X = X \times \mathbf{CP}^1,$$

endowed with the almost-complex structure

$$J_{(\mathbf{x},(x,y,z))} = I_{(x,y,z)}(\mathbf{x}) \times \mathbf{i}.$$

 Z_X (also denoted Z) is the twistor space of X_{\perp}

PROPERTIES OF THE TWISTOR SPACE

- Atiyah-Hitchin-Singer: J is integrable if and only if $W_g^+ = 0$.
- For all $\mathbf{x} \in X$, the line $\mathbf{CP}_{\mathbf{x}}^1 = \pi_1^{-1}(\mathbf{x})$ is holomorphic with normal bundle

$$N_{\mathbf{CP}^1_{\mathbf{x}}} \cong \mathfrak{O}_{\mathbf{CP}^1}(1) \oplus \mathfrak{O}_{\mathbf{CP}^1}(1).$$

- The anti-podal map σ : CP¹ → CP¹ induces an anti-holomorphic involution (real structure) σ : Z_X → Z_X.
- The lines CP¹_x are the real lines of a locally complete 4 complex dimensional family of lines called the twistor lines.
- ► $\pi_2 : Z_X \to \mathbf{CP}^1$ is a holomorphic fibration; denote by $\mathcal{O}_Z(k)$ the sheaf $\pi_2^* \mathcal{O}_{\mathbf{CP}^1}(k)$.

PENROSE TRANSFORM

For any $U \subset X$ open, we have an isomorphism

$$H^1(\pi_1^{-1}(U), \mathfrak{O}_Z(-2)) \cong \ker \Delta_g|_U.$$

PENROSE TRANSFORM

For any $U \subset X$ open, we have an isomorphism

$$H^1(\pi_1^{-1}(U), \mathfrak{O}_Z(-2)) \cong \ker \Delta_g|_U.$$

Furthermore, denote by $\mathcal{I}_{\mathbf{x}}$ the ideal sheaf of $\mathbf{CP}_{\mathbf{x}}^1$ in Z_X . Then,

$$\mathfrak{I}_{\mathbf{x}}|_{Z_X \setminus \mathbf{CP}_{\mathbf{x}}^1} \cong \mathfrak{O}_Z,$$

so

$$\operatorname{Ext}^1(Z_X; \mathbb{J}_x, \mathbb{O}_Z(-2)) \hookrightarrow H^1(Z_X \setminus \mathbf{CP}^1_x, \mathbb{O}_Z(-2)).$$

PENROSE TRANSFORM

For any $U \subset X$ open, we have an isomorphism

$$H^1(\pi_1^{-1}(U), \mathfrak{O}_Z(-2)) \cong \ker \Delta_g|_U.$$

Furthermore, denote by $\mathcal{I}_{\mathbf{x}}$ the ideal sheaf of $\mathbf{CP}_{\mathbf{x}}^{1}$ in Z_{X} . Then,

$$\mathfrak{I}_{\mathbf{x}}|_{Z_X \setminus \mathbf{CP}_{\mathbf{x}}^1} \cong \mathfrak{O}_Z,$$

SO

$$\operatorname{Ext}^1(Z_X; \mathbb{J}_{\mathbf{x}}, \mathfrak{O}_Z(-2)) \hookrightarrow H^1(Z_X \setminus \mathbf{CP}^1_{\mathbf{x}}, \mathfrak{O}_Z(-2)).$$

To have a finite-dimensional subspace of harmonic functions, we need a compactification of Z.

The complex structures of M

Consider $S^2 \subset \mathbb{R}^3$, pick $e_1 \in S^2$ be arbitrary, and extend it to an oriented orthonormal basis (e_1, e_2, e_3) of \mathbb{R}^3 . Consider the orthonormal basis of M:

$$\left(\xi_0 = \sqrt{V} \frac{\partial}{\partial \tau}, \xi_j = \frac{1}{\sqrt{V}} e_j\right) \quad j = 1, 2, 3.$$

Define the (almost-)complex structure J_{e_1} by

$$\begin{aligned} \xi_0 &\mapsto \xi_1 &\mapsto -\xi_0 \\ \xi_2 &\mapsto \xi_3 &\mapsto -\xi_2. \end{aligned}$$

M as a complex surface

THEOREM (KRONHEIMER-ANDERSEN-LEBRUN)

1. If e_1 is not parallel to any l_{ij} , then (M, J_{e_1}) is the smooth surface

$$\left(xy-\prod_{j=1}^k(z-p_j)
ight)\subset {f C}^3$$

for some mutually distinct $p_j \in \mathbf{C}$.

2. If e_1 is parallel to some I_{ij} , then (M, J_{e_1}) is the resolution of singularities of

$$\left(xy-\prod_{j=1}^k(z-p_j)
ight)\subset {f C}^3$$

for some $p_j \in \mathbf{C}$ (where $p_i = p_j$ if e_1 is parallel to I_{ij}).

The twistor space of M

Consider the total space W of the fibration

$$\mathfrak{O}(k)\oplus\mathfrak{O}(k)\oplus\mathfrak{O}(2)\to \mathbf{CP}^1.$$

Let x, y and z stand for the canonical sections of the components. Then there exist $p_j \in H^0(\mathbb{CP}^1, \mathcal{O}(2))$ such that Z_M is the hypersurface

$$xy - \prod_{j=1}^{k} (z - p_j).$$

A SMOOTH COMPACTIFICATION Compactify *W* into

 $\mathsf{P}(\mathfrak{O}(k)\oplus\mathfrak{O})\oplus\mathsf{P}(\mathfrak{O}(k)\oplus\mathfrak{O})\oplus\mathsf{P}(\mathfrak{O}(2)\oplus\mathfrak{O})\to\mathsf{C}\mathsf{P}^1,$

and let

$$(x:u),(y:v),(z:w)$$

denote the canonical homogeneous coordinates on the components. Denote by Z^* the singular hypersurface

$$xyw^k - uv \prod_{j=1}^k (z - p_j).$$

Then Z^* arises from Z by adding 4 Hirzebruch-surfaces. Furthermore, Z^* admits an A_k -singularity at infinity; resolving it, we get a smooth compactification

$$\overline{Z} \to Z^*$$
.

CLAIM For all $\mathbf{x} \in M$ we have

$$\dim_{\mathbf{C}}(\mathrm{Ext}^{1}(\overline{Z}_{M}; \mathfrak{I}_{\mathbf{x}}, \mathfrak{O}_{Z}(-2))) = 2.$$

Proof.

Uses: Ext long exact sequence, Leray spectral sequence and rationality of the A_k singularity.

CLAIM For all $\mathbf{x} \in M$ we have

$$\dim_{\mathbf{C}}(\mathrm{Ext}^{1}(\overline{Z}_{M}; \mathfrak{I}_{\mathbf{x}}, \mathfrak{O}_{Z}(-2))) = 2.$$

Proof.

Uses: Ext long exact sequence, Leray spectral sequence and rationality of the A_k singularity.

We can consider extension classes as

- some rank 2 sheaves on \overline{Z}_M , or
- harmonic functions via Penrose transform and

$$\operatorname{Ext}^1(\overline{Z}_M; \mathbb{J}_{\mathbf{x}}, \mathbb{O}_Z(-2)) \hookrightarrow H^1(Z_X \setminus \mathbf{CP}^1_{\mathbf{x}}, \mathbb{O}_Z(-2)).$$

CLAIM (ATIYAH, 1981)

The harmonic functions $f : M \setminus \mathbf{x} \to \mathbf{C}$ coming from $\operatorname{Ext}^1(\overline{Z}_M; \mathfrak{I}_{\mathbf{x}}, \mathfrak{O}_Z(-2))$ satisfy

•
$$f \rightarrow const as r \rightarrow \infty$$
;

•
$$f(\mathbf{y}) \asymp \frac{c}{|\mathbf{x}-\mathbf{y}|^2}$$
 as $\mathbf{y} \to \mathbf{x}$.

So, this 2-dimensional family corresponds to the functions

 $\lambda + \mu G_{\mathbf{x}}$

with $\lambda, \mu \in \mathbf{C}$. Restricting to $\lambda, \mu \in \mathbf{R}_+$ and dividing by λ , we get the functions

$$1 + rac{1}{\lambda}G_{x}$$

IDETIFICATION OF CENTERLESS INSTANTONS

Let F_x denote the rank 2 vector bundle on \overline{Z} corresponding to G_x . One can cover \overline{Z} by 2 open sets U, V, so that the gluing matrix of F_x is

$$\frac{1}{\nu}\begin{pmatrix} -x & \theta \\ -h & y \end{pmatrix}.$$

Observe that the gluing matrix of $F_{e^{i\tau}x}$ only differs from this by a factor of $e^{i\tau}$.

So $F_{\mathbf{x}}$ is isomorphic to $F_{e^{i\tau}\mathbf{x}}$, hence so are the instantons $\nabla_{G_{\mathbf{x}}}$ and $\nabla_{e^{i\tau}G_{\mathbf{x}}}$.

Outlook

Further topics to study:

 Complete Riemannian metric on M: hyperbolic on D², multi-Taub–NUT for fixed λ.

Outlook

Further topics to study:

- Complete Riemannian metric on M: hyperbolic on D², multi-Taub–NUT for fixed λ.
- Determining the moduli space for Γ a non-trivial flat connection on E at infinity: k – 1 possible choices, for each one the corresponding moduli space is smooth.

Outlook

Further topics to study:

- Complete Riemannian metric on M: hyperbolic on D², multi-Taub–NUT for fixed λ.
- Determining the moduli space for Γ a non-trivial flat connection on E at infinity: k – 1 possible choices, for each one the corresponding moduli space is smooth.
- Describe explicitly the framed moduli space: a hyperKähler 8-manifold, a singular SU(2)-fibration over M.