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Generalized Tian-Todorov theorems

M.Kontsevich

1 The classical Tian-Todorov theorem

Recall the classical Tian-Todorov theorem (see [4],[5]) about the smoothness of the moduli

spaces of Calabi-Yau manifolds:

Theorem 1.1 If X is a compact Kdhler manifold with ¢;(X) = 0 € Pic(X), then the Kuran-
ishi space of deformations of complex structures on X is smooth of dimension h" 11 X) :=
rk H" (X)) where n = dim(X). Manifold X with deformed complex structure is again a
Kdhler manifold with c;(X) = 0 € Pic(X). Similarly, if X is projective and w € H*(X,Z)
1s an ample class, then the Kuranishi space of deformations of X which polarization w is
also smooth, of dimension rk Hgg;;l(X) of the primitive cohomology. Moreover, any choice
of a splitting of the Hodge filtration on H"(X) (resp. of H);.(X)) defines an analytic affine

structure on the Kuranisht space.

The goal of my talk is to explain that there are many generalizations of this theorem.

First, I present a sketch of a proof.

2 Smoothness via dg BV algebras

Definition 2.1 A differential graded Batalin-Vilkovisky algebra A (a dg BV algebra for a
short) over C is a commutative unital super-algebra endowed with two odd operators d, A

satisfying
o I’=A%?=dA+ Ad =0,
o d(14) =A(14) =0,

e operator d is a differential operator of order < 1,



e operator A is a differential operator of order < 2.

The vector space g := IIA obtained from A by the changing of parity, carries a natural

structure of Lie super-algebra:
[a,b] = A(ab) — A(a)b — (—1)%*%aA(b).
Operators d, A on g are odd derivations with respect to the Lie bracket.

Proposition 2.2 Let us assume that H*(A[[u]],d + uA) is a free C[[u]]-module, where u is
a formal even variable. Then the formal moduli space associated with dg Lie algebra (g,d) is
smooth. Any trivialization of Cl[u]]-module H*(A[[u]], d+uA) gives a formal affine structure

(“flat coordinates”) on the moduli space.

The proof of the above proposition can be found e.g. in [3], (also see [1] for a slightly

weaker result). The Tian-Todorov theorem follows from the Proposition, applied to
AX = F(X, QO’. ®(9X /\.Tx)

which is the algebra of O-forms on X with values in polyvector fields. The differential d is
0, and the operator A is the divergence with respect to the holomorphic volume form on X.
The freeness property of the cohomology with respect to the deformed differential follows

from the d0-lemma.

3 Generalizations

Instead of an individual Calabi-Yau manifold X we can consider:

1. a pair (X, D) where X is smooth projective variety (typically X is Fano), and D C X
is a divisor with normal crossing such that [D] = —¢;(X) € Pic(X),

2. a pair (X, D) where X is a Calabi-Yau manifold, ¢;(X) = 0 € Pic(X), and D C X is

a divisor with normal crossings,

3. a triple (X, (D;)ier, (a;)icr) where X is a smooth projective variety, (D;);c; is a finite
collection of irreducible divisors whose union is a divisor with normal crossings, and

(a;)icr is a collection of rational numbers 0 < a; < 1 Vi € I such that

> ai[D] = —c1(X) € Pie(X) ® Q

iel



4. a pair (X, W) where X is a smooth quasi-projective variety with ¢;(X) = 0 € Pic(X)
and W : X — A! is a proper map.

5. “broken Calabi-Yau variety” X, a singular projective scheme which is a reduced divisor
with normal crossing in a larger smooth non-proper variety Y with ¢;(Y) = 0, given

by X = Wy '(0) where Wy : Y — Al is a proper map.

All these examples can be merged together, i.e. one can consider broken non-compact
X with a proper map to A! and a fractional divisor with weights in [0, 1] N Q representing
—c1(X) in Pic(X) ® Q.

The proof of the classical Tian-Todorov theorem presented in the previous section, ex-

tends immediately to all cases. The dg BV algebra in cases 1,2,3 is
AX,D = F(X, QO’. ®OX /\.TX,D)

where T'x p is the sheaf of holomorphic vector fields on X preserving D. The differential d is
given by 0, and operator A is the divergence with respect to a (multi-valued) holomorphic
volume form on X \ D. The contraction of these polyvector fields with the volume form
gives the O-resolution of the sheaf of holomorphic forms on X which either have poles of
first order on D (case 1), vanish on D (case 2), or take values in a local system with finite
monodromy (case 3). The freeness property of cohomology follows from the theory of mixed
Hodge structures.

The mirror symmetry for Calabi-Yau manifolds generalizes to some of our examples.
The case 1 with smooth D is dual to the case 4, e.g. X = CP" with a smooth anticanonical
hypersurface D C X of degree n + 1, is mirror dual to (XY, W") where XV is a partial

compactification of GJ,, endowed with a function

Wi(xy,...,xp) =21+ + T, +
T1...Tp

Similarly, the case 2 with smooth D is dual to the case 5, e.g. the pair (X, D) where X is
an elliptic curve and D C X is a collection of k points, it mirror dual to a singular elliptic
curve XV with double points, which is a wheel of k copies of CP'. One of the corollaries
of the mirror symmetry is that the mapping class group of the open surface X — D acts by
automorphisms of D?(Coh(X")) (modulo powers of the shift functor).

I do not know what are mirror partners for cases 1 and 2 with a non-smooth divisor D,

and also for the case 3.



4 Non-compact Calabi-Yau manifolds

Let X be a smooth projective manifold with a section of its anti-canonical bundle which
vanish with multiplicities strictly > 1 at a divisor D C X with normal crossings. On
the complement X \ D we have a non-vanishing holomorphic volume element 2. We can
define a dg BV algebra associated with X and €2 to be a subalgebra of Ax p consisting of
such elements for which the contraction with €2 produces a form with logarithmic poles at
D. Hence we obtain again certain smooth moduli spaces. Here is one important class of
examples: let f = f(x,y) be polynomial defining a smooth curve in C?. We associate with

it a non-compact 3-dimensional Calabi-Yau manifold Y C C* given by the equation

wo = f(z,y) .

One can show that Y can be represented as a complement X \ D of the type described
above. Hence we obtain a smooth moduli space. E.g. for the case of hyperelliptic curve
flz,y) =vy* +ao + ax + - - + a2 + 2972 the universal family is obtained by variations
of coefficients ay, ..., a,. The flat coordinates on the moduli space are associated with an
appropriate splitting of the Hodge filtration, and are exactly those which appear in the

matrix models, see e.g. [2].

5 Speculations about Calabi-Yau motives

The construction presented above gives many examples of variations of (mixed) Hodge struc-
tures of Calabi-Yau type over smooth bases. This leads to the following question, which I

formulate for simplicity only in the pure case.

Question 5.1 Let H be an absolutely indecomposable pure Hogde structure of weight w of
algebro-geometric origin with coefficients in a number field (i.e. H is a direct summand of
the cohomology space of some smooth projective variety), and such that there exists k € 7
such that H is of Calabi-Yau type, i.e.

rk HPvF =1, HY*F =0 VK >k .

Does there exists a smooth universal family of variations of H of an algebro-geometric origin,

of dimension equal to rk HF-1w=k+12



There are many examples supporting this, e.g. one can take H to be the primitive part
of the middle cohomology of hypersurface X C CPY~! of degree d|N. The proof of the
generalized Tian-Todorov theorems does not apply in this case, but still the dimension of
the moduli space and of the corresponding Hodge component match. It would be wonderful
if the answer to the question is positive. It means that we have nice smooth moduli stacks of
Calabi-Yau motives (generalizations of Shimura varieties). With any pure Hodge structure
H one can associate another Hodge structure of Calabi-Yau type (maybe decomposable), by
taking the exterior power A™H where m € Z, is the dimension of a term F'H of the Hodge
filtration of H, i.e. m = rk @ H***"¥  In the case H = H'(C) where C is a smooth
projective curve of genus g, the absolutely indecomposable summand H’ of AYH containing
the one-dimensional component AYH?, is a Hodge structure of Calabi-Yau type varying over
an appropriate Shimura variety. One can check that the dimension of this variety always

coincides with the corresponding Hodge number of H'.
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A counterexample to a conjecture of
complete fan

Kenta Watanabe*

Abstract

If a Griffiths domain D is a symmetric Hermitian domain, the
toroidal compactification of the quotient space I'\ D, associated to a
projective fan and a discrete subgroup I' of Aut(D), was constructed
by Mumford et al. Kazuya Kato and Sampei Usui studied extensions
of I'\D for a Griffiths domain D in general, and introduced a notion
of “complete fan” as a generalization of a notion of projective fan.
The existence of complete fans is expected. In this paper, we give an
example of D which has no complete fan.

1 Introduction

Let D be a Griffiths domain, let T be a “neat” discrete subgroup of Aut(D),
and let ¥ be a fan consisting of rational nilpotent cones in Lie(Aut(D)) which
is “strongly compatible” with I'. Kazuya Kato and Sampei Usui [KU] intro-
duced the notion of “polarized logarithmic Hodge structure” and enlarged
the space I'\ D to the space I'\ Dy, by adding the classes modulo I" of nilpo-
tent orbits in the directions of cones contained in ¥ as the boundary points.
They proved that the space I'\ Dy; is the fine moduli space of polarized log-
arithmic Hodge structures of type ® := (w, (h"?), 4ez, Hz, (, ),T,%2) ([KU]
4.2.1, Theorem B), and that ['\Dy, is a “logarithmic manifold” which is
nearly a complex analytic manifold but has “slits” caused by “Griffiths
transversality” condition at the boundary ([KU] 4.1.1, Theorem A).

In the classical situation, that is, D is a symmetric Hermitian domain,
the toroidal projective compactification I'\ Dy, of I'\ D was constructed with
a sufficiently big fan 3, called a projective fan, by A. Ash, D. Mumford, M.
Rapoport and Y. S. Tai [AMRT].

*Department of Mathematics, Graduate School of Science, Osaka University, Osaka
560-0043, Japan. E-mail address: u390547e@ecs.cmc.osaka-u.ac.jp



For general D, Kato and Usui introduced in [KU] a “complete fan” as a
generalization of a projective fan, and they gave a conjecture of the existence
of such fans ([KU] 12.6.3). As an example, they gave a concrete description
of the space I'\ Dx, for Hodge type h?" = h%? =2, A =1 and for ¥ = = ;
i.e., the fan consisting of all rational nilpotent cones whose rank are less than
or equal to one in Lie(Aut(D)) in [KU] 12.2.2. In this case, the fan ¥ = = is
complete.

In the present work, we started to generalize the description of the above
example, but in fact we encounter a counterexample to the conjecture of
existence of complete fans. We show that D with h?? = hb! = h%2 = 2 has
no complete fans.

After the present work, a modified version of the conjecture about com-
plete fan is added at the end of 12.7 in [KU]J.

We fix a 4-tuple &g = (w, (h?9), 4ez, Hz, (, )), consisting of an integer w,
Hodge number (h??), ez, a free Z-module Hz of rank ¥, A9, and a non-
degenerate bilinear form (, ) on Hg := Q ®z Hz which is symmetric if w is
even and skew-symmetric if w is odd. Then, let D be a classifying space of
polarized Hodge structure of type ®¢ (This is also called Griffiths domain),
and let D be a compactdual of D.

Let

Gz := Aut(Hz, ( , )),
and for R = Q, R, C, let

HR = R®Z Hz, GR = Aut(HR, < s >),
gr = Lie(GR)
={N € Endgr(Hg) | (Nz,y) + (x, Ny) =0 for all z,y € Hg}.

2 Nilpotent orbit

In this section, we recall the definition of nilpotent orbits after [KU].

We fix ¢ = (w, (h??), 4ez, Hz, (, )) as above.

Definition 2.1 ([KU] 0.4.2, 1.3.1) A subset o of gr is said to be a nilpotent cone,
iof the following conditions are satisfied.

(1) 0 = RNy + - - - + RN, for somen > 1 and for some Ny,..., N, € 0.

(2) Any element of o is nilpotent as an endomorphism of Hg.

(3) [N,N'] =0 for any N, N' € o as endomorphisms of Hg,

where [N,N'] := NN' — N'N.



We recall some notion about nilpotent cones in [KU] 0.4.3, 1.3.2.

A nilpotent cone is said rational, if we can take Ni,..., N, € gg in
Definition 2.1 (1).

For a nilpotent cone o, a face of ¢ is a non-empty subset 7 of ¢ which
satisfies the following two conditions.

(1) If z,y € 7 and a € R>q, then z + ¥y, azx € 7.
(2) Ifz,y € o and z+y € 7, then z,y € 7.

Definition 2.2 ([KU] 0.4.4, 1.3.3) A fanin gq is a non-empty set ¥ of ra-
tional nilpotent cones in gr satisfying the following three conditions:

(1) If o0 € 22, any face of o belongs to X.
(2) If 0,0 €%, 0N is a face of ¢ and of o .
(3) Any o € X is sharp. That is, o N (—o) = {0}.

Let o be a nilpotent cone in gg. For R = R,C, we denote by o the
R-linear span of o C gg.

Definition 2.3 ([KU] 0.4.7, 1.3.7) Let 0 = Zi<j<-(R>0)N; be a rational
nilpotent cone. A subset Z of D is said to be a o-nilpotent orbit if there s
F € D which satisfies Z = exp(oc)F and satisfies the following two condi-
tions.

(1) N;FPCc PPt (1<j<rp€elZ).
(2) exp(Xoi<je, 2 N;)F € D if z; € C and Im(2;) > 0.

The conditions (1) and (2) are called Griffiths transversality and positivity,
respectively.

We say that the pair (o, F'), consisting of a rational nilpotent cone o C gg
and of F' € D, generates a nilpotent orbit if Z = exp(oc)F is a o-nilpotent
orbit.

Example 2.1 Let w = 2, h?Y = ptt = h%2 = 2 hP9 = 0 otherwise,
and Hy be a free Z-module with a basis (e;)1<j<¢. Let (, ) : Hy X Hp — Q
be the Q-bilinear form defined by

-1, O O
e, ei)<ii<ce= 1|1 O E O], where 1, = 10 . E= 0 1 )
((eiej))1<ij< 01 L0
O O FE

Let H@ = D4 Qe;. For a € H@, let N, : Hy — Hg be the nilpotent
endomorphism given by



Na(b) = _<a7b>e5 (b S H(/@)7 Na(e'f)) = 07 Na<€6) = a.
Note that, for all a,a’ € Hg, N,, N, € go and [N,, Ny] = 0. Let F € D
be given by F? = C(ie; + e3) @ Ceg, and F' = (F?)*. Let 0 = Rso(—Ne,) +
R>oN,,. Then, (o, F') generates a nilpotent orbit.

Definition 2.4 ([KU] 0.4.8, 1.3.8) Let ¥ be a fan in gg. As a set, we define
DZ by

Dy :={(0,2)| 0 €%,Z C D is ac-nilpotent orbit}.
Note that we have the inclusion map

D Dy, F s ({0}, {F}).

Definition 2.5 ([KU] 0.4.10, 1.3.10) Let X be a fan in gg and let T be a
subgroup of G.
(i) We say I' is compatible with X if the following condition (1) is satisfied.
(1) Ify €T and o € X, then Ad(y)(o) € X. Here, Ad(y)(c) = yoy~!. Note
that, if I' is compatible with X, I" acts on Dys, by

v:(0,2) = (Ad(7)(0),72) (v € T).

(ii) We say I' is strongly compatible with X if it is compatible with 3 and
the following condition (2) is also satisfied. For o € 3, define

I'(o) :=T Nexp(o).
(2) The cone o is generated by logT'(0), that is, any element of o can be
written as a sum of ¢ log(7y) (¢ € Rsg, v € I'(0)).

Assume that I' is “neat” and strongly compatible with ¥. I'\Dy is a
“logarithmic manifold” which is nearly a complex analytic manifold but has
“slits” (see [KUJ).

3 Complete fan

In this section, we recall the definition of a space D, and the definition of
a complete fan after [KU]J.

Definition 3.1 ([KU] Definition 5.3.1) We define

Ais a Q-linear subspace of gg consisting of
mutually commutative nilpotent elements,

V' is a valuative submonoid of A* := Homg(A, Q)
with VN (=V) = {0}

V=< (AV)

4



Here a submonoid V of A* is said to be a valuative submonoid, if VU(=V) =
A*.

For (A,V) € V, let F(A,V) be the set of all rational nilpotent cones
o C gg satisfying the following (1) and (2).

(1) OR — AR.
(2) Let (cNA)Y :={he A*|h(cNA) CQsp}. Then (cNA)Y CV.

Definition 3.2 ([KU] Definition 5.3.3) (i) We define

(A, V) eV, }

Dyar = {(Av V.2) ‘ Z is an exp(Ac)-orbit in D

(ii) We define
(Aa V7 Z) € Dvab
Dy :=< (A, V, Z) | there exists o € F(A, V) such that

Z 1s a o-nilpotent orbit

Definition 3.3 Let ¥ be a fan in go. For (A,V) € V, we define
Xave ={oceX|onAg € F(AV)}.

It is known that, if X4 v is not empty, then there exists the smallest element
0o of Xa vy ([KU] Lemma 5.3.4).

Definition 3.4 (|[KU] Definition 5.3.5) For a fan ¥ in gg, we define

DE,val = {(Aa Va Z)

(A,V,Z) € Dya, Xayvy is not empty,
exp(ooc)Z is a og-nilpotent orbit '

Here oy is just as above.

Definition 3.5 ([KU] Definition 12.6.1) A fan ¥ in g is complete, if Dy, =
DZ,Val-

In the case where a Griffiths domain D is a symmetric Hermitian domain,
a fan X, used in the construction of the toroidal projective compactification
Gz\Ds in [AMRT], is complete ([KU] 12.6.4). For general D, the existence
of complete fans which are strongly compatible with Gz was expected in
[KU] conjecture 12.6.3. In the next section, we give a counterexample to
that conjecture.



4 Counterexample (main result)

In this section, we state our main result. Let w = 2, and let h?? =2 (p+q =
2, p,qg > 0), and h?? = 0 otherwise. We consider about the existence
of the complete fans in this case. Let (e;)1<j<¢ be a free basis of Hy and
(,):Hgpx Hyg — Q be the bilinear form on Hg given by

-1, O O

({ei,ej)izigee=| O E O [, where 1, = ((1) (1)> b= ((13 (1)) '
O O FE

Theorem 4.1 In this case, there is no complete fan.

For the proof of Theorem 4.1, we first show that the rank of any rational
nilpotent cone, which appears in a nilpotent orbit, is less than or equal to
two. Next, assuming the existence of a complete fan > on D, we derive a
contradiction: Y has two different cones of rank two which have a common
point as in each of their interiors.

5 Modified version of complete fan

In this section, we introduce the definition of modified version of complete
fan. Recently, the definition of complete fan was modified by Chikara Nakayama
as follows.

Definition 5.1 (Chikara Nakayama) Let N be a set of all rational nilpotent
cones which appear in a nilpotent orbit. Then, a fan X in gg is said to be
complete if it satisfies following condition.

Uo‘EE 0= UUEN o

By this definition, the conjecture of the existence of complete fan was modi-
fied as follows.

Conjecture 5.1 There exists a fan in go which satisfies the condition in
Definition 5.1, and is strongly compatible with Gy.
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Base manifolds for fibrations of projective
irreducible symplectic manifolds

Jun-Muk Hwang

A connected complex manifold M of dimension 2n equipped with a holo-
morphic symplectic from w € H°(M,Q3,) is called a holomorphic symplectic
manifold. A subvariety V of M is said to be Lagrangian if V has dimension n
and the restriction of w on the smooth part of V' is identically zero. A simply
connected projective algebraic manifold M is called a projective irreducible sym-
plectic manifold if M has a symplectic form w such that H(M,Q3%,) = Cw. It is
remarkable that fibrations of projective irreducible symplectic manifolds are of
very special form, as described in the following theorem due to D. Matsushita.

Theorem 1 Let M be a projective irreducible symplectic manifold of di-
mension 2n. For a projective manifold X and a surjective holomorphic map
f: M — X with connected fibers of positive dimension, the following holds.

(1) X is a Fano manifold of dimension n with Picard number 1.

(2) A general fiber of f is biholomorphic to an abelian variety.

(8) The underlying subvariety of every fiber of [ is Lagrangian.

(4) All even Betti numbers of X are equal to 1 and all odd Betti numbers of
X are equal to 0.

(1), (2) and (3) in Theorem 1 were proved in [Mal] and [Ma2]. These results
led to the question whether the base manifold X is the complex projective space
(cf. [Hu, 21.4]). The result of [Ma3] verifies Theorem 1 (4), i.e., that the Betti
numbers of X are indeed equal to those of P,,.

Our goal is to give an affirmative answer to the question as follows.
Theorem 2 In the setting of Theorem 1, X is biholomorphic to P,,.

There are two geometric ingredients in the proof of Theorem 2: the theory of
varieties of minimal rational tangents and the theory of Lagrangian fibrations.
On the one hand, the theory of varieties of minimal rational tangents describes
a certain geometric structure arising from minimal rational curves at general
points of a Fano manifold X with b2(X) = 1 (cf. [HwMol], [HwMo2]). This
geometric structure has differential geometric properties reflecting special fea-
tures of the deformation theory of minimal rational curves. On the other hand,
the theory of Lagrangian fibrations, or equivalently, the theory of completely
integrable Hamiltonian systems, provides an affine structure at general points
of the base manifold X via the classical action variables (cf. [GuSt, Section
44]). Our strategy to prove Theorem 2 is to exploit the interplay of these two
geometric structures on the base manifold X. Under the assumption that X
is different from P, the condition b2(X) = 1 forces the geometric structure



arising from the variety of minimal rational tangents to be ‘non-flat’; while the
affine structure arising from the action variables is naturally ‘flat’. These two
structures interact via the monodromy of the Lagrangian fibration, leading to a
contradiction. To be precise, two separate arguments are needed depending on
whether the dimension p of the variety of minimal rational tangents is positive
or zero. The easier case of p > 0 is handled by a topological argument using
by(X) = 1, using the result of [Hw]. The more difficult case of p = 0 needs a
deeper argument, depending on the local differential geometry of the variety of
minimal rational tangents.
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ON DEFORMATIONS OF LAGRANGIAN FIBRATIONS

DAISUKE MATSUSHITA

ABSTRACT. Let X be an irreducible symplectic manifold and Def(X) the Kuranishi family. Assume that X
admits a Lagrangian fibration. We prove that there exists a smooth hypersurface H of Def(X) such that the
restriction family 2" X peg(x) H admits a family of Lagrangian fibrations over H.

1. INTRODUCTION

A compact Kihler manifold X is said to be symplectic if X carries a holomorphic symplectic form.

Moreover X is said to be irreducible symplectic if X satisfies the following two properties:

(1) dimH°(X.Q%) =1 and;

(2) m(x)={1}.
A surjective morphism between Kéhler spaces is said to be fibration if it is surjective and has only con-
nected fibres. A fibration from a symplectic manifold is said to be Lagrangian if a general fibre is a
Lagrangian submanifold. The plainest example of an irreducible symplectic is a K3 surface. An elliptic
fibration from a K3 surface gives an example of a Lagrangian fibration. It is expected that a K3 sur-
face and an irreducible symplectic manifold share many geometric properties. Let S be a K3 surface and
g:S — P! anelliptic fibration. Kodaira proves that there exists a smooth hypersurface Hy in the Kuranishi
space Def(S) of S which has the following three properties:

(1) The hypersurface Hs passes the reference point.

(2) For the Kuranishi family . of S, the base change .% X p.f(s) Hs admits a surjective morphsim
over IP’},S. Moreover they satisfy the following diagram:

S XDef(S) Hy — > P}'IS

|

H.

(3) The original fibration g coincides with the restriction of the above diagram over the reference
point. The restriction of the diagram over a every point of Hg gives an elliptic fibration.

The following is the main theorem, which induces a higher dimensional analog of the above statement.

THEOREM 1.1. Let X be an irreducible holomorphic symplectic manifold and 2 — Def(X) the Kuran-
ishi family of X. Assume that X admits a Lagrangian fibration f : X — B over a projective variety B. Let
L be a line bundle which is a pull back of an ample line bundle on B. Then we have a smooth hypersurface
H of Def(X) and a line bundle £ on % Xpef(x) H which satisfies the following two properties:

(1) The hypersurface H passes the reference point.

(2) The restriction of £ to X is isomorphic to L.

(3) For the projection T : 2" Xpegx) H — H, Rim, .2 is locally free for every i.
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2 DAISUKE MATSUSHITA

COROLLARY 1.2. Let f: X — B be as in Theorem 1.1. We also let L be a pull back of a very ample line
buncle of S. The symbols n, &', H and £ denote same objects as in Theorem 1.1. Then there exists a
morphism fy : 2" Xpegx) H — P(r..%£). Together with w, they form the following diagram:

Z Xpet(x) H LN P(n.2)

|

H

)

The orginal fibration f coincides with the restriction of the above diagram over the reference point. The

restriction of the diagram over a every point of H gives a Lagrangian fibration.

REMARK 1.3. If X be an irreducible symplectic manifold. Assume that X admits a surjective morphism
f:X — S such that f has connected fibres and 0 < dimS < dimX. If X and S are projective or X and
S are smooth and Kdhler then f is Lagrangian over a projective base S by [8], [9] and [5, Proposition
24.8].
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2. PROOF OF THEOREM

PROPOSITION 2.1. Let f: X — B and L be as in Theorem 1.1. We denote by A a general fiber of f. Then
there exists a smooth hypersurface H of Def(X) such that

(1) The base change 2" Xpef(x) H carries the line bundle £ on 2" Xpet(x) H whose restiction to the
fibre over the reference point is isomorphic to L.

(2) The relative Douady space D(Z" /Def(X)) of the morphism 2~ — Def(X) is smooth at A.

(3) Let D(Z /Def(X))a be the irreducible component of D(Z /Def(X)) which contains A. The
image of the induced morphism D(%Z" /Def(X))a — Def(X) coincides with H.

Proof of Proposition 2.1. (1) By [6, (1.14)], there exists a universal deformation (Z",.%) of the pair
(X,L). The parameter space of the universal family forms a smooth hypersurface H of Def(X). The
hypersurface H and the line bundle . satisfy the assertion (1) of Proposition 2.1.

(2) Let D(Z /Def(X)) be the relative Douady space of the morphism 2~ — Def(X). Since A is smooth
and Lagrangian, D(2" /Def(X)) is smooth at A by [11, Theorem 0.1].

(3) We need the following Lemma.

LEMMA 2.2. Let X, L and A be as in Propositon 2.1. For an element z of HI(X7§2)1(), the restriction
zla=0in H'(A,Q)) if qx (z,L) = 0, where gx is the Beauville-Bogomolov-Fujiki form on X.

Proof. Let o be a Kéhler class of X. It is enough to prove that
ch—an _ ZZGn—2Ln -0
where 2n = dimX. By [3, Theorem 4.7], we have the following equation;
(1) cxqx (z+50 +1L)" = (z+ 50 +1L)*",
where s and ¢ are indeterminacy and cy is a constant only depending on X. By the assumption,

cxqx (z+50 +1L)" = cx(qx (z) + s°qx (0) +2sqx (z,0) +2stqx (o,L))".
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If we compare the s"~'#" and s"~2¢" terms of the both hand sides of the above equation (1), we obtain the
assertions. O

We go back to the proof of the assertion (3) of Proposition 2.1. Let j : H*(X,C) — H?(A,C) be the
natural induced morphism by the inclusion A — X. We denote by Ly the intersection of H> (X,Q) and the
orthogonal space of Ker( j) with respect to the Beauville-Bogomolov-Fujiki form. Since A is Lagrangian,
the image of the natural projection D(.Z" /Def(X))4 — Def(X) is a smooth proper subanalytic space Hy
of Def(X) by [11, 0.1 Theorem]. Moreover, the family over H4 perserves the subspace Ly of NS(X) ® Q
by [11, 0.2 Corollary]. The tangent space of Hy is Ker(j) = Ker{H'(X,Q)) — H'(A,Q})} by [11,
0.1 Theorem]. Let L+ be the orthogonal space of L in H!(X,Q}) with the Beauville-Bogomolov-Fujiki
form. We note that L' is tha tangent space of H at the reference point. By Lemma 2.2, L' is contained in
Ker(j). This implies that Ker(j) = L. Moreover Ly is spaned by L, because the Beauville-Bogomolov-
Fujiki form is nondegenerate. Since H is the universal family of the pair (X,L), we obtain that Hy C H.
Comparing the dimension of the tangent spaces, we have Hy = H. O

PROPOSITION 2.3. Let 27, Def(X), £ and H be as in Proposition 2.1. We also let A be a unit disk in H
which has the following two properties:

(1) A passes the reference point of Def(X).

(2) For avery general point t of A, the Picard number of the fibre Z; of ® overt is one.

The symbols Za, mian and L denote the base change X Xy A, the induced morphism Zx — A and the
restriction £ to 2, respectively. Then
Ri(ﬂA)*gA,

are locally free for all i at the reference point.

Proof. For a point u of A, Z, and .%, denote the fibre of my over u and the restriction of %, to Z,
respectively. We consider whether %4 has the following property:

2) For every u # o, .Z, is semi-ample

If .Z), has the above property, the assertion of Proposition 2.3 follows from [10, Corollary 3.14]. To prove
it, we need the following two lemmata.

LEMMA 2.4. For a very general point u of A, £, is semi-ample.
Proof. We start with proving the following claim.

CLAIM 2.5. There exists a dominant meromorphic map ® : 2, --+ B,, such that a general fibre of ® is
compact, B, is a Kahler manifold and dimB,, > 0.

Proof. We use the notation as in Proposition 2.1. By Propositon 2.1 (2), there exists a smooth open
neighborhood V of A in D(Z /Def(X)). Let D(Z,) be the irreducible component of D(Z /Def(X)) Xy
{u} which intersects V. We note that D(2},) is an irreucible component of the Douady space of 2.
We take a resolution D(2,)~ — D(Z,) and denote by U(Z,)~ the normalization of U(Zy) Xp(2;,)
D(Z,)~, where U(Z,) is the universal family over D(.Z;). We also denote by by p and ¢ the natural
projections U(.%2,)~ — 2, and U(Z,)~ — D(Z,)"~. The relations of these objects are summerized in
the following diagram:
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Let a be a point of Z,,. We define the subvarieties G;(a) of Z, by

We also define
G.(a) == Gi(a).
i=0

Let B(Z,) be the Barlet space of .2;. By [1, Théoreme A.3], Gw(a) is compact for a general point a
of &, and there exists a meromorphic map @ : 2, --» B(Z,) whose general fibre is G.(a). By [3,
(5.2) Theorem], B(%Z,) is of class €. Hence there exists an embedded resolution B(.Z;)~ — B(%Z,)
of the image of ® whose proper transformation is smooth and Kéhler. We denote by B, the proper
transformation. The composition map

Zy --+Im(®) --» B,

gives the desired meromorphic map if the image of & is not a point. Hence we show that & is not a
trivial. Let a be a general point of Z,. Then Gj(a) is a complex torus. Moreover Gi(a) is a Lagrangian
submanifold of £;. Thus D(Z,) is smooth at G;(a) and its dimension is half of those of 2. The
normal bundle of Gj(a) is the direct sum of the trivial bundles. Therefore p is locally isomorphic in a
neighborhood of p~!(Gj(a)) and p is generically finite. If p is bimeromorphic, then G..(a) = G{(a) and
we are done. If p is not bimeromorphic, we consider the branch locus of the Stein factorization of p. Since
Z is smooth, the branch locus defines an effective divisor E of Z;,. We will prove that Ge.(a) NE =0
if a is general. Since the Picard number of Z;, is one, %, and E should be numerically propotional. The
pull back p*.%, is numerically trivial on fibres of ¢q. Hence the restiction of %, to G (a) is a numerically
trivial bundle if a is general. Therefore g(p~'(E)) # D(2,)~. This implies that EN Gy (a) = 0 for a
general point a of 2. Since E is effective, E is nef. By [10, Lemma 2.15], there exists an effective
Q-divisor E’ on D(Z,,)™ such that
P'E=q'E'.
Hence G (a) NE =0if Gi(a)NE =0. O

We go back to the proof of Lemma. By blowing ups and flattening, we have the following diagram:

1%

— T
2o 2, 2 Y
S
BuiBu%BuN B;a

where

1) %, — Z, is aresolution of indeteminancy of ®.
2) Z — %, and B, — B, are bimeromorphic.

(3) B; is smooth and Kéhler.

4) Z,— By is flat.

5) W, — %, is the normalization.

We denote by v and r the induced morphisms %, — £, and #; — B;;, respectively. The proof consists

u>’
of three steps.
Step1.  We prove that B is projective. Since B} is Kihler, it is enough to prove that dim H° (B}, Q%) =
0. We derive a contradiction assuming that dim H°(B;",Q?) > 0. Under this assumption, there ex-

ists a holomorphic 2-form @ on B; . The pull back r*w defines a degenerate holomorphic 2-form on
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#;.. On the other hand, H*(%;,Q?) = H°(Z,,Q?) because v is birational and 2, is smooth. Hence
dimH°(#,,,Q%) = 1 and it should be generated by a generically nondegenerate holomorphic 2-form.
That is a contradiction.
Step 2. We prove that .7, is nef. This is [2, 3.4 Theorem]. For the convinience of readers, we copy
their arguments. By [7, Proposition 3.2] it is enoght to prove that .%;,.C > 0 for every effective curve of
Zu. Since the Beauville-Bogomolov-Fujiki form g 4; is non-degenerate and defined over H 2(2,,Q),
there exists an isomorphic

1: Hl,l(%“(c)R _ H2n71,2n71(%7C)R
such that

q9.2,(Zu 1”1 ([C) = Zu.C.

If ¢(%£,,z) # 0 for an element z of H"!(.%Z;,,Q), then there exists a rational number d such that ¢(.%, +
dz) > 0. By [6, Corollary 3.9], this implies that Z,, is projective. That is a contradiction. Thus .%,.C =0
for every curve C.

Step3. Let M be a very ample divisor on B;,. We prove that there exists a rational number ¢ such that

% ~Q cvy M.
It is enough to prove that
q%fu(v*r*M) =42, (fu) = q’%;l(v*r*M,fu) =0.

Since %, is non projective, g 2;, (v.r*M) < 0 and g 2;,(-Z,) < 0 by [6, Corollary 3.8]. On the other hand,
q2,(Z,) > 0 because .7, is nef. The linear system |r*M| contains members M; and M, such that M; NM,

has a codimension two. By the definition
G (Var'M) = /(v*r*M)ZG”’IG”’I,

where o is a symplectic form on Z;,. Thus g 2; (v.r*M) > 0. Therefore g 4, (V«r*M) = q(-Z,) = 0. Since
v.r*M is effective and .Z, is nef, g o, (V.r*M,.Z,) > 0. Again by [6, Corollary 3.8], g 2;, (v.r*M +.%,) <
0. Thus g2, (v«r*M,%,) = 0 and we are done.

Step4.  We prove that .Z, is semi-ample. By [10, Remark 2.11.1] and [10, Theorem 5.5], it is enough
to prove that there exists a nef and big divisor M’ on B; such that

V*.,ZA NQ r*M/

By Step 2 and Step 3, v*.Z, ~q "M + Y ¢;E; where E; are v-exceptional divisors and e; are positive
rational numbers. By Step 2, ) e;E; is nef for every irreducible component of every fibre of r. By [10,

Lemma 2.15], there exists a Q-effective divisor M such that
ZeiEi =r'Mj.

If we put M’ := M + My, we are done.
O

LEMMA 2.6. If £, is semi-ample for very general point u of A, then £, is semi-ample for every u = o.

Proof. Let A(k) be an open set of A which has the following two properties:

() 7L is locally free.
Q) L @k(u) = HY (2, Lal 22,)-
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We also define
A= {ue Aip(2i) = 1},

where 2, is the fibre over u and p(.Z,) stands for the Picard number of Z,,. We fix a compact set K of
A which contains the reference point. Then K \ (K NA(k)) consists of finite points. Thus

U (K\KNA(k))
k=1

consists of countable infinite points. Hence
(Ak) | NKNA° #0.

Thus there exists a point #g of A and an integer k such that

ﬂ'X(ﬂA)*XA — ZA
is surjective on .Z7,. This implies that the support Z of the cokernel sheaf of 7} (75 )+.£x — -ZA is a proper
closed subset of 2. Hence .7, is semi-ample if u € A\ ©(Z). O
We complete the proof of Proposition 2.3. g

Proof of Theorem 1.1. By Proposition 2.1, there exists a smooth hypersurface H of Def(X) and a line
bundle .Z which have the properties of (1) and (2) of Theorem 1.1. Assume that Rim,.% is not locally
free. We define the function ¢(¢) as

o(1) = dim H'( 2;,.2)
where Z; is the fibre of 7 over r and % is the restriction of . to Z;. Then

¢(0) > 9(1),

where o is the reference point and ¢ is a general point of H. The Picard number of a fibre Z; over a very
general point of H is one. Hence there exists a unit disk A such that o € A and the Picard number of a very
general fibre of the induced morphsim 2" x5 A — A is one. By Proposition 2.3, R{(7s)+.%, is locally
free for every i. This implies that ¢(0) = ¢(¢). That is a contradiction. O
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SPIN CURVES AND SCORZA QUARTICS

HIROMICHI TAKAGI
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This is the joint work with Francesco Zucconi. We give some appli-
cations of 3-fold birational geometry to the study of even spin curves.
Much explanation is taken from the Dolgachev-Kanev’s paper [DK93|
and our preprints [TZ08a] and [TZ08b].

1. EVEN SPIN CURVES

Let H be a smooth projective curve of genus g and 6 a theta char-
acteristic on H, namely, 20 ~ K. A couple (H,6) is called a spin
curve and even if so is h%(H, ). Let S} be the moduli space of even
spin curves of genus g. It is known that h°(H, 0) = 0 (called ineffective
theta characteristics) for a general pair (H,0) € S;f.

2. SCORZA CORRESPONDENCE

The basic of our study is the following correspondence originally
studied by G. Scorza.

Definition 2.0.1. Given an ineffective 6, h°(H,0 + x) = 1 for every
x € H by the Riemann-Roch theorem, hence 6 gives the correspondence
Iy € 'H x H such that (z,y) € Iy if and only if y is in the support of

the unique member of |#+z|. This is called the Scorza correspondence.
1



2 Takagi

We denote by Ip(z) the fiber of Iy — H over x. In other words, Iy(x)
is the unique member of |0 + x|.

We can easily verify the following properties of I by the Riemann-
Roch theorem, etc:
(a) @ = Iy(x) — x is (of course) independent of z,
(b) h°(H,0 + z) =1 for any x € H,
(c) Iy is disjoint from the diagonal,
(d) Iy is symmetric, and
(e) Iy is a (g, g)-correspondence.
By [DK93, Lemma 7.2.1], conversely, for any reduced correspondence I’
satisfying the above conditions, there exists a unique ineffective theta
characteristic such that I’ = Ij.

Here we mention two known applications of the Scorza correspon-
dence:
Rationality of S;. We learned the following by [DK93]. Let V be
a 3-dimensional vector space and V its dual. For a homogeneous form
G € S™V of degree m on V, we deﬁne the (first) polar P,(G) of G at
a € P(V) by P(G) := + Zal -, where a; and z; are coordinates of
a, and on V, respectlvely

Let F' € S*V be a general ternary quartic form on V. Set

S°(F) :={a € P(V) | P,(F) is projectively equivalent to the Fermat cubic}.

Then the closure S(F) := S°(F) is again a smooth quartic curve, which
is called the Clebsch covariant quartic of F'. By taking the second polars
of S(F'), we have the following correspondence:

(21)  T(F):={(a,b) € S(F) x S(F) | rankP,,(S(F)) < 1}.

For example, if P,(F) = {23+ y>+ 2% = 0}, then b= (1: 0: 0),(0 :
1:0)or (0:0:1), thus T'(F) is a (3, 3)-correspondence. In the end,
T'(F) turns out to be the Scorza correspondence Iy defined by a unique
theta characteristic 6.

So we have the map Sc: M3 — S5 such that Sc: [F' = 0] — [S(F), 0]
defined over the open set MY C Mj where S(F') is nonsingular. This
association map was discovered by Scorza and is called the Scorza map.
Scorza showed it is an injective birational map. Thus S5 is rational
since M3 is known to be rational by [Kat96] (see also [Boh]). The curve
F corresponding to a couple (S(F),0) is called the Scorza quartic of
(S(F),0). In other words, by setting H = S(F), F'is the unique quartic
such that if (a,b) € Iy(C H x H), then rk P, ,(#") = 1 holds.

Mukai’s description of a Fano threefold. A prime Fano threefold
of genus 12 is a smooth projective threefold A,y such that —Ky,, is
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ample, the class of —K 4,, generates Pic Ao, and such that the genus

g(Agg) = % + 1 = 12. Mukai found the description of such a

Fano as a variety of power sums.

Definition 2.0.2. Let V' be a (v+ 1)-dimensional vector space and let
F € S™V be a homogeneous forms of degree m on V. Set

VSP (F,n)° = {([Hi],...,[H,)) | H" + -+ H™ = F} C Hilb"P(V).
The closure VSP (F,n) := VSP (F,n)° is called the varieties of power
sums of F'.

Theorem 2.0.3 (S. Mukai). Let {F, =0} C P(V) = P? be a general
plane quartic curve. Then

(1) VSP(Fy,6) C Hilb®P? is a general prime Fano threefold of genus
12; and conversely,
(2) every general prime Fano threefold of genus 12 is of this form.

See [Muk92] and [Muk04]. Mukai observed the following:

(a) The Hilbert scheme of lines on Ay is isomorphic to a smooth plane
quartic H; and the correspondence on H; X H; defined by intersec-
tions of lines on A,y gives an ineffective theta characteristic # on H;.
More precisely, 0 is constructed so that the Scorza correspondence
Iy is equal to

{([1],[m]) € Hy x Hy [1nvm # 0,1 # m}.

By the result of Scorza recalled above, the Scorza quartic {Fy = 0}
is associated to the pair (Hj,#) in the same ambient plane as the
canonically embedded H;. Theorem 2.0.3 (2) claims that X is
recovered as VSP (Fy,6). (1) follows from (2) since the number
of the moduli of prime Fano threefolds of genus 12 is equal to
dim Mg = 0.

(b) The Hilbert scheme of conics on A, is isomorphic to the plane Hy
and H, is naturally considered as the plane P? dual to P? since, for
a conic g on Asy, the lines intersecting ¢ form a hyperplane section
of H;. Further, he showed the six points [Hi], ..., [Hg] such that
([Hi],...,[Hs]) € VSP°(F4,6) correspond to six conics through
one point of Ags.

3. SCORZA QUARTICS

Scorza succeeded in associating a unique quartic hypersurface, which
is also called the Scorza quartic, to a spin curve of any genus g with
ineffective theta. In the case g = 3, this association turns out to be
the inverse of the Scorza map. Dolgachev and Kanev, however, pointed
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out Scorza overlooked three conditions on spin curves mentioned below
to consturct the Scorza quartic.

Let H C P9~! be a canonical curve of genus g, f an ineffective theta
characteristic on it and Iy C 'H x H the Scorza correspondence. Since
the linear hull (lp(z) — y) for (z,y) € I, is a hyperplane of P9~ we
can define a morphism 7y: Iy — |wy| = P9~! by (2,5) — s(z) — ).

The following is a crucial object to construct the Scorza quartic:

Definition 3.0.4. The image I'(¢) of the above morphism my: Iy —
P9=! (with reduced structure) is called the discriminant locus of the

pair (H,0).

By Definition 3.0.4, we have the following diagram:

(31) Iy CHxH

r9) c Pt H C P9l

The three conditions mentioned above is the following, which are a

kind of generality conditions:

(A1) the degree of the map Iy — I'() is two, namely, (Ig(z") — ') =
(Io(x) — y) implies (2, y') = (z,y) or (y, ),

(A2) I'() is not contained in a quadric, and

(A3) Ip is smooth.

From now on in this section, we assume these conditions.

We can define:
EH = Wg*p*(H N H)
as a divisor, where H is an hyperplane of P91,
By using (A1)—(A3), it is not difficult to see degI'(#) = g(g — 1) and
deg Dy = 2g(g — 1). Therefore we may expect that Dy is a quadric
section of I'(#). Actually this is true:

Proposition 3.0.5. Dy is cut out by a quadric in P91,
Now we define the following correspondence:
D:={(q1.0) | & € Dp,,} CT(0) x T(0),

where H, is the hyperplane of P! corresponding to ¢ € P91 Tt is
easy to see that D is symmetric. By Proposition 3.0.5, we see that D
is the restriction of a symmetric (2,2) divisor D’ of P9=1 x P91, Let
{F, = 0} be the quartic hypersurface obtained by restricting D’ to the
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diagonal of P9=! x P9~'. The Scorza quartic is the ‘dual’ quartic in
]P)g—l of {F4 = 0}

To explain this more precisely, we give a quick review of some gener-
ality of the theory of polarity. Set V' := H('H, ij. Each homogeneous
form F' € S*V defines a linear map:

app: S’V — S*V

called the apolarity map, which is nothing but the linear extension
of iterating polar maps. If app is an isomorphism, F' is called non-
degenerate and then the inverse isomorphism is given by a ' € S*V,
that is ap, ' = apz. The form ' € S*V is called the dual form of F.

It turns out that the constructed {Fy = 0} is non-degenerate and we
can take the dual {F, = 0}, which is the Scorza quartic.

To explain this construction of the Scorza quartic is actually the
inverse of the Scorza map in genus 3 case, we remark one of the im-
portant properties of the Scorza quartic. By the theory of polarity and
the definition of F}, the fiber of D — I'(d) over a point ¢ € I'(6) is
defined by the second polar PHg(F4)- Moreover, by definition of I'(0),

it is easy to derive that Pqu(F4) = ab for some a,b € H such that

(a,b) € Iy, where a,b € P9~" is considered as a linear form on P9~'. By
definition of the dual, we have P,,(F,) = H, 3. Thus we have verified
the association of the Scorza quartic is the inverse of the Scorza map
in the case g = 3.

4. SPECIAL QUARTICS ARISING FROM QUINTIC DEL PEZZO 3-FOLD

Now we start explanation of our results.

Trigonal even spin curves of any genus and their Scorza quartics arise
from some 3-folds as in Mukai’s case.

Let B be the smooth quintic del Pezzo threefold, that is B is a
smooth projective threefold such that —Kp = 2H, where H is the
ample generator of Pic B and H? = 5. It is well known that the linear
system |H| embeds B into P°.

Let d be an arbitrary integer greater than or equal to 6. We consider a
general smooth rational curves C' of degree d on B obtained inductively
from lines, more precisely, smoothings of the union of a degree d — 1
rational curve and a line intersecting it. Let f: A — B be the blow-up
along C' and E¢ the f-exceptional divisor.

We explain the relation of this with As. If we take the blow-up
A’ — Ayy along a general line on it, then there is a unique flop A’ --» A
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and birational contraction A — B, which is the blow-up of B along
a smooth rational curve of degree 5. Thus the above situation is a
generalization of this. Moreover, a general line is mapped to a line
on B intersecting C', and a general conic is mapped to a conic on B
intersecting C' twice or more.

We consider the notions of lines and conics on A, which correspond
to lines on B intersecting C', and conics on B intersecting C' twice or
more.

Definition 4.0.6. A connected and reduced curve [ C A is called a
lineon Aif —K4-l=1and Ec-1l=1.

By —Ka = f*(—Kp) — Ec and E¢ -1 = 1, f(l) is a line on B
intersecting C.

Proposition 4.0.7. The Hilbert scheme of lines on A is a smooth
trigonal curve Hy of genus d — 2.

Definition 4.0.8. A connected and reduced curve ¢ C A is called a
conicon Aif —K,-g=2and E¢c-q=2.

We showed that the Hilbert scheme of conics on A is an irreducible
surface and the normalization morphism is injective, namely, the nor-
malization H, parameterizes conics on A in one to one way.

Moreover we have the full description of Hy as follows. For this, let
D; C H, be the locus parameterizing conics on A which intersect a
fixed line [ on A.

Theorem 4.0.9. H, is so-called the White surface, namely, the surface
obtained by blowing up S*C ~ P? at s = (df) points and embedded
by |Dy| = |(d —3)h — >°;_, eil, where h is the pull-back of a line, e;
are the exceptional curves of n: Hy — P2. Moreover, Hy is given by
intersection of cubics.

Here we use the notation P43 since the ambient projective space of
‘H, and that of the canonical embedding of H; can be considered as
reciprocally dual as in Mukai’s case. We write the ambient of H; by
P9=3 and that of H, by P43,

Set

Dy = {([q1], [q2]) € Ho x Ha [ 1 N g2 # 0}
and denote by D, the fiber of Dy — Hj over a point [g]. Then D, ~ 2D,
and Dy ~ piD, + p5D,. D, is obviously symmetric. Thus D, is the
restriction of a unique symmetric (2, 2)-divisor D} on P*3 x P43, The
restriction of D) to the diagonal is a quartic hypersurface {Fj = 0}
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in P*3. We can show that F} is non-degenerate. Then we obtain the
unique quartic hypersurface {F; = 0} in P2 dual to F}.
The following is a generalization of Theorem 2.0.3 (2):

Theorem 4.0.10. Let f: A — B be the blow-up along C, and let
p: A — A be the blow-up of A along the strict transforms of (df)

bi-secant lines of C' on B. Then there is an injection from A to
VSP (Fj,n), where n = (d;). Moreover the image of A is uniquely
determined by Dy and is an irreducible component of

VSP (F!,n; Ho) == (L), - - [Hy]) | [Hi] € Ha} C VSP (F),n).

To characterize 3-fold Z, we need extra deta Hsy, which is implicit in
Mukai’s case. See [TZ08a].

5. EXISTENCE OF THE SCORZA QUARTIC

Notice that the construction of Fj is quite similar to that of the
Scorza quartic. This similarity will be clear once we define a theta
characteristic on H; and clarify the relation of H; and Hs.

For the curve H; parameterizing lines on A, we can introduce the
incidence correspondence as in Mukai’s case:

(5.1) [o={([],[m]) | 1 #m,Inm#£0} CHy xH,

with reduced structure. We can prove [ satisfies the conditions (a)—(e)
whence there exists a unique ineffective theta characteristic such that
I =1Iy.

Moreover, as we mentioned above, there is a natural duality between
the ambient spaces of H; and H,. This gives us a very computable
way to describe the discriminant loci I'(#) of 6.

Proposition 5.0.11. For the pair (H1,6), T'(0) is contained in Ha,
and the generic point of the curve I'(0) parameterizes line pairs on A.
Moreover, T'(0) ~ 3(d —2)h —4>"7_, e; on Ha. In particular T'(0) is
not contained in a cubic section of Hs.

Moreover, we can consider {F; = 0} lives in the same ambient space
as canonically embedded H;.

Proposition 5.0.12. The special quartic {F; = 0} C P?=3 of Theorem
4.0.10 coincides with the Scorza quartic of (H1,6).

Proof. Noting I'(#) C Ha, we can show that the restriction of the corre-
spondence defining F} to I'(#) x I'(#) coincides with the correspondence
defining the Scorza Fj. U



8 Takagi

The story goes further. By virtue of the above explicit computa-
tion of the discriminant, we can prove that the pair (Hi,0) satisfies
the conditions (A1)—(A3). Then, by a standard deformation theoretic
argument, we can then verify that the conditions (A1)—(A3) hold also
for a general even spin curve, hence we answer affirmatively to the
Dolgachev-Kanev Conjecture:

Theorem 5.0.13. The Scorza quartic exists for a general even spin
curve.

See [TZ08b].

6. MODULI SPACE OF TRIGONAL EVEN SPIN CURVES

Let M} and S be the moduli space of trigonal curves of genus
g and the moduli space of even trigonal spin curves of genus g, re-
spectively. We would like to study S, using the geometry of (B,C).
Denote by H% the Hilbert scheme of general smooth rational curves
of degree d as in Section 4. ‘HZ is irreducible. By Aut B ~ SL(2,C),

we have the natural rational maps ms: HZ/SL(2,C) — S;*% mapping

Cy— (H1,0), and mz from HZ /SL(2,C) to the moduli space F, of Ay

(= A of degree d) mapping Cy — Ayg.
HZ /SL(2, C)
S
S Fa

Since HZ is irreducible and HZ/SL(2,C) — F; is dominant, we see
that F; is irreducible.

Proposition 6.0.14. The map 7wr is finite. If d = 6, then degmr = 2.
If d > 7, then 7 is birational.

Proof. degmy = 2 for d = 6 follows from the following diagram:

SN,
v N

B B,



Spin curves and Scorza quartics 9

where A --» A’ is a flop and A’ — B is also the blow-up along a
smooth rational curve C” of degree 6 on B. This reflects the fact H;
has two different g%’s (birationality of mz for d > 7 will reflect the fact
a general trigonal curve of genus > 5 has a unique gi1). Indeed, there is
one to one correspondence between the sets lines on A and lines on A’.
Thus we identify the Hilbert schemes of lines on A and A’ and denote
it by H;. H; has two triple covers H; — C and H; — C’. These are
defined by two different gi’s of H;. Thus (B,C) and (B, (") are not

isomorphic to each other but correspond the same A. O

For genus three curve, the Scorza quartic is useful to prove the ra-
tionality of S5 . Unfortunately, this is not the case in the higher genus
case for the moment since the Scorza quartics are special quartics and
there is no description of the loci of them in the space of quartics.
Nevertheless, it gives another way to study of S

Proposition 6.0.15. 75 factor through mr as HZ /SL(2,C) — Im s —
Fa. In other words, A is determined from (Hy,0).

Proof. From (Hy, ), we can define I'(#) and Fy. By Theorem 4.0.9 and
Proposition 5.0.11, we obtain Hs as the intersection of cubics containing
['(f). We can define the divisor Dy C Hy X Hy from the dual F,. By
Theorem 4.0.10, A is obtained from F; and Ha, thus from (H1,0). O

Corollary 6.0.16. Im s is an irreducible component of S;*, domi-
nating MY _,. In particular a general Hy is a general trigonal curve of
genus d —2. ms: HEY/SL(2,C) — Im s is finite of degree two if d = 6
and birational if d > 7.

Proof. Since dimHZ = 2d and dim Aut (B, C,) < dim Aut B = 3, we
see that dim F; > 2d — 3 by Proposition 6.0.14. By Proposition 6.0.15,
dimIm s > 2d — 3. Thus by dim §;*, = 2d — 3, the first claim follows.

If d > 7, then 7g is birational by Proposition 6.0.14. If d = 6,
then, as in the proof of Proposition 6.0.14, two triple covers H; — C'
and H; — C" are defined by two different gi’s of H;y, thus (B, ) and
(B, C") are not isomorphic to each other. But (B, ') and (B, C") define
the same theta characteristic. Thus 7g is of degree two. O
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FINITE SUBGROUPS OF THE PLANAR CREMONA
GROUPO

IGOR V. DOLGACHEV

ABSTRACT. In this talk we review some new results about classi-
fication of conjugacy classes of finite subgroups of the planar Cre-
mona group.

1. INTRODUCTION

Let Cr, (k) denote the Cremona group of birational automorphisms
of the projective space P} over a field k. From algebraic point of view

Crp(k) = Autg(k(ty, ..., t,).

When n = 1, the group of Cr;(k) is isomorphic to the linear algebraic
group PGLy (k). The description of its finite subgroups is well known.
There is one conjugacy class of each group, and the groups are isomor-
phic to either a cyclic, or dihedral, or the group of symmetries of a
platonic solid. We will be concerned with the case n = 2.

There are three different aspects of the theory depending on the field
k.

(i) k = C, the field of complex numbers;
(i) k is any perfect field and groups are of order prime to the char-
acteristic of k;

(iii) k is algebraically closed of characteristic dividing the order of

the group.

In any case the classification of finite subgroups uses the following
simple idea. For each finite subgroup G C Cry(k) one can find a smooth
rational projective algebraic surface X such that G acts biregularly on
X inducing the same action on the field of rational functions. Two
subgroups are conjugate in Crq(k) if and only if the corresponding sur-
faces are birationally G-equivariantly isomorphic. Among all surfaces
X which “regularize” the subgroup G one can choose minimal one in
the sense that it does not allow a non-trivial birational G-equivariant
morphism X — Y. It follows from Mori’s theory of minimal models
that a minimal G-surface X belongs to one of the following classes of

surfaces
1
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(i) X has a structure of a conic bundle f : X — P} with m > 0
singular fibres,
(i) X is a Del Pezzo surface of degree d with Pic(X)% 2 Z.

So the problem in each case is reduced to the classification of finite
subgroups of the automorphism groups of minimal G-surfaces as above
and the classification of birational G-equivariant isomorphisms between
minimal surfaces (which are decomposed in elementary links classified

by V. Iskovskikh [5]).

2. THE CASE OF COMPLEX NUMBERS

This is the most classical case, the theory originates from the work
of Bertini who classified the conjugacy classes of involutions in Cry(C).
We refer to the history and references to the modern work to our paper
[4].

Theorem 1. Each involution in Cry(C) is conjugate to either
(i) de Jonguiéres involution,
(ii) a Geiser involution;

(iii) a Bertini involution.

Recall the definitions. A de Jonquieres involution is defined (in its
algebraic form) by the transformation (x,y) — (z, FQ%I(I)), where F(x)
is a polynomial of degree 2¢g + 1 without multiple roots.

A Geiser involution is defined geometrically as the deck transforma-
tion of the rational map of degree 2 given by the linear system of plane
cubic curves through 7 general points in the plane. A Bertini involu-
tion is defined similarly by the linear system of plane curves of degree
6 with double points at 8 general points in the plane.

Already in this special case one sees the dramatic difference of con-
jugacy classes of finite subgroups of the Cremona group and a linear
algebraic group. Namely, the set of conjugacy classes is infinite, and in
fact can be parametrized by points of algebraic varieties.

One starts the classification from considering subgroups of a conic
bundle. They belong to the class of de Jonquieres transformations, i.e.
transformations which can be algebraically given in the form (z,y) —
( ,%, where a(z,b(x), c(x),d(x) are rational functions in z. In
geometric forms a de Jonquieres transformation can be define as a
birational transformation of the plane leaving invariant a pencil of lines.

Let f : X — P! be a conic bundle and py, . .., p, be the set of points
over which the fibres X, are reducible conics. Any finite subgroup ¢
of Aut(X) fits into an exact sequence of groups

1-H—-G—G—1,
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where G C Aut(P!) is the image of G in its action on the base of the
fibration. The group G also acts on the group Pic(X) ® Q of X which
is generated by Kx and components of fibres, taken one from each. A
conic bundle G-surface X is called exceptional if the latter action is
not trivial. One can describe such conic bundles explicitly. They are
isomorphic to a hypersurface in P(1,1, g, g)

Fogia(to, t1) + tats = 0,

where Fhyo(to,t1) is a binary form of degree 2¢g. The group of auto-
morphisms of such a surface is easy to describe. It is isomorphic to the
extension N.P, where P is the subgroup of PGLy(C) leaving the binary
form Fb,(to,t1) invariant, and N = C : 2 is the group of matrices with
determinant +1 leaving the binary form ¢,t, invariant. This allows one
to describe all finite subgroups of automorphism of X.

Assume that X is not an exceptional conic bundle. Then the group
H leave each fibre F, invariant and embeds injectively in the group
2™ = (Z/2Z)™ via switching the components. Since H is a subgroup
of the general fibre of f : X — P!, it is isomorphic to a subgroup of
PGLy(K), where K is the field of rational functions on the base. It is
known that no finite subgroup of this group is isomorphic to a group
2° with s > 2. This shows that H = 2° with s =1 or 2.

The previous argument shows that G is either isomorphic to an ex-
tension 2.P or 22.P, where P is a finite subgroup of PGLy(C). In the
first case, the fixed locus of the non-trivial element in 2 is a hyperellip-
tic curve of genus g ramified over the set ¥ = {py,...,pm}, m = 2g+2,
(or a rational, or elliptic curve if ¢ < 2)), and P is its group of au-
tomorphisms. In the second case, the fixed locus of each non-trivial
involution 7; € 22 is a hyperelliptic curve of some genus p; such that
ramifies over a subset ¥J; of ¥ of cardinality n; such that ¥ is partitioned
into three subsets A, B,C with X1 = A+ B, Y, =B+ C,¥3=A+C.
An example of such surface X is the surface in P' x P? given by the
equation

ag(t07 tl)zg + al(to, t1>Z(2) + a/2(t07 tl)Zg = O,
where ag, a1, as are binary forms of some degree m.

Let us now pass to the case when G is realized on a Del Pezzo surface
of degree d. Recall that d takes values between 1 and 9, any surface
of degree d < 8 is isomorphic to the blow-up of 9 — d distinct points
in an “unnodal position” (e.g. no three points are collinear). When
n = 8, X is isomorphic to either P' x P! or to the blow-up of one
point which is not minimal, and can be omitted from consideration.
When n = 8, the surface X is isomorphic to the projective plane. The
classification of the conjugacy classes of finite subgroups of Aut (P! xP*!)
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and Aut(P?) = PGL3(C) is one-hundred years old. Assume now that
d < 8. If d = 7, the surface X is not G-minimal since the proper inverse
transform of the line joining the two points is a G-invariant (—1)-curve.
For d < 7 one uses the representation of GG in the group of orthogonal
transformations of the Picard lattice generated by reflections in vectors
v € Pic(X) such that v = —2. This is the notorious Weyl group of
a root system of type Ey_4, where, by definition, Fj3 is equal to type
Ay x Ay, Ey is equal to Ay, and Ej is equal to Ds. The representation
is always faithful except in the case d = 6, where the kernel consists of
the group of projective transformations fixing the three points. Dealing
with the case by case, it is possible to classify first the conjugacy classes
of cyclic subgroups. Then one finds the corresponding surfaces and
studies possible additional symmetries. In this way one achieves a
complete classification of minimal Del Pezzo G-surfaces. The tables
are given in [4].

The final step in the classification is to find out when two minimal
Del Pezzo G-surfaces are birationally isomorphic. This is achieved by
Iskovskikh’s classification of elementary links birationally relating two
Del Pezzo surfaces. For example, minimal Del Pezzo G-surfaces with
d < 3 are rigid, in the sense that cannot be birationally isomorphic to
other surfaces.

3. THE CASE WHEN k IS A PERFECT FIELD AND (#G,char(k)) =1)

Here the work has only began since, essentially, only the case of cyclic
groups has been studied. Recall that in the case k is algebraically closed
any cyclic group of order prime to characteristic can be realized by a
subgroup of projective transformations. It is not anymore true if £
is not algebraically closed. The relevant useful information about the
field k is given by the following two numbers. From now on £ is a prime
number different from char(k) and ¢, be the generator of the group of
elements of order £ in k.

Set

ty = [/{}(Cg) : /{}], my = sup{d >1: ng S k’(Cg)}

For any group A let ¢#() be the order of its Sylow ¢-subgroup. The
classification of finite subgroups of PGL,, (k) = Aut(P}) is based on
the following result [6].

Theorem 2. Let A be a finite subgroup of PGL,11(k). For any ¢ > 2,
v(A) < Y (metw(s)).

2<s<n+1,tg|s
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It follows that PGL, (k) does not contain elements of prime order
(if t; > n+ 2. For example, Aut(PZ) does not contain elements of
order ¢ > 5.

The first example of an automorphism of order 7 in Crg(2) was given
by J.-P. Serre. It is based on the following idea.

First he uses the fact from [9] that an algebraic 2-dimensional torus
over an arbitrary field k is a rational variety (as always over k). Then
he proves the following.

Theorem 3. Let T be an algebraic k-torus and A be a finite subgroup
of T(k). Then

dim T}
o(te) 17

where ¢ is the Euler function. Assume my, < oo (e.g. k is finitely
generated over its prime subfield). For any n > 1 there ezists an
n-dimensional k-torus T and a finite subgroup A of T'(k) such that

(4) = me[ 2]

v(A) < me[

Corollary 4. A 2-dimensional k-torus T with T'(k) containing an el-
ement of prime order £ > 2 exists if and only if t, takes values in the
set {1,2,3,4,6}.

We can realize a 2-dimensional k-torus 7" as an open subset of a Del
Pezzo surface of degree 6 that has a structure of a toric k-surface.
The main result of our paper [3] is the following

Theorem 5. Let k be a perfect field of characteristic p > 0. Then
Cro(k) contains an element of prime order ¢ > 5 not equal to p if and
only if there exists a 2-dimensional algebraic k-torus T' such that T (k)
contains an element of order (.

We will also prove the following uniqueness result.

Theorem 6. Assume that k is of characteristic 0 and does not contain
a primitive {-th root of unity. Then Crs(k) does not contain elements
of prime order £ > 7 and all elements of order 7 in Cry(k) are conjugate
to an automorphism of a Del Pezzo surface of degree 6.

Using the description of minimal G-surfaces given in the previous
section and the fact that a Del Pezzo surface of degree d > 3 embeds
in P¢ or admits a canonical double cover of the plane or of quadratic
cone for d = 2 or d = 1, Serre uses his theorem 2 to estimate an order
of any finite subgroup of Cry(k) of order prime to char(k) (see [7].
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Theorem 7. Let M(k,{) =2m+ 3 if { =2,

(2m ifte=1,2,0> 3,
m ifte=3,4,0> 3,
M(k,t)=1<0 ifty=5,0>6
4 ifty=1,2,0>30rl=3,t,=my =1,
(2m + 1  otherwise.

For any finite subgroup A of Cry(k)
Vy S M(l{?, E)
Moreover, M(k,{) is the upper bound of the vy(A).

4. WILD SUBGROUPS

Here we discuss finite subgroups of Cry(k) of order divisible by p =
char(k). Again the work is still in progress. We study only cyclic
groups of order p°. We will also describe conjugacy classes of elements
of order p? over algebraically closed field of characteristic p > 0.

Using the Jordan form it is easy to prove the following

Lemma 8. For any element of order p* in Aut(P},) we have s < 1 +
log,(r +1).

For example, when r = 1, no elements of order p°, s > 2, exist in
Aut(P}). This easily implies that

Theorem 9. Let f: X — P; be a conic bundle and o be an automor-
phism of X of order p® preserving the conic bundle. Then s < 2.

A closer look at elements of order p? shows that a minimal automor-
phism of order p? of a conic bundle X — P} exist only when p = 2.

Next we consider the case of Del Pezzo surfaces. For example, if
d=9, X =P? by Lemma 8 we get s < 2. All elements of order p? are
conjugate in Aut(P%).

If d = 8, then X = P} x P} because the ruled surface F; is not
o-minimal. We know that Aut(F,) contains a subgroup of index 2
isomorphic to Aut(PL) x Aut(P}). Applying Lemma 8 we obtain s = 1
if p# 2, and s < 2 otherwise. The automorphism of X given in affine
coordinates by (x,y) — (y + 1, z) is of order 4.

If d =7, as we explained in section 1, the surface is not o-minimal.

Assume d = 6. Then Aut(X) is isomorphic to the semi-direct prod-
uct T x G, where T = k*? is a 2-dimensional torus and G is a dihedral
group Dy = (Z/27) x Ss. Since T' does not contain elements of order
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p and D1, does not contain elements of order p°, s > 1, we obtain that
the only possibility is s = 1 and p = 2, 3.

Assume d = 5. We know that Aut(X) acts faithfully on the Picard
group of X of a Del Pezzo surface of degree < 5. Via this action it
becomes isomorphic to a subgroup of the Weyl group W(A,) = Ss.
Thus s = 1 unless p = 2 and s = 2. The group W(A,) acts on
K5 = 7Z* via its standard irreducible representation on {(as,...,as) €
Z°:a;+...+as = 0}. A cyclic permutation of order 4 has a fixed
vector. This shows that X is not o-minimal.

Starting from the cases d < 4, the arguments become a little more
involved. The most difficult case is the case d =1 and p = 2. We will
give the details.

The linear system | — 2K x| defines a degree 2 map f : X — @,
where @) is a quadratic cone in P{. Again, since —Ky is ample, f is a
finite map, and arguing as in the previous case we see that the map is
separable. The Galois group of the cover is generated by the Bertini
involution. For any divisor D we have

(1) D +~*(D) ~2(D - Kx)Kx.

This shows that 3* acts as the minus identity on the lattice K. The
lattice K is isomorphic to the root lattice of type Es. The involution
(3* generates the center of the Weyl group W (Eg).

The automorphism group Aut(X) is a subgroup of W (FEjs). Possible
orders p®, s > 1, of minimal automorphisms are 4 and 8 (see [4]).

So we assume p = 2. The linear system | — K x| has one base point
po. Blowing it up we obtain a fibration 7 : X’ — P, whose general
fibre is an irreducible curve of arithmetic genus 1. Since —Kx is am-
ple, all fibres are irreducible, and this implies that a general fibre is an
elliptic curve (see [1]). Let Sp be the exceptional curve of the blow-up.
It is a section of the elliptic fibration. We take it as the zero in the
Mordell-Weil group of sections of 7. The map f : X — @ extends to
a degree 2 separable finite map f' : X’ — Fy, where Fy is the mini-
mal ruled surface with the exceptional section E satisfying £? = —2.
Its branch curve is equal to the union of F and a curve B from the
divisor class 3f + e, where f is the class of a fibre and e = [E]. We
have f"*(FE) = 2S,. The elliptic fibration on X’ is the pre-image of the
ruling of Fy. We know that 7 = o2 acts identically on the base of the
elliptic fibration. Since it also leaves invariant the section Sy, it defines
an automorphism of the generic fibre considered as an abelian curve
with zero section defined by Sy. If 72 = 1, then 7 is the negation auto-
morphism, hence defines the Bertini transformation of the projective
plane. Its image in the Weyl group W (Ejs) generates the center. The
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group of automorphisms of an abelian curve in characteristic 2 is of or-
der 2 if the absolute invariant of the curve is not equal to 0 or of order
24 otherwise. In the latter case it is isomorphic to Qg x Z/3, where
(s is the quaternion group with the center generated by the negation
automorphism (see [8], Appendix A). Thus 7* = 1 and the Weierstrass
model of the generic fibre is

y: + asy + 2 + agx + ag = 0.

In global terms the Weierstrass model of the elliptic fibration 7 : X' —
P} is a surface in P(1, 1,2, 3) given by the equation

y* + az(u,v)y + 2 + as(u, v)z + ag(u, v),

where a; are binary forms of degree . It is obtained by blowing down
the section Sy to the point (u,v,z,y) = (0,0,1,1) and is isomorphic
to our Del Pezzo surface X. The image of the branch curve B is given
by the equation az(u,v) = 0, i.e. B is equal to the pre-image of an
effective divisor of degree 3 on the base plus the section Sy. Since a
general point of B is a 2-torsion point of a general fibre, we see that
all nonsingular fibres of the elliptic fibration are supersingular elliptic
curves (i.e. have no non-trivial 2-torsion points). An automorphism of
order 4 of X is defined by

(u,v,2,9) — (u,v, 2 + s(u,v)?, y + s(u, v)x + t(u,v)),

where s is binary forms of degree 1 and ¢ is a binary form of degree 3
satisfying

(2) az = §°, t* + agt + s° + ays® = 0.

In particular, it shows that a3 must be a cube, so we can change the
coordinates (u,v) to assume that s = u, a3 = u3. The second equality
in (2) tells that t is divisible by u, so we can write it as t = uq for some
binary form ¢ of degree 2 satisfying ¢* + u?q +u* +ay = 0. Let a be a
root of the equation 2?2 + 2 4+ 1 = 0 and b = g + au?. Then b satisfies
ay = b* +u?b and t = ub + au?. Conversely, any surface in P(1,1,2,3)
with equation

(3) y* +uly + 2% + (b(u,v)? + u?b(u,v))x + ag(u,v) =0
where b is a quadratic form in (u,v) and the coefficient at uv® in ag is
not zero (this is equivalent to that the surface is nonsingular) is a Del
Pezzo surface of degree 1 admitting an automorphism of order 4

7 (u,v,2,y) — (u, v,z +u?,y +ux + ub + au®).

Note that 72 : (u,v,z,y) — (u,v, 2,y + u*) coincides with the Bertini
transformation.
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Theorem 10. Let X be a Del Pezzo surface (3). Then it does not
admit an automorphism of order 8.

Proof. Assume 7 = o2, Since o leaves invariant | — K|, it fixes its

unique base point, and lifts to an automorphism of the elliptic surface
X' preserving the zero section Sy. Since the general fibre of the elliptic
fibration f : X’ — P} has no automorphism of order 8, the transfor-
mation o acts nontrivially on the base of the fibration. Note that the
fibration has only one singular fibre Fy over (u,v) = (0,1). It is a cus-
pidal cubic. The transformation o leaves this fibre invariant and hence
acts on P} by (u,v) — (u,u+ cv) for some ¢ € k. Since the restriction
of o to Fy has at least two distinct fixed points: the cusp and the origin
Fy N Sp, it acts identically on F and freely on its complement X'\ Fj.

Recall that X’ is obtained by blowing up 9 points py,...,py in P2,
the base points of a pencil of cubic curves. We may assume that X
is the blow-up of the first 8 points, and the exceptional curve over pgy
is the zero section Sy. Let S be the exceptional curve over any other
point. We know that 3 = o* is the Bertini involution of X. Applying
formula (1), we obtain that S - 5(S) = 3. Identifying 5(S) and S with
their pre-images in X', we see that 5(S) + S = Sy in the Mordell-Weil
group of sections of 7 : X’ — Pi. Thus S and (S) meet at 2-torsion
points of fibres. However, all nonsingular fibres of our fibration are
supersingular elliptic curves, hence S and (3(S) can meet only at the
singular fibre Fy. Let ) € F be the intersection point. The sections
S and ((S) are tangent to each other at () with multiplicity 3. Now
consider the orbit of the pair (5, 3(S)) under the cyclic group (o). It
consists of 4 pairs

(8,0%(3)), (0(8),0°(8)), (6%(8),0°(S)), (¢*(S),o"(S)).

Let D; = 0%(S) + o™(S), i = 1,2,3,4. We have Dy + ... + Dy ~
—8Kx,, hence for i # j we have D; - D; = (64 — 16)/12 = 4. Let
Y — X be the blow-up of Q). Since () is a double point of each D;, the
proper transform D; of each D; in Y has self-intersection 0 and consists
of two smooth rational curves intersecting at one point with multiplicity
2. Moreover, we have D, - D; = 0. Applying (1), we get D; € | —2Kx]|.
Since @Q is a double point of D;, we obtain D; € | — 2Ky|. The linear
system | — 2Ky| defines a fibration Y — P} with a curve of arithmetic
genus 1 as a general fibre (an elliptic or a quasi-elliptic fibration) and
four singular fibres D; of Kodaira’s type I7/. The automorphism o
acts on the base of the fibration and the four special fibres form one
orbit. But the action of o on P} is of order 2 and this gives us a
contradiction. 0
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Remark 1. A computational proof of Theorem 7 was given by J.-P.
Serre.

To summarize one can prove the following result (see [2]).

Theorem 11. An element of order p? not conjugate to a projective
transformation exists only if p = 2. Assume that k is algebraically
closed. An element of order 4 is either conjugate to a projective trans-
formation, or conjugate to an element realized by a minimal automor-
phism of a conic bundle, or a Del Pezzo surface of degree 1.

For the completeness sake let us add that elements of order p not

conjugate to a projective transformations occur for any p. They can
be realized as automorphisms of conic bundles, and if p = 2,3,5 as
automorphisms of Del Pezzo surfaces.

1.

2.

3.

7.

8.

9.
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TOWARD RESOLUTION OF SINGULARITIES FOR ARBITRARY
CHARACTERISTICS

HIRAKU KAWANOUE

1. INTRODUCTION
We work over an algebraically closed field k = k.

Our theme is resolution of singularities for a variety X/k. As is well known, resolution
of singularities exist in the following cases:
e chark =0,¥Yd =dimX
’64 Hironaka,
’89 Villamayor (simplification)
’91 Bierstone-Milman  (simplification)
e chark=p>0,¥d <3
66 Abhyankar (Vp >3!=0),
’07 Cossart-Piltant  (d =3, p=2,3,5)
and it is open problem for the case of chark = p > 0 and Vd > 4.
Our goal is to give constructive proof for the existence of resolution of singularities for
the case of Vp = chark and Vd = dim X.

We introduced the Idealistic Filtration Program (IFP) for this goal. Here we present
the introduction of the idea of IFP.
This is joint work with Kenji Matsuki.

2. REeVIEW FOR char k = 0 APPROACH

We review briefly the known algorithm for resolution in characteristic O, after Villa-
mayor and Bierstone-Milman. We only deal with the case with no exceptional divisors, for
simplicity.

One of major approaches for resolution of singularities is to give embedded resolution.
Namely, for pair (X c¢ M), where M is a nonsingular variety and X is a closed subset of M,
we construct

f: M~ — M: sequence of blowups along nonsingular centers

such that

(1) fisisomorphic over M \ X

(2) f~'(X) is a simple normal crossing divisor.
It is well known that the existence of resolution of singularities is deduced from the exis-
tence of “canonical” embedded resolution.

In the known approach for resolution in characteristic 0, they construct embedded reso-
lution along the following strategy:
e For each closed point P € M, attach the invariant invp.
1
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e Blowup along the maximal locus of invariant, and see the decrease of invariant
after blowup.

The invariant invp is of the form

invp = (o, 1, ..., s, ) (; € Q),
and y;’s are defined inductively as follows:

(0) Put Ry = Oy p and by = 1. Let Iy C Ry be the defining ideal of X at P € M. We
regard the triplet as the initial data. We denote the multiplicity at P
by ordp and define ’ o = ordp(ly)/ by ‘

(1) We denote the set of all derivations d: R — R over k as Der(R). For anideal J/ C R,
we define an ideal D(J) C R as

DJ=J+(0g|geJ, d¢€Der(R)).

By definition of ordp(ly), we can find fy € D U0~1(];) with ordp(fy) = 1. Fix
one such fy € R and put

T —i bifi
Ry = Ro/foRo, by =ordp(Ip)!, Iy = > (D™ 0i(p))""

0<i<ordp(ly)

Now we obtain new data | (I; C Ry, by) | We define | u; = ordp(l1)/b; ‘

(2) Do the same routine as in (1). Namely, take f; € D"*UD-1(1}) with ordp(f;) = 1,
and put

wantt-ig g )2
Ry=Ri/fiRi, by =ordp(I) = ) (D)™

O<i<ordp(l})

We have data| (I; C R,, b,) | and define ’ Hp = ordp(l) /by ‘
(3) Repeat this procedure until 7;,; = (0).

Remark.

(1) The procedure presented above does depend on the choice of f;’s. Nevertheless, y;’s do
not depend on this ambiguity, and thus invariant is well-defined.

(2) H = V() is called a hypersurface of maximal contact (abbreviated simply as “maximal
contact” in the rest of this article) of X at P. A maximal contact is a kind of nonsingular
local hypersurface, but we do not give here its precise definition. One of the feature of a
maximal contact is the following:

{Q € M | ordp(lp) > ordp(lp)} C H near P.

The data (I; C Ry, b;) is regarded as the information of the left hand side in the above
equation. In fact, we have

{Q € M | ordg(lp) > ordp(lp)} = {Q € H | ordp(l}) = by},

which yields the scheme for “induction on dimension” in characteristic O case.

In the case of positive characteristic, it is known that a maximal contact does not exist
in general. This is the main hurdle when we try to apply the known algorithm to the case
of positive characteristic.

In IFP, we generalize the object. In the known algorithm, main object is the pair (I, b)
with an ideal I and rational number b. We generalize this notion and define idealistic fil-
tration I, introduced in the next section. By analyzing this idealistic filtration algebraically,
we can find the substitute of maximal contact, called LGS.
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known case IFP case
object pair (1, b) idealistic filtration I
local hypersurface | maximal contact LGS of I

3. IDEALISTIC FILTRATION

We introduce the idealistic filtration, the main object of IFP.

Let R be a k-algebra. For a subset ] C R X R of R X R, we denote the level a set of J as
J,. Namely,

Jaz{f€R|(f9a)€J}~

Definition. A subset I ¢ R X R is called an idealistic filtration on R if 1 satisfies the
following conditions:

1) Ip =R.

(2) I, is an ideal of R.

(3) Ialb C ]Ia+b~

@ I,oI, (a<hb).

Remark. We interpret “f € I,” as the information “ordp(f) > a”.

Definition. For a subsetJ C R X R, We define the support of J as
dp(J,
Supp(J) = {P € maxSpec(R) | inf ordpa) 1}
a> a

Definition. For a subset J] € R X R, the minimum idealistic filtration containing J is called
the idealistic filtration generated by J and denoted as G(J).

We introduce the saturation of idealistic filtration to obtain much information for reso-
lution problem.

Definition. Let I be an idealistic filtration on R. We denote the set of differential operators
of degree < t on R over k as Diff ,(R/k).
We say [ is D-saturated if the following condition holds:
01,) cl,., foranyte Zsy,d € Diff,(R/k) and a € R.

The minimum D-saturated idealistic filtration containing I is called the D-saturation of
I, and denoted as D(I).

Remark. “A differential operator d of degree < t on R over k” is a k-linear map 0: R — R
characterized by “generalized Leibnitz rule”

D =D Es\rd(Fr) = 0,

TcS
where S = {0,1,...,1}, F; = [1; fi and f;’s are arbitrary elements in R. One can find in
EGA IV §16 more detailed account.

From now on, replacing I by D(I) if necessary, we always deal with only D-saturated
idealistic filtrations. In the next section, we analyze D-saturated idealistic filtration and
give the definition of LGS.
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4. LEADING GENERATOR SYSTEM

We introduce the notion of LGS, substitute of maximal contact in any characteristics.

We restrict our attention to the local situation. Thus, in the rest of this article, we assume
the following conditions unless specified:
o R =(R,m)=0Oypisalocal ring at P € M, where M is a nonsingular variety and

P € M is a closed point.

e [ is a D-saturated idealistic filtration on R.
ordp(l,)

a

e We assume u(I) > 1, where u(I) = infyep, . In other words, we assume

P e Supp(D).

First we introduce the leading algebra L(I).

Definition. For n € Zs, let ,: R — R/m"™*! be the natural projection. Since u(I) > 1, we
have 7,,(I,,) ¢ m". We define the leading algebra L(I) of T as

L) = EB mo(L,) € Gr(R) = @ mmt

neZsg

In our setting, it is clear that the graded ring Gr(I) is isomorphic to a polynomial ring
over k, i.e. Gr(R) = k[Y]. Therefore L(I) corresponds to a graded k-subalgebra L C k[Y].
Since [ is D-saturated, we also see that L is stable under differential operations. That is, we
see

OytL c L (YI: multi-index),

where Ay is defined by the formula 8y, Y’ = (f)Y’ -
Now we face the following question:

Let L c k[Y] be a graded k-subalgebra which is stable under differential
operations. What can we say on such L?

In fact, in characteristic 0, L is generated by homogeneous part S| C S of degree 1. More-
over, if P € X ¢ M and I = D(G(Ix X {ordp(Ix)})), non-zero elements of S| correspond
to maximal contact of X. It is important nature of maximal contact if one try to define
invariant, since it is necessary to eliminate ordp(Iy) part to detect higher order ui, s, . . . .
Therefore, the substitute of maximal contact should correspond to generators of L(I) as
k-algebra.

In positive characteristic case, we have the following result:

Proposition (Hironaka-Oda). Assume chark = p > 0. Let L C k[Y] be a graded k-

subalgebra stable under differential operations. Then, there exist integers N, eq,...,eN €
Zso and homogeneous elements fi,..., fy € k[Y1i of degree 1 such that fi,..., fy are
k-linearly independent and { fl"7 L f§ " generates L as a k-algebra.

Remark. As stated above, generators of L live in several degree p-th power parts. In
characteristic 0 case, we should regard p = co. Then, all elements of degree plwithi >0
disappear, and generators only appear at degree p° = 1 part.

By virtue of the above proposition, we define LGS.

Definition. The representative H c I of generators of L(I), in the shape of above proposi-
tion, is called a leading generator system (LGS) of 1. By definition,

H={th,p")|1<i<N}cl, h= fi”ei + (higher order part)
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Remark.

(1) Note that LGS is not unique.

(2) If ¢; > 0, h; defines a singular local hypersurface. This is big difference to the original
maximal contact.

5. PAIRED INVARIANTS

We introduce invariants o~ and ™, which are necessary to translate the known algorithm
to IFP.

5.1. Framework. In the known algorithm for characteristic O case, we repeat the pro-
cedure of “restrict data to maximal contact H (= low dimensional ambient space)” and
“estimating order on H”.

object (lo,bo) (L1,b1) -+ U, b)) (0,D441)
ambient space M o H; -+ DH, DHy
(higher) order Ho Ui ‘e Uy 00

Initial data is a pair (Iy, by) = (Ix, 1) on M, and invariant is

inVP = (llOa/Jl"~ _’IL[[’OO).

In IFP, we cannot restrict data to low dimensional space since LGS may give singular
local hypersurfaces. Therefore, we continue to stay the same (original) ambient space.
Instead of restriction, we

e enlarge I and enlarge its LGS, and
e estimate order modulo LGS.

object Io cly --- cI C L
ambient space M M - M M
(higher) order | (oo,uy) -+ -+ (7)) (Ope1,0)

Initial data is an idealistic filtration Iy = G(Ix X {1}) on M, and invariant is

inVP = ((0-0’/16)9 Y (o-fvl*l:)v (O-t+] s OO))

By this translation, we need 2 new invariants o and u~ introduced below:

5.2. Definitions. Settings and notations are same to the ones in §4. We denote an LGS of
Tas

H={(h;,p") |1 <i <N}

Definition (o & “dimension of ambient space”.).
o (D) is defined as an infinite sequence

o) = (09, 01,...) €L,
where each o; is defined by the formula o, = dimR — #{i | ¢; < e}.
In characteristic O case, o(I) is automatically a constant sequence. Namely,

o) = (0g,00,...), 0o =dimR — “# of maximal contact”,
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Definition (¢~ <“order on low dimensional ambient space”.).
We define the order modulo H of an ideal J C R as

N
ordg(J) = sup {n >0|Jcm"+ ZRh,-}.

i=1

w~ (D) is defined by
d (I,
w~(I) = inf ordu(la)
a>0 a

In characteristic O case, all H; = V(h;) and (); H; are nonsingular. Thus ordg(/) is the order
of J, estimated on (; H;.

Proposition. o (I) and u~ (1) are independent of the choice of H.

6. REesurrs

As is already repeated, LGS may define singular local hypersurface, and it causes sev-
eral serious problems. We present 2 results to overcome such problems.

In the known algorithm for characteristic 0 case, the maximum locus of invariant de-
fines the center of next blowup. It is given by the intersection of maximal contact, which
is automatically nonsingular due to the nonsingularity of maximal contact. In IFP case,
the maximum locus of invariant corresponds to the support of last enlarged idealistic fil-
tration I,;;, where u~(I;+1) = oo. The following theorem guarantees the nonsingularity of
maximum locus of invariant in IFP.

Theorem (Nonsingulaity principle). Settings and notations are same to the ones in §4.
Assume u~(I) = co. Then, the following holds:
(1) Lis generated by any LGS H, i.e. G(H) = L
(2) There exist a part of regular system of parameters {g; | 1 <i < N} C R and non-negative
integers {e; | 1 <i < N} C Zsq such that {(gfgi,pe’) | 1 <i<N}isan LGS of L.
Especially, Supp(l) is a germ of nonsingular variety at P € M.

We explain only the last statement. By (1), we have Supp(I) = Supp(H). Choose H
given in (2). Then, Supp(H) = V(g; | 1 < i < N), which is nonsingular at P.

On the nonsingular ambient space, multiplicity is upper semi-continuous. Therefore, so
is the invariant in known characteristic O case. In IFP, as we use the order modulo LGS, we
have to verify the upper semi-continuity of the invariant.

Theorem. Let M = SpecR be a nonsingular affine variety over k, and 1 a D-saturated
idealistic filtration on R. We denote Ip as the localization of 1 at P € M. Then, the pair
(op), u~(Ip)) with lexicographical order defines an upper semi-continuous function on
maxSpec R.
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Construction of surfaces of general type
with », =0 via @ -Gorenstein smoothings

Yongham Lee (F#&ESE)
Sogang University (I AZ2%)

Kinosaki Conference, October 23, 2008

For nonsingular projective curve C, genus C=0 implies
C' is isomorphic to the projective line P*.

The projective plane P> has p,(P*) = 0 and ¢(P?) =
so naturally

Question (by Max Noether)
Is every nonsingular projective surface S with
pg(S) = q(S) = 0 arational surface?

Pg(S) == (K s) geometric genus of S, K¢ canonical divisor
q(S) := h°(g) irregularity of S



Answer: There are counterexamples:

» Enriques surfaces (Enriques, 1894): normalization of singular

sexticin P°, k=0.

(zom122)? + (zox123)? + (Towazs)® + (112023)°

o (22 22 . ™3
+rorizows(vy + 27+ 25+ 25) =0 in P2

« Rationality criterion was proved by Castelnouvo:

Py(X)=h"(X,2Kx) =0,q(X) =0

= X i1s a rational surface.

* Godeaux surface (Godeaux, 1931): minimal surface of general
type with p, = 0, K* = 1 obtained as the quotient of a
smooth quintic surface in P? by a free 7, -action.

e The first example of a surface general type with p, = 0, K* = 2
was constructed by Campedelli in the 30’s as a ramified double
cover of P?:
more precisely as the desingularization of a double cover of P
branched along a reducible curve of degree 10 with 6 [3, 3]
points not lying on a conic.

Nowdays minimal surface of general type with p, = 0, K* = 2

are called (numerical) Campedelli surfaces.



cl, c2, c3 conics, D quartic
c2 C
c2 D

in CP?

Severi conjectured (1949)
pe(X)=0,H(X,Z) =0 = X rational surface ?

Dolgachev constructed elliptic surfaces with

D=0y — LK —0 %=—F
Nowdays these surfaces are called Dolgachev surfaces.

Question

Is there a minimal surface of general type with

pe(X) =0,m(X)=1(or Hi(X,Z) =0)7



Surfaces of general type X with p, =0 (andso ¢ =0 ) in
principle can be classified, since the moduli space has finitely
many components by Giesker’s theorem.

By the Miyaoka-Yau inequality,

X minimal = 1< K7 <9.

In practice not much is known. Surfaces of general type with
geometric genus zero have been studied by algebraic geometers
for a long time and plenty of examples have been constructed,

but at present a classification seems still out of reach.

Surfaces of general type with p, = 0 are important
to classify surfaces of general type, and to study threefolds with a
fibration to a curve.

How does one construct examples?
Mainly two appoaches (classical methods)

* (Godeaux - taking quotients by group actions of known
surfaces (finite quotient methods)

« Campedelli — constructing suitable covers of known surfaces
(covering methods)

Barlow [Invent. Math. 1985] constructed a simply connected
minimal surface of general type with p, = 0, K* = 1 obtained
by a variation of the Godeaux construction, in which the group

has some isolated fixed points.



It was the first and up to 2006 was the only known example
of a simply connected surface of general type with vanishing
geometric genus .

Recently, Bauer, Catanese, and others construct many examples
of surfaces of general type with p, = 0(m; # 1) and gave a
classification that admit an unramified covering which is
isomorphic to a product of curves.

(generalization Beauville’s construction)

It 1s the first systematic way to find many examples of surfaces
of general type with p, = 0.

A 1interesting and hard question concerning these surfaces is the
construction of simply connected examples, which are of great

interest also in the study of differentiable four-manifolds.

X topological 4-manifold
Q: H*(X,Z)x H*(X,Z) - HYX,Z)

(unimodular symmetric bilinear form)

Freedman’s theorem: If 7y (X) =1 then X is uniquely

determined up to homeomorphism by Q.

A simply connected surface of general type with py =0 is
homeomorphic (not diffeomorphic) to a rational surface.



Barlow surface is homeomorphic to P?#8P2.

All known methods seem to be not useful in producing new
simply connected examples and it has long been an open question
whether there exist simply connected surfaces of general type

with , =0, K? > 1.

Y.Lee, J. Park [Invent. Math. 2007] constructed a minimal surface
of general type withp, = 0, K* = 2,7 = 1 by using a new
method.

» Idea from a moduli space
Assume that there is a surface of general type X satisfying the
given numerical invariants y(Ox) = p, — ¢+ 1, K.

Gieseker proved that there is a quasi-projective moduli space M
of X by Geometric Invariant Theory.

dim M > h' (X, Tx) — h*(X, Tx)

Compactify M by adding points corresponding to singular
surfaces at boundary. There is a natural way to do this using
Minimal Model Program of threefolds.

* Idea from Park’s symplectic construction [Invent, 2005]



« Examples are constructed by a new method
( @-Gorenstein smoothings of singular rational surfaces).

* The main example construction goes as follows:
Step 1: choose a special pencil of cubics in P2

A(3line) + u(conic + line)
blows up its base locus —> a elliptic rational surface

Step 2: blows up further
—> 5 disjoints chains of rational curves
—> blown down them to get a singular rational surface X.

Step 1




Step 2

Every singularity of X is of class T, namely it admits a local
Q-Gorenstein smoothing.

— =5

Step 3: Using deformation theory, there is indeed a global
Q -Gorenstein smoothing of X,

a one parameter family X — A of projective surfaces s.t.
the central fiberis X ;

the general fibre X; 1s smooth and projective;

the relative canonical divisor Ky, 18 Q -Cartier.



Xo(five singularities of class T) ~» (deformation to) X,

Step 4:

What properties does X, have?

» By deformation, K%, =2, p,(X;) = q(X;) = 0.

» By configuration of the construction, X, is minimal.

* By configuration of the construction and by using standard
argument of Minor fiber, 7, (X;) =1

Example. (p, =0,K°=1,m = 1)

(N =(-2)=(-2)=(2), (-6)-(-2)-(-2),
(-2)-(-6)-(-2)-(-3), (-4

K2 = -11+12=1



, R=o. W=l (4 Pak, J.%ak, D.Shim)
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Example (pg = 0,K* =2, H(X,Z) = Z)
Lee-Park
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The construction problem,
to find a simply connected surface of general type
with p, = 0and given 1 < K?* < 4, is solved.

Question: Is there a minimal simply connected surface of general

type with p, =0 and 5 < K2 <87

Remark: Similar construction does not work for 5 < K? < 8.
In all constructions, H?*(X,,Ty,) = 0.
H'(X:,Tx,) = 10 — 2K%,.



Symplectic construction should be modified.
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Modified version of Park’s symplectic construction.

Q-Gorenstein deformations

(Xo,0) germ of two-dimension quotient singularity
15t order deformation (local) «» Ty, = Eut, XO(Qﬁ{O, Ox,)

Obstruction space lies in T, = E:;:(,E,)Xﬂ (Q,. Ox,)

X normal projective surface with quotient singularities
1%t order deformation (global) «+ T% = Extg, I (0 NG
Obstruction space lies in T% = Exty, (Q, Oy)

Spectral sequence E5Y = HP(X,T%) = T
HY(X,T%) =0ifi,j > 1
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0— H'(T%) = Ty — H°(Ty) = H*(TY) = T5(X) — 0
0—=T2(X) = T% = H'(T%) =0

Key Part: Ker[H"(Ts) — H*(T%)]

[Wahl], [Manetti] If H*(T%) = 0 then every local deformation
(X0, 0) of the singularities may be globalized.
What condition implies H?*(T%) = 07

Main two technical Lemmas
1. Let V be the minimal resolution of X and /' be the reduced

Exceptional divisors.
H*(Ty(—log E)) = 0= H*(T%) =0

2. From the constructions, our examples satisfy

H*(Ty(—log E)) = 0.



Consider special quotient singularities (singularity of class T)

1) To have a nice smoothing part in the 1%t order deformation
which has no obstruction (local smoothing),

2) To control numerical invariants and to use topological
properties (Milnor fiber) of a general fiber of smoothing .
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If X, isa quotient singularity of type -5 (1,dra —1).
then Xo=Yy/ <o>, Yy:ay— 27 =0.

o (,y,2) = (a6 'y, €%2) € is a primitive r-th root of unity

And there is a Q-Gorenstein smoothing.
X=Y/<o>3A Yoy 2 +t=0
cactsonY via o : (x,y,z.t) = (Ex, 6Ny, %2, 1)
Ky Cartier => Kx Q-Cartier.

There is a d-dimensional @ -Gorenstein smoothing.

Conversely, if there is a Q-Gorenstein smoothing then it is a
RDP or a cyclic quotient singularity of type %(1, dra —1).
ar
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Main Lemma 1
Let V' be the minimal resolution of X and E be the reduced

exceptional divisors.

Then H*(Ty(—logE)) =0= H*(T%) = 0.

Idea (suggested by Manetti)

Let 7V = X. Then 7, Ty = T?( [Burns-Wahl].

0= w1y (—log E) — T?( — A — 0, A supported in the Sing X.

H*(TY) = H*(7, Ty (—log ).
R'n, Tv(=logE) = R*m, Ty (—log E) =0 :

We may assume that X is affine. (0 — Ty (=2Z) — Ty (—log E) = T2 — 0
7 1s effective divisor supported in [’ [Burns-Wahl].

Z sufficiently big ( —Z is m-ample) H(Ty (—Z)) = 0,i > 0.

H'(Tv(~log E)) = H'(T%), H*(Ty(~log E)) = 0.
o' (TB) — () [Laufer] Two dimensional quotient singularity is taut.

Main Lemma 2

From the constructions, our examples satisfy

H*(T3(—log E)) = 0.

Key Lemma 1: V" nonsingular surface, [J s.n.c. divisor ir}/,
f: V' — V blow-up of V' atapointin D. Set D' = f~1(D),.q.
Then h*(Ty:(—log D')) = h*(Ty (—log D)).

Key Lemma 2: Let 7 be a blow-up at two singular points of two nodal curves in
special fibers.

It is enough to prove that
H*(Z,Tz(—=logDz)) =0. Dy = F, + Fy + F 4+ D+ S; + So + Ss.
F; (-4)-curve in special fibers, F’ proper transform of conic,
D f’,g— one (-2)-curve, S; section



Key Lemma 3: It is enough to prove HO(Z, Qy(Kyz+ Fy+ Fy + F + D)) = 0.

H(ZQz(Kz+Fi+F, +F+D))=0C H°(Y,Qy(C + F + D))
C general fiber

H(Y,Qy(C+ F+ D))= H(Y,Qy(3C — E— D))
E line, D+ D' = F fiber

Key Lemma 4: y~ rational elliptic surface. Assume that the elliptic fibration
g:Y — P! isrelatively minimal without multiple fibers.
¢ general fiber of g : Y — P!, Then

HO(P', Qe (k) = HO(Y, Qy (kC)), k > 1.

Thank you for listening



POLARIZED ENDOMORPHISMS ON NORMAL PROJECTIVE
VARIETIES

DE-QI ZHANG

ABSTRACT. This is the summary of the paper [14]. We show that polarized
endomorphisms of rationally connected threefolds with at worst terminal singu-
larities are equivariantly built up from those on Q-Fano threefolds, Gorenstein
log del Pezzo surfaces and P!. Similar results are obtained for polarized en-
domorphisms of uniruled threefolds and fourfolds. As a consequence, we show
conceptually that every smooth Fano threefold with a polarized endomorphism
of degree > 1, is rational.

1. INTRODUCTION

We work over the field C of complex numbers. We study polarized en-
domorphisms f : X — X of varieties X, i.e., those f with f*H ~ gqH
for some ¢ > 0 and some ample line bundle H. Every surjective endo-
morphism of a projective variety of Picard number one, is polarized. If
f=1[Fy:Fr:---: F,):P"— P"is a surjective morphism and X C P"
a f-stable subvariety, then f*H ~ gH and hence f|X : X — X is polar-
ized; here H C X is a hyperplane and ¢ = deg(F;). If A is an abelian
variety and m4 : A — A the multiplication map by an integer m # 0, then
m*%H ~ m?H and hence my4 is polarized; here H = L + (—1)*L with L
an ample divisor, or H is any ample divisor with (=1)*H ~ H. One can
also construct polarized endomorphisms on quotients of P™ or A. So there
are many examples of polarized endomorphisms f. See [16] for the many
conjectures on such f.

In [11], it is proved that a normal variety X with a non-isomorphic polar-
ized endomorphism f either has only canonical singularities with Kx ~gq 0
(and further is a quotient of an abelian variety when dim X < 3), or is unir-
uled so that f descends to a polarized endomorphism fy of the non-uniruled
base variety Y (so Ky ~g 0) of a specially chosen maximal rationally con-
nected fibration X ---— Y. By the induction on dimension and since Y has
a dense set of fy-periodic points yg, y1,... (cf. [2, Theorem 5.1]), the study
of polarized endomorphisms is then reduced to that of rationally connected
varieties I'y, as fibres of the graph I' = I'(X/Y") (cf. [11, Remark 4.3]).

The study of non-isomorphic endomorphisms of singular varieties (like I'y,
above) is very important from the dynamics point of view, but is very hard

1991 Mathematics Subject Classification. 14E20, 14J45, 14E08, 32H50.
Key words and phrases. polarized endomorphism, uniruled variety, rationality of variety.
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2 DE-QI ZHANG

even in dimension two and especially for rational surfaces; see [9] (about 150
pages).

We consider polarized endomorphisms of rationally connected varieties
(or more generally of uniruled varieties) of dimension > 3. Theorem 1.1 —
1.8 below are our main results.

Theorem 1.1. Let X be a Q-factorial threefold having only terminal sin-
gularities and a polarized endomorphism of degree ¢ > 1. Suppose that X
is rationally connected. Then we have :
(1) There is an s > 0 such that (f8>*|N1(X)
(2) Either X is rational, or —Kx is big.
(3) There are only finitely many irreducible divisors M; C X with the
Litaka D-dimension (X, M;) = 0.

= ¢°id.

Theorem 1.1 (3) apparently does not hold on an abelian variety A with a
subtorus of codimension one, though the multiplication map m 4 is polarized
as mentioned above. Neither it holds for X = S x P!, where S is a rational
surface with infinitely many (—1)-curves (the blowup of nine general points
of P? is such S as observed by Nagata).

Theorem 1.1 (1) above strengthens (in our situation) Serre’s result [12]
on a conjecture of Weil (in the projective case): (Serre) If f is a polar-
ized endomorphism of degree ¢3™X > 1 of a smooth variety X then every
eigenvalue of f*|N1(X) has the same modulus q.

The proof of Theorem 1.2 below is conceptually done. In a recent paper
[15], we have removed the polarizedness assumption in Theorem 1.2.

Theorem 1.2. Let X be a smooth Fano threefold with a polarized endomor-
phism of degree > 1. Then X is rational.

A kIt Q-Fano variety has only finitely many extremal rays. A similar
phenomenon occurs in the quasi-polarized case.

Theorem 1.3. Let X be a Q-factorial rationally connected threefold having
only Gorenstein terminal singularities and a quasi-polarized endomorphism
of degree > 1. Then X has only finitely many K x-negative extremal rays.

We expect a possible application of Theorem 1.4 below (see Theorem 1.7
for a more detailed version) to the Dynamic Manin-Mumford conjecture for
(X, f) formulated by S. -W. Zhang in [16, Conjecture 1.2.1]. This conjecture
for (X, f) is essentially equivalent to that for (X, g,) because f~!, as seen
in Theorem 1.7, preserves the maximal subset of X where the birational
map X ---— X, is not holomorphic.

Further, X, is better to be dealt with because it has a fibration structure
preserved by g,.. The existence of such a fibration 7w : X, — Y is guaranteed
when X is uniruled by the recent development in MMP.

Theorem 1.4. Let X be a Q-factorial n-fold, with n € {3,4}, having only
log terminal singularities and a polarized endomorphism f of degree q'* > 1.



POLARIZED ENDOMORPHISMS ON NORMAL PROJECTIVE VARIETIES 3

Let X = Xy--—Xq--+ -—-— X, be a composition of divisorial contractions
and flips. Replacing f by its positive power, we have:
(1) The dominant rational maps g; - X; --— X; (0 < i <r) (with go = f)
induced from f, are all holomorphic.
(2) Letm: X, —Y be an extremal contraction with dimY < 2. Then g,
1s polarized and it descends to a polarized endomorphism h:Y —Y
of degree q™Y with mog, =hom.

The claim in the abstract about the building blocks of polarized endo-
morphisms, is justified by the remark below.

Remark 1.5.

(1) The Y in Theorem 1.4 is Q-factorial and has at worst log terminal
singularities.

(2) Suppose that the X in Theorem 1.4 is rationally connected. Then Y
is also rationally connected. Suppose further that X has at worst terminal
singularities and (dim X, dimY) = (3,2). Then Y has at worst Du Val
singularities by [8, Theorem 1.2.7]. So there is a composition ¥ — Y of
divisorial contractions and an extremal contraction Y — B such that either
dimB = 0 and Y is a Du Val del Pezzo surface of Picard number 1, or
dim B =1andY — B = P! is a P'-fibration with all fibres irreducible. After
replacing f by its power, h descends to polarized endomorphisms A : Y — Y,
and k : B — B (of degree ¢@™5); see Theorems 1.6.

(3) By [2, Theorem 5.1], there are dense subsets Yy C Y (for the Y in
Theorem 1.4) and By C B (when dim B = 1) such that for every y € Yy
(resp. b € Bp) and for some r(y) > 0 (resp. 7(b) > 0), g"®|W, (resp.
hr(®) ]f/b) is a well-defined polarized endomorphism of the Fano fibre.

We remark that Noboru Nakayama has produced many examples of po-
larized f on abelian surfaces which are not scalar. The result below shows
that this happens only on abelian surfaces and their quotients.

Theorem 1.6. Let X be a normal projective surface. Suppose that f : X —
X is an endomorphism such that f*P = qP for some q > 1 and some big
Weil Q-divisor P. Then we have:
(1) f is polarized of degree q*.
(2) There is an s > 0 such that (f*)*|Weil(X) = ¢®id unless X is Q-
abelian with rankWeil(X) € {3,4}.

More generally, we prove the two theorems below. Theorem 1.7 below
includes Theorem 1.4 as a special case.

Theorem 1.7. Let X be a Q-factorial n-fold, with n € {3,4}, having only

log terminal singularities and a polarized endomorphism f of degree ¢" > 1.

Let X = Xy-—Xq--- ---— X, be a composition of divisorial contractions
and flips. Replacing f by its positive power, (I) and (II) hold:

(I) The dominant rational maps ¢g; : X;——X; (0 < i < r) (with

go = f) induced from f, are all holomorphic. Further, g;l preserves
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each irreducible component of the exceptional locus of X; — X1
(when it is divisorial) or of the flipping contraction X; — Z; (when
X;— X1 = XZT" is a flip).

(I1) Let w: W = X, — Y be the contraction of a Ky -negative extremal
ray R>o[C], with dimY < n—1. Then g := g, descends to a surjective
endomorphism h: Y — 'Y of degree ¢3™Y such that

mog=hom.

For all 0 < i <, all eigenvalues of gf|N*(X;) and h*|N*(Y) are of
modulus q; there are big line bundles Hx, and Hy satisfying

9iHx, ~qHx,, h"Hy ~ qHy.

Suppose further that either dimY < 2 or p(Y) = 1. Then Hy and
Hy can be chosen to be ample and g and h are polarized.

The contraction 7 below exists by the MMP for threefolds.

Theorem 1.8. Let X be a Q-factorial rationally connected threefold having
at worst terminal singularities and a polarized endomorphism of degree >
1. Let X ---— W be a composition of divisorial contractions and flips, and
m: W — Y an extremal contraction of non-birational type. Suppose either
dimY > 1, ordimY =0 and W is smooth. Then X is rational.

The difficulty 1.9. In Theorem 1.4, if X — X is a divisorial contraction,
one can descend a polarized endomorphism f on X to an one on Xi, but
the latter may not be polarized any more because the pushfoward of a nef
divisor may not be nef in dimension > 3 (the first difficulty). If X ---— X is
a flip, then in order to descend f on X to some holomorphic f; on X, one
has to show that a power of f preserves the centre of the flipping contraction
(the second difficulty). The second difficulty is taken care by a key lemma
where the polarizedness is essentially used.

The question below is the generalization of Theorem 1.2 and the fa-
mous conjecture: every smooth Fano n-fold of Picard number one with a
non-isomorphic surjective endomorophism, is P" (for its affirmative solution
when n = 3, see Amerik-Rovinsky-Van de Ven [1] and Hwang-Mok [4]).

Question 1.10. Let X be a smooth Fano n-fold with a non-isomorphic
polarized endomorphism. Is X rational ?

For the recent development on endomorphisms of algebraic varieties, we
refer to Amerik-Rovinsky-Van de Ven [1], Fujimoto-Nakayama [3], Hwang-
Mok[4], S. -W. Zhang [16], as well as [10], [13].
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STABLE POINTS ON STACKS

ISAMU IWANARI

1. APPROXIMATING ALGEBRAIC STACKS TO SCHEMES OR ALGEBRAIC SPACES

A coarse moduli space for an algebraic stack! is an algebraic space that is the closest
to the algebraic stack. First let us recall the definition of a coarse moduli space:

Definition 1.1. Let X be an algebraic (Artin) stack over a scheme S. A coarse moduli
map for X' is a morphism

T: X —= X

over S such that

(1) X is an algebraic space over S,

(2) 7 is universal among maps to algebraic spaces,

(3) for any algebraically closed S-field K, w gives rise to a bijective map from the set
of the isomorphism classes of X'(K) to the set of K-valued points X (K).

Informally speaking, we have the rough slogan:

Algebraic stack = Groupoid valued sheaf + Algebraically Geometric structures,

Scheme or Algebraic space = Set values sheaf + Algebraically Geometric structures.

From this point of view, it is clear that the coarse moduli space X for an algebraic
stack X loses the information arising from the non-trivial morphisms which belong to
groupoids. For example, in general, the category of sheaves on X is quite different from
that of X. However, in the treatment of algebraic stacks we often need the existence of
a coarse moduli space. Namely, the proof sometimes relies on the existence of a coarse
moduli space. The typical use can be found in the proof of Riemann-Roch theorem
for Deligne-Mumford stacks due to Toén ([13]). Thus, coarse moduli spaces provide
useful bridges between the geometry of stacks and schemes and algebraic spaces.

Now we will try to construct a coarse moduli space for a given stack X'. If we ignore
“Algebraically Geometric structures” in the above slogan, we easily find the way: Take
a connected component of groupoids. Namely, view X as a functor

X @ (Schemes)s — (Groupoids)

and define m(X)(S) = mo(X(S)) for any scheme S. In other words, mo(X)(S) is the
set of isomorphism classes of groupoids X(S). A sheafification after this truncating
procedure gives rise to a sheaf X on the site (Schemes)s. This sheaf X is the best
approximation of X in the category of sheaves on (Schemes)s. The picture of this
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construction is clear and easy to understand since it is nothing but a truncation.
However, if one takes account into “Algebraically Geometric structures”, then the
problem becomes very subtle and difficult. To understand this, let us recall the known
class of algebraic stacks which have their coarse moduli spaces, and examples which
do not. The theorem we first recall is a well-known result due to Keel and Mori ([9]).

Theorem 1.2 (Keel-Mori). Let X be an algebraic stack locally of finite type over a
noetherian base scheme S. Let IX — X be the first (or second) projection in the
diagram

XXXXSXX X
X XXSX.

Suppose that IX — X is a finite morphism. Then there exists a coarse moduli map
Tm: X —X

such that 7.0y = Ox, and 7 is proper and quasi-finite. Moreover X has finite diago-
nal, then X is separated.

The stack IX — X is called the inertia stack of X. This stack parametrizes the
automorphisms of objects in X. Namely, for any « : T — X', the fiber product
pro: IX Xy T — T represents the functor

Autr(a) : (T-schemes) — (groups)

which to any f : 7" — T associates the group Auty(«)(7”) := {automorphisms of f*a}.
The inertia stack can be viewed as a kind of the free loop space for X. The condition
I1X — X is a finite morphism, is equivalent to imposing that every object in X has
a finite automorphism group scheme. In characteristic zero, algebraic stacks whose
inertia are finite, are always Deligne-Mumford.

Next we consider examples of stacks which do not admit coarse moduli spaces.
Examples we will keep in mind are the moduli stack of vector bundles on an algebraic
variety, and more generally, the moduli stack of G-bundles on the algebraic variety,
where GG is an algebraic group. Another example is the moduli stack of objects of
derived category of coherent cohomology on a scheme. What happen on an algebraic
stack which does not admit a coarse moduli space? In order to make an observation,
consider the open immersion

G,, — A!

of a torus into an affine line over the complex number field. It gives rise to the natural
action of G, on A'. Take the quotient stack [A'/G,,]. It is the moduli stack of pairs
(L,s), where L is an invertible sheaf A!, and s is a section on Al'. Since we have
two G,,-orbits on A, there are two closed points on [A'/G,,]. On the other hand,
[A'/G,,] is connected, thus if we assume that [A!/G,,] has a coarse moduli space, then
it is connected and has exactly two closed points. But such a complex analytic space
does not exists, and we conclude that [A'/G,,] does not have a coarse moduli space.
Put another way, notice that the dimension of the stabilizer at the origin on A' is
positive whereas the other points have 0-dimensional stabilizer groups. This collapses
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the “Algebraic Geometric structures” (see [11, page 6]). Therefore if one hope that
an algebraic stack X has a coarse moduli space, then objects in X should have the
equidimensional automorphisms, that is, /X — X is equidimensional. We can ask
the converse: if IX — X is equidimesional, then does X have a coarse moduli space?
Unfortunately, this problem is quite subtle. Even in the case where IX — X is quasi-
finite, we (at least the author) do not know whether or not X has a coarse moduli
space. Another point we should note concerns the problem of the finite generation of
invariant rings.

2. INTRINSIC STABILITY ON ALGEBRAIC STACKS

In the proceeding section, we discuss coarse moduli spaces for algebraic stacks, es-
pecially the example of an algebraic stack that does not admit a coarse moduli space.
The theory dealing with the last problem was essentially proposed by Mumford in the
case X = [X/G| where X is an algebraic scheme, and G is a reductive group acting
on X, that is, Geometric Invariant Theory (GIT) ([11]). Suppose that a reductive
group G acts on an algebraic scheme X. Mumford defined pre-stable points on X with
respect to the action of GG, and proved that G-orbit space of pre-stable points has a
structure of a scheme called the geometric quotient Y (see [11]). It is rephrased that
the quotient stack [X (Pre)/G] has a “coarse moduli scheme”

[X (Pre)/G] — Y.

Thus, from our point of view, Mumford” GIT provides a machinery that chooses an
open substack of [X/G] which admits a coarse moduli (if we further take a suitable
line bundle on [X/G], then we have a polarized coarse moduli of the open substack of
stable points). Inspired from Mumford’s theory and Keel-Mori theorem, we want to
propose the idea:

Introduce intrinsically “stability” on a general Artin stack X so that
stable points A'® form an open substack which admits a coarse moduli
map X° — X.

We first remark that we want to define “intrinsically stable points” on X by using
local properties on X, and thus we do not take account into the global flavour. At
this point, the reader might begin to object that if we do not use the global aspects
on X (such as linearized line bundle in GIT), the resulting coarse moduli space is not
a good space, for example, often not separated. Here we would like to call the reader’s
attention to the observation: Keel-Mori theorem, which we want to take a position
to generalize, tells us no global information of the coarse moduli space. Recall that
Theorem 1.2 says that if X’ has finite diagonal, then the coarse moduli space X for
X is separated. Nevertheless, if we assume that the existence of a (not necessarily
separated) coarse moduli space X, then the proof of the separatedness of X is quite
formal. Of course, the price is that Keel-Mori theorem tells us very little about how to
prove that X is separated. In my opinion, one of the reasons why Keel-Mori theorem
is useful, is that the finiteness of /X — X is a local condition on X, and the global
aspect should be treated in the next step by case-by-case approaches.

In [8], we introduced some stabilities which have relations described as follows:

(GIT-like p-stable) C (p-stable) D (strong p-stable)
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In this note, we discuss and focus on GIT-like stability, which has some remarkable
properties. Also, we briefly mention strong p-stability.

Definition 2.1 (GIT-like p-stable point). Let X be an algebraic stack locally of finite
type over a perfect field k. Let p be a closed point on X. The point p is GIT-like p-
stable if there exists an effective versal deformation £ € X' (A) for p (see Remark 2.2),
which has the following properties:

(a) The special fiber of the automorphism group Autgpeca(§) — Spec A is linearly
reductive.

(b) If I denotes the ideal generated by nilpotent elements in A, then there exists
a normal subgroup scheme F of Aut(§) x4 (A/I) — Spec A/I such that the
following conditions hold: (i) F is smooth and affine over Spec A/I, and whose
geometric fibers are connected, (ii) the quotient Aut(&) x 4 (A/I)/F is finite over
Spec A/I, and (iii) for any two morphisms «, 3 : T = Spec A/I such that a*¢ =
B¢, we have o F = §*F in Autr(a*f) = Autr(5*€).

Remark 2.2. (i) The letter “p” in the terms GIT-like p-stable, p-stable.. is the
initial of pointwise.
(ii) We say that £ € X(A) is an effective versal deformation for a closed point p if
(a) A is a complete noetherian local k-ring whose residue field is of finite type
over k,
(b) the special fiber of € : Spec A — X lies over p,
(¢) the corresponding morphism Spec A — X is formally smooth, i.e., it satisfies
the usual lifting property (cf. [8], [2]).
(iii) Recall the definition of linearly reductivity. An algebraic group G over k is linearly
reductive if the functor

(G-vector spaces over k) — (k-vector spaces) M +— MY

is exact. In characteristic zero, an algebraic group is linearly reducitve if and only
if it is a reductive group.

(iv) GIT-like stability depends only on the reduced algebraic stack X;eq associated to
X.

(v) To verify that a given group scheme G over a reduced scheme S is smooth (over
S), it is enough to prove that G — S is equidimensional, and all fibers are smooth.

(vi) The condition (iii) in (b) in Definition 2.1 is a natural compatibility condition.

(vii) Our definition fits in with Artin’s representability criterion ([3]) which is desribed
in terms of deformation theory. Of course, our formulation is influenced by Artin’s
works.

(viii) A closed point on X is said to be a strong p-stable point if there exists an effec-
tive versal deformation £ € X (A) such that there exists a flat normal subgroup
scheme F C Aut(§) such that Aut(¢)/F — Spec A is a finite morphism, and the
compatibility condition as in (iii) in Definition 2.1 holds.

To give a feeling for GIT-like p-stability defined above, we will consider the following
example. The relationship with GIT will be discussed in the next section. Let G be a
connected reductive group over C and C' a connected smooth projective curve over C.
Let M be the moduli algebraic stack of Higgs G-bundles on C'. The automorphism
of every Higgs G-bundle (E,¢ € I'(C,8g x¢ Qx)) contains the center of G. The
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center Cent(G) is a reductive group and for any family (E, ¢) of Higgs G-bundle over
C x¢ T, Cent(G) x¢ T is a normal subgroup in Auty((E, ¢)). A Higgs bundle (E, ¢) is
GIT-like p-stable (in other words, the corresponding point on M is GIT-like p-stable)
if and only if an effective versal deformation (£,®) € M(A) for (E, ¢) has a finite
automorphism group scheme modulo Cent(G) X¢ Spec A.

Now we are ready to state the existence theorem of coarse moduli spaces for GIT-like
p-stable points ([8]).

Theorem 2.3. Let X be an algebraic stack locally of finite type over a perfect field.
Then the open substack X9° of GIT-like p-stable points has a coarse moduli map

m: X — X.
Moreover m is universally closed morphism and of finite type.

The construction takes three steps:

e First Step. Let & be the reduced stack associated to X'. Applying the algebraiza-
tion, we may assume that the inertia stack IX; — X, contains a smooth and affine
subgroup stack F C [AXj, whose geometric fibers are connected. Namely, X = A9,
Then the rigidification technique removes the automorphisms in F, and we obtain the
“rigidified” stack X{'™.

e Second Step. By our assumption, X3¢ has a finite inertia stack IX;¢ — X', Then
by Keel-Mori theorem, there exists a coarse moduli space X for Xgig. The composite
Xy — Xéig — X is also a coarse moduli map for Xy. (The first and second steps are
rather formal parts in our strategy.)

e Third Step. Now we want to construct a coarse moduli space X for X by deforming
Xy as follows:

XO*)X
|
Xy = X

At this point, there are some points we should note. Even if an algebraic stack )
and the associated reduced stack ) have coarse moduli spaces Y and Y, the natural
morphism Yy — Y is not necessarily a deformation. To make things simple, assume
that Y = [Spec A/G], Vo = [Spec(A/I)/G], Yo = Spec(A/I)¢ and Y = Spec AY, where
G is an algebraic group and [ is a nilpotent ideal of A. If G is linearly reductive, then
A% — (A/DY is surjective, thus Yy — Y is a deformation as expected. However, if
G is unipotent, then it happens that AY — (A/I)% is not surjective. Note (A/I)¢ =
['(Vo, Oy,) and A% = T'(Y, Oy). Thus, we need to verify that after étale localization on
Xo, I'(X,0x) — (XD, Oy,) is surjective. It is accomplished by constructing the “étale
local quotient structure” of X'. In this part, we essentially use the linearly redutivity
of automorphism groups. Finally, developing the deformation theory of coarse moduli
spaces, we construct the desired deformation Xy — X.

3. COMPARING WITH GEOMETRIC INVARIANT THEORY

We assume that the base field £ is algebraically closed of characteristic zero. In this
section, we discuss the relationship between our GIT-like p-stability and Geometric
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Invariant Theory due to Mumford ([11]). Let X be an algebraic scheme over k. Let
G be a reductive group scheme over k. Let 0 : G X X — X be an action on X. Let
X (Pre) € X be the open subset of X, consisting of pre-stable points in the sense of
[11, Definition 1.7]. The relation is described by

Theorem 3.1. Let [X(Pre)/G] be the open substack of [X/G]. Let

[X/aG1”
be the open substack consisting of GIT-like p-stable points on [X/G]. Let S be the
mazimal open substack of [X/G|, admitting a coarse moduli space that is a scheme.

(The open substack S C X is characterized by the following universality: IfU C X has
a coarse moduli space which is a scheme, then U C S.) Then we have

(X (Pre)/G] = [X/G)”° N S.

From this evidence, we can say that GIT-like p-stability is an intrinsic generalization
of the local part of Mumford’s GIT. (Pre-stability in GIT is a local part of GIT.)

Let us briefly explain how one can view pre-stable points in the sense of GIT as
GIT-like p-stable points. Let x € X be a closed pre-stable point. By the definition,
there exists a G-invariant affine neighborhood U of z, such that the action of G on U
is closed. That is to say, every orbit is a closed set in U. Notice that G acts also on
the reduced scheme U,oq associated to U (because the base field is perfect). Clearly,
the action of G on U.,.q is closed. Let

Stab — U.eq

be the stabilizer group scheme defined to be the top horizontal arrow in the cartesian
diagram

(G X Ured) XUdeUer Ured Ured
\L ldiagonal
(var2)
G x Ured Ured X Ured

where 0 : G X Upeq — Ureq is the action. The group scheme Stab — U,q is a (non-
flat) equidimensional group scheme over U,eq. According to Matsushima’s theorem,
we see that each fiber of Stab — U, is a reductive algebraic group. Let F be the
identity component of Stab. Then by SGA3 ([4]), F is smooth and affine over Ueq,
whose geometric fibers are connected. Moreover it can be shown that Stab/F is a
finite scheme over Ueq. Since the completion of the local ring Ox , gives rise to a
versal deformation of the corresponding point on [X/G], thus we see that the filtration
F C Stab over U, yields the structure of a GIT-like p-stable point.

Remark 3.2. In Mumford’s GIT, it is essential to have the quotient of a scheme by a
reductive group. However, an algebraic Artin stack is not necessarily of the quotient
form [X/G], where X is a scheme (or more generally algebraic space), and G is a
group scheme. In practice, it is quite hard to prove that a given algebraic stack is a
quotient stack even if it has (cf. [7]). Moreover, it is hopeless to control the quotient
structure. (In a sense, a quotient form should be viewed as a good coordinate.) On
the other hand, our stability is defined in the intirisic way, thus it seems to be flexible
and convenient, especially in the case where stacks have modular interpretations.
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4. HIDDEN PROPERNESS OF ALGEBRAIC STACKS: AN APPLICATION

In the final section, we will discuss the finiteness of coherent cohomology. In partic-
ular, we will propose “hidden properness” of algebraic (Artin) satcks. First we would
like to remind the definition of proper morphisms between algebraic stacks.

Definition 4.1 ([10]). Let f : X — )Y be a morphism of algebraic stacks. The mor-
phism f: X — ) is said to be proper if the following conditions hold:

(i) f is universally closed map,
(ii) f is of finite type,
(iii) f is separated, i.e., the diagonal X — X xy X" is proper.

We have a finiteness of coherent cohomology for algebraic stacks:

Theorem 4.2 (Laumon, Moret-Bailly, Faltings, Olsson, Gabber). Let f : X — ) be
a proper morphism of locally noetherian algebraic stacks over locally noetherian base
scheme. Let € be a coherent sheaf on X. Then for any i > 0, the sheaf Rf'E is
coherent on Y.

The finiteness theorem of coherent cohomology for proper algebraic stacks has been
proved by Laumon and Moret-Bailly under some restrictive hypotheses (cf. [10, (15.6)]).
Later, Faltings proved the finiteness theorem for general proper morphisms via a sur-
prising method of rigid geometry (cf. [5]). Recently, Olsson-Gabber proved Chow’s
lemma for algebraic stacks and reproved the finiteness theorem (cf. [12]).

Now we would like to reader’s attention to:

The separatedness for algebraic (Artin) stacks is a quite strong assump-
tion.

To understand it, let f : X — ) be a separated morphism. For simplicity, suppose that
Y is a noetherian affine scheme Spec A. (The proof of the finiteness can be reduced
to the case ) = SpecA.) Let o, : Spec K — X be morphisms where K is an
algebraically closed field. Then the fiber product of

Spec K
o
X —=X xu,u X
is the algebraic space Isom(«, (3), which represents the functor
(K-schemes) — (sets)

sending h : T — Spec K to the set Homy(r)(h*a, h*3). The algebraic space Isom(a, 3)
is empty or isomorphic to the proper algebraic group Aut(a) k. (Note that Isom(a, 3) —
Spec K is proper.) The identity component of the reduced (smooth) algebraic group
associated to Aut(a),k is a (possibly 0-dimensional) abelian variety. Thus, if X' has
an object whose automorphism is a positive-dimensional affine group scheme, then
X is not separated, in particular, not proper. This causes one of main drawbacks of
algebraic stacks. Also, this observation tells us that if X is separated over A, then X
practically has finite diagonal. Consequently, in such a situation, if X is proper over
A, then it has a proper coarse moduli space (by Keel-Mori theorem).
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We are now in the position to state our finiteness.

Theorem 4.3. Let X be an algebraic stack of finite type over a field k. Suppose that
all closed points are GIT-like p-stable, and a coarse moduli space for X is proper k.
Let € be a coherent sheaf on X. Then for any i > 0, the cohomology H* (X, E) is finite
dimensional. Moreover, (of course) the relative version of this statement holds.

Clearly, our finiteness does not contain Theorem 4 because X in Theorem 4.3 is
supposed to have linearly reductive automorphisms (and we work only over a field).
But, nevertheless, we would like to stress that our finiteness is applicable to a certain
class of non-proper algebraic stacks (in particular, our assumption is fairly weak in
characteristic zero, and it can be applied to algebraic stacks having positive dimensional
affine automorphisms groups). We should think that such algebraic stacks behave
like proper, and have “hidden properness” (although here we ignore the finiteness
concerning constructible sheaves). The proof is different from Falting’s one and Olsson-
Gabber’s one. Our proof is done by showing that the coarse moduli map & — X has
the “hidden properness”. Given an algebraic stack of finite type and all closed points
are GIT-like p-stable, we have a version of valuative criterion for the properness of a
coarse moduli space for X' ([8]). Using it, we can state our finiteness without making
reference to the coarse moduli space.
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HOMOLOGICAL MIRROR SYMMETRY FOR CUSP SINGULARITIES

ATSUSHI TAKAHASHI

1. STATEMENT AND THE RESULT

We associate two triangulated categories to a triple A := (a1, ag, a3) of positive in-
tegers called a signature: the bounded derived category D’coh(X4) of coherent sheaves on
a weighted projective line X4 := PP}, as.0; 80d the bounded derived category DPFuk™(fa4)
of the directed Fukaya category for a “cusp singularity” fA = 3% 4 Y2 + 2% 4 g lpyz,
(g € C*). Here, we consider f4 as a tame polynomial if xa:=1/ay+1/az+1/a3—-1>0
and as a germ of a holomorphic function if x4 < 0.

Then, the Homological Mirror Symmetry (HMS) conjecture for cusp singularities

can be formulated as follows:

Conjecture 1.1 ([T1]). There should exist an equivalence of triangulated categories
DPcoh(X 4) ~ D°Fuk™(f4).
4

Combining results in [GL] with known results in singularity theory, one can easily
see that the HMS conjecture holds at the Grothendieck group level, i.e., there is an
isomorphism

(Ko(Dcoh(X4)), x + *x) = (H2(Ya, Z), —1I),
where Y, denotes the Milnor fiber of f4.

The HMS conjecture is shown if a3 = 1 (Auroux-Katzarkov-Orlov [AKO], Seidel
[Sel], van Straten, Ueda, ...). Also the cases A = (4,4,2), (6,3,2), which correspond to
two of three simple elliptic hypersurface singularities, are known ([AKO], [U], [T2], ...).

The following is our main theorem:
Theorem 1.2. Assume that ag =2 or A= (3,3,3). Then the HMS conjecture holds. O

The keys in our proof are; the reduction of surface singularities to curve singular-
ities (the stable equivalence of Fukaya categories given in [Se2| section 17), the use of
A’Campo’s divide [A1}[A2] in order to describe the Fukaya category, and mutations of

Date: January 27, 2009.
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exceptional collections (distinguished basis of vanishing Lagrangian cycles). We shall give
devides for cusp singularities with a3 = 2 and also quivers with relations associated to
them. ‘

2. DEVIDES AND QUIVERS WITH RELATIONS

2.1. x4 > 0. After applying suitable mutations, we shall obtain the extended Dynkin
quiver of type A = (a1, g, a3) (o denotes the vertex to remove in order to get the Dynkin
quiver of the same type). It is known by [GL] that Dcoh(X,) is equivalent to the derived
category of extended Dynkin quiver of type A.

231 + a2 + 73 + 212275 (aqzeven (Da)):

'*.’\/\/ \/
1//\/\ /&*,

° —

\

e ————————

T + 22 + 7% + 717273 (@y:0dd (D2~,+1)):
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x} + 23 + 72 — 217275 (Ey): /\

2 2. xa < 0. Note that the number of vertices (= Milnor number of the singularity) is
given by a1 +oa+az—1.
M+ 13+ 22 + 212973 (0 2 6):

\/\/\/
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Pandharipande-Thomas theory and
wall-crossings in derived categories

Yukinobu Toda

Abstract

In [18], Pandharipande and Thomas introduced the notion of stable pairs on
Calabi-Yau 3-folds and constructed the counting invariant of them. Conjecturally
such invariant is equivalent to Donaldson-Thomas invariants and Gromov-Witten
invariants via generating functions. In this article, we give a transformation formula
of generating series of invariants counting stable pairs under flops. We use wall-
crossing formula in the derived category.

1 Curve counting on Calabi-Yau 3-folds

Let X be a smooth projective Calabi-Yau 3-fold over C, i.e. there is a nowhere vanish-
ing holomorphic 3-form on X. We are interested in the curve counting theories on X.
There are three such theories, called Gromov-Witten (GW) theory, Donaldson-Thomas
(DT) theory, and Pandharipande-Thomas (PT) theory. Conjecturally these theories are
equivalent in terms of generating functions. Let us recall these theories.

For g > 0 and § € Hy(X,Z), the GW-invariant N, g is defined by the integration of

the virtual class,
Ngﬂ = / 1e Q,
[Mg(X,B)]vir

where M,(X,3) is the moduli stack of stable maps f: C — X with g(C) = g and
f«[C] = B. We consider the following generating series,

GW(X) = exp (Z Ng,@vg—%ﬂ> .

9,87#0

For n € Z and € Hy(X,Z), let 1,(X,[3) be the Hilbert scheme of 1-dimensional sub-
schemes Z C X satisfying

The obstruction theory on I,,(X, 3) is obtained by viewing it as a moduli space of ideal
sheaves, (cf. [21],) and the DT-invariant I, g is defined by

In,ﬁ = / 1eZ.
(In (X,B)] Vi
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The generating function of the reduced DT-theory is
DT(X) = Tnpgv’/ Y Tnoq"
n,B n

The theory of stable pairs and their counting invariants are introduced and studied by
Pandharipande and Thomas [18] to give a geometric interpretation of the reduced DT-
theory. By definition, a stable pair is data (F, s),

SIOX—>F,

where F is a pure one dimensional sheaf on X, and s is a morphism with a zero dimensional
cokernel. For 8 € Hy(X,7Z) and n € Z, the moduli space of stable pairs (F, s) with

[F] =8, x(F)=n,

is constructed in [18], denoted by P,(X,3). The obstruction theory on P, (X, ) is ob-
tained by viewing stable pairs (F), s) as two term complexes,

50— O0x 5 F—0— . (1)

Here the degree of Ox is —1 and the degree of F' is 0. The PT-invariant P, g is defined

by
P,s= / 1eZ
[Pn(Xvﬁ)}Vir

The corresponding generating function is

PT(X) =) P.pq"v”.
n,B

The series GW(X), DT(X) and PT(X) are conjecturally equal after suitable variable
change. In order to state this, we need the following conjecture, called rationality conjec-
ture.

Conjecture 1.1. [16, Conjecture 2], [18, Conjecture 3.2]| For a fized (3, the gener-
ating series

DTo(X) =Y Lnpq"/ D Inod"s PTs(X) =) Posd",

neZ neZ neZ
are Laurent expansions of rational functions of q, invariant under q < 1/q.

The above conjecture is solved for DTg(X) when X is a toric local Calabi-Yau 3-
fold [16], and for PTs(X) when (3 is an irreducible curve class [19]. Now we can state the
conjectural GW-DT-PT-correspondences.

Conjecture 1.2. [16, Conjecture 3], [18, Conjecture 3.3] After the variable change
g = —e™, we have

GW(X) = DT(X) = PT(X).
A is well-defined by Conjecture 1.1.

The variable change ¢ = —e'
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Note that ideal sheaves I C Ox are objects in D°(X), where D°(X) is the bounded
derived category of coherent sheaves on X. We can also interpret stable pairs (F,s)
as objects in D?(X) by viewing them as two term complexes (1). As discussed in [18,
Secction 3], the equality DT(X) = PT(X) should be interpreted as a wall-crossing formula
for counting invariants in the category D?(X). Our purpose is to interpret PT-invariant as
counting “stable” objects in the derived category with respect to some stability condition
on D’(X), and study PT(X) via wall-crossing phenomena in the derived category.

2 Motivations

Before stating our result, we give a rough sketch of our motivation. Let D be a triangulated
category, e.g. bounded derived category of coherent sheaves D”(X) on an algebraic variety
X. Its objects consist of bounded complexes of coherent sheaves,

._>}"i_>}"i+1_>..._>}“j_>0_>...’

where F' € Coh(X). Historically such a class of categories was introduced to formulate
the generalization of several duality theories, such as Poincaré duality, Serre duality.
(cf. [2], [6].) On the other hand, the notion of triangulated categories draw much attention
recently from the viewpoint of string theory. In terms of string theory, an object in the
derived category of coherent sheaves is considered to represent a D-brane of type B, and a
conjectural symmetry (Homological mirror symmetry) between the category of A-branes
(Fukaya category) and B-branes (derived category) is proposed by Kontsevich [13].

In 2002, an important notion of stability conditions on triangulated categories was in-
troduced by Bridgeland [4]. For a triangulated category D, he associates a space Stab(D),
which has a structure of complex manifold. So we have the following correspondence,

triangulated category — complex manifold

There are several motivations to introduce the complex manifold Stab(D).

e (lassically there is a notion of stability condition on vector bundles on curves.
(cf. [17].) We want to generalize this notion to objects in derived categories. For
each o € Stab(D), there is the associated notion of o-semistable objects in D. So
each point o € Stab(D) gives a generalization of the classical notion of stability
condition. In terms of string theory, o-semistable objects are considered to be the
D-branes of BPS-state.

e The space Stab(D) is considered to describe the (extended) stringy Kéhler moduli
space, which should be isomorphic to the moduli space of complex structures on the
mirror side. Thus it is an interesting problem to compare the space Stab(D) with
the moduli space of the complex structures under mirror symmetry.

Since the theory of stability conditions on triangulated categories has been proposed
recently, the theory is not so developed yet. One of the big issues is the existence problem
of stability conditions, especially on the derived category of coherent sheaves on projective
Calabi-Yau 3-folds. We will address this problem later.



Conjecturally the objects (1) are stable with respect to a certain stability condition
on D’(X). Note that an object E given in (1) satisfies the following condition,

ch(E) = (-1,0,8,n) € H® H* ® H* ® H°, detE = Oy, (2)
Under the above background, we suggest the following story.

e For a projective Calabi-Yau 3-fold X, let D = D?(X). We expect that there are
stability conditions 0,7 € Stab(D) such that ideal sheaves I-[1] and objects (1)
become stable with respect to o, 7 respectively.

e We expect that for any o € Stab(D), there is the algebraic moduli stack of o-
semistable objects E' € D with fixed phase and satisfy (2). We denote that moduli
stack M(“1981) (). For a particular choice of o, the stack M(=1087)(5) should be
the gerb over I,(X, 3) or P,(X, 3).

e We expect that there is the generalized Donaldson-Thomas invariant,
Dang(O' ) € Q,

counting o-semistable objects E € D satisfying (2). DT, (o) should be defined as
the integration of the “logarithm” of the moduli stack M (1% () in the Hall al-
gebra of D, after multiplying Behrend’s weight function [1]. This procedure (expect
multiplication of weight function) follows from Joyce’s sequent works [9], [10], [11],
[11], [12]. It should be possible to use the motivic milnor fiber idea of Kontsevich-
Soibelman [14] to involve weight function into Joyce’s invariants. A particular choice
of o yields DT, 3(0) = I,,3 or P, 3. However DT, (o) give new invariants by de-
forming o.

e We want to know how DT, 3(0) varies under change of ¢. In principle, there is
a wall and chamber structure on Stab(D) so that DT, 3(0) does not change if o
deforms in a chamber. However if o crosses a wall, then the invariant DT, (o)
jumps and its difference should be expressed in terms of the structure of the Ringel-
Hall Lie algebra associated to D. Thus we should have the wall-crossing formula of
the invariants DT, (o).

e Applying the wall-crossing formula of DT, g(0), we expect that several properties
or equalities of the generating functions of sheaf counting are realized. For instance,
DT-PT correspondence [18], DT-NCDT correspondence [20], flop formula of DT-
invariants [7], and the rationality conjecture of the generating functions of DT or
PT-invariants should be explained by wall-crossing formula. (cf. [22].)

At this moment, there are several technical difficulties to realize the above story. One of
them is to find stability conditions, which will be discussed in the next section.



3 Stability conditions

First let us give the definition of stability conditions introduced in [4].

Definition 3.1. A stability condition on a triangulated category D consists of data
o= (Z,A), where A C D is the heart of a bounded t-structure on D, and Z is a group
homomorphism,

Z: K(D) — C,
which satisfies the following axiom.

e For a non-zero object 0 # E € A, we have
Z(E) e H = {rexp(in¢) |0 < ¢ < 1,7 > 0}.

Especially one can choose the argument arg Z(E) € (0,7] uniquely. An object
E € A is said to be Z-(semi)stable if for any non-zero object F' C E, one has

arg Z(F) < (<)arg Z(E).

e There is a Harder-Narasimhan property, i.e. any F € A admits a filtration
O=EyCEC---CL,=FE,
such that each F; = E;/E;_; is Z-semistable with arg Z(F;) > arg Z(Fi41).
Here we give some examples.

Example 3.2. (i) Let D = D*(C) for a smooth projective curve C, and Z: K(C) — C
be
Z(E) = —deg(E) + rk(E) - 1.

Then the pair (Z, Coh(C')) determines a stability condition on D. In this case, an object
E € Coh(C) is Z-semistable if and only if it is a semistable sheaf in the sense of [17].

(ii) Let A be a finite dimensional k-algebra with k a field, and D = D°(A) where
A = mod A is the abelian category of finitely generated right A-modules. Then there is
a finite number of simple objects Si,---,Sy € A which generates A. One can choose
Z: K(A) — C such that Z(S;) € H for all 1 <4 < N. Then the pair (Z,.A) determines
a stability condition on D.

So far, the spaces Stab(D) for several D have been studied in detail. For instance,
see [5], [15], [8], [23]. On the other hand, the following problem has been a big issue in
studying stability conditions.

Problem 3.3. Given a triangulated category D, do we have an example of a stability
condition on D, i.e. Stab(D) # (7



The above problem is non-trivial especially for the case D = D?(X), where X is a
smooth projective variety with dim X > 2. In this case, one can show that there is no
stability condition (Z,.A) with A = Coh(X). As an analogue of Example 3.2 (i), one
might try to construct Z to be the group homomorphism

Z(E)=—c1(E) -w+rk(F) -1,

for a fixed ample divisor w. However the pair (Z,Coh(X)) does not give a stability
condition since Z([O,]) = 0 for a closed point x € X. When dim X = 2, the examples
of stability conditions are constructed by tilting the abelian category Coh(X), (cf. [5].)
However we do not know any example of stability conditions when dim X > 3, except the
case that there is a derived equivalence D°(X) = D*(A) for a finite dimensional algebra
A (eg. X =P3)

From the viewpoint of mirror symmetry, the most important case is when X is a
projective Calabi-Yau 3-fold. In this case, there are some ideas coming from string theory.
Let A(X)c be the complexified ample cone,

A(X)e :={B+iw € H*(X,C) | w is ample }.

Let Z(puwy: K(X) — C be

Zuw)(E) = — / e~ (B9 ch(E)/tdx.

We can state the following conjecture.

Conjecture 3.4. Forw > 0, there should exist the heart of a bounded t-structure A(p .y C
DP(X) such that the pair o(p o) = (Z(pw), ABw) is a stability condition on D*(X).

The above conjecture holds true if dim X < 2.

4 Stability conditions on D0-D2-D6 bound states
Let Coh<1(X) be
Coh<(X) := {E € Coh(X) | dim Supp(£) < 1}.
Instead of working with D°(X), we study stability conditions on Dy,
Dx = (Ox, Cohy (X)) € D°(X).

Here for a set of objects S C D?(X), we denote by (S);, the smallest triangulated subcat-
egory of D?(X), which contains S. We also denote by (S)c, the smallest extension closed
subcategory of D°(X), which contains S. We have the following lemma, whose proof will
be appear in [24].

Lemma 4.1. There is a bounded t-structure on Dy, whose heart Ax satisfies

AX = <O)([1], COhSl(X»



Let A(X)c be the complexified ample cone,
A(X)e :={B+iw € H*(X,C) | w is ample. }.

For a following data,
s€Ro, teA(X)e, ueH,

we define a map
Zsiuy: K(Dx) — C,

as
Z(S’m)(E) = sch3(FE) + tchy(E) — uchy(F).

We have the following, which will be appear in [24].

Lemma 4.2. The pair (Zs.4), Ax) determines points in Stab(Dx ). In particular Stab(Dx) #
0.

We have the following embedding,
Ux :=R.o x A(X)c x H C Stab(Dyx).
The following result will be proved in [24].
Theorem 4.3. (i) For o € Ux, there is the algebraic moduli stack of finite type
ME050 ),
which parameterizes o-semistable objects E € Ax with
ch(F)=(-1,0,8,n), det(F)= Ox.
(i) Suppose that u € Reg for o = (s,t,u). For u < 0, we have
M () = [Py (X, 5) /G,

where G, acts on P,(X, 3) trivially.

5 Flop formula

Applying Theorem 4.3 and wall-crossing formula developed by Joyce [12], Kontsevich-
Soibelman [14], we can study how generating series of invariants counting stable pairs
transform under flops. Instead of working with PT(X), let us consider the generating
series,

ZX (X, 8))g"v”.

The series PT(X) is closely related to PT(X ) in the following sense.

e Suppose that P,(X, ) is smooth and connected. Then we have

Pop = (=) SO (By (X, 6)).



e In general, there is a constructible function v: P,(X,3) — Z, constructed by
Behrend [1], such that

Py =3 nx(vi(n).

neZ

Let us consider a diagram of flop of Calabi-Yau 3-folds,

X+. ............. ¢ ............. ;..X

AN

Y.
In this situation, Bridgeland [3] showed the equivalence of derived categories,
d: D'(XT) = DY(X).
It is easy to see that ® restricts to the equivalence,
d: Dy+ — Dy,
hence we have the isomorphism,
®,: Stab(Dy+) — Stab(Dx).
We have the following. (cf. [24].)

Lemma 5.1. We have B B
CID*L{X+ ﬂ Z/{X 7é @

The above lemma implies that we can relate stability conditions relevant to stable
pairs on X to those on XT. Let PT(X/Y') be the subseries

PT(X/Y) = Y X(Pu(X,8)q"".
n, f«B=0

Applying wall-crossing formula by Joyce [12], from a point in Ux to P Ux+, we obtain
the following. (cf. [24].)

Theorem 5.2. Under the above situation, we have
PT(X) . PT(X")
PT(X/Y)  PT(X+/Y)
PT(X/Y) =io¢PT(X"/Y).

Here the variable change is ¢.(5,n) = (¢5,n) and i(B,n) = (=5, n).

We can apply Joyce’s wall-crossing formula of counting invariants. Unfortunately we
are unable to involve Behrend’s constructible function into Joyce’s work, so our application
is restricted to Euler number of version of the relevant moduli spaces at this moment.

8



References

1]

2]

K. Behrend. Donaldson-Thomas invariants via microlocal geometry. Ann. of Math
(to appear). math.AG/0507523.

A. Beilinson, J.Bernstein, and P.Deligne. Faisceaux pervers. Analysis and topology
on singular spaces I, Asterisque, Vol. 100, pp. 5-171, 1982.

T. Bridgeland. Flops and derived categories. Invent. Math, Vol. 147, pp. 613-632,
2002.

T. Bridgeland. Stability conditions on triangulated categories. Ann. of Math, Vol.
166, pp. 317-345, 2007.

T. Bridgeland. Stability conditions on K3 surfaces. Duke Math. J. , Vol. 141, pp.
241-291, 2008.

R. Hartshorne. Residues and Duality : Lecture Notes of a Seminar on the Work of
A.Grothendieck, Given at Harvard 1963/1964.

J. Hu and W. P. Li. The Donaldson-Thomas invariants under blowups and flops.
preprint. math.AG/0505542.

A. Ishii, K. Ueda, and H. Uehara. Stability Conditions on A,-Singularities.
math.AG/0609551.

D. Joyce. Configurations in abelian categories I. Basic properties and moduli stack.
Advances in Math, Vol. 203, pp. 194-255, 2006.

D. Joyce. Configurations in abelian categories II. Ringel-Hall algebras. Advances in
Math, Vol. 210, pp. 635-706, 2007.

D. Joyce. Configurations in abelian categories Ill. Stability conditions and identities.
Advances in Math, Vol. 215, pp. 153-219, 2007.

D. Joyce. Configurations in abelian categories IV. Invariants and changing stability
conditions. Advances in Math, Vol. 217, pp. 125-204, 2008.

M. Kontsevich. Homological algebra of mirror symmetry, Vol. 1 of Proceedings of
ICM. Basel:Birkh#user, 1995.

M. Kontsevich and Y. Soibelman. Stability structures, motivic Donaldson-Thomas
invariants and cluster transformations. preprint. math.AG/0811.2435.

E. Macrl. Some examples of moduli spaces of stability conditions on derived cate-
gories. preprint. math.AG/0411613.

D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande. Gromov-Witten
theory and Donaldson-Thomas theory. I. Compositio. Math, Vol. 142, pp. 1263-1285,
2006.



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory. Third Enlarged
Edition. Springer-Verlag, 1994.

R. Pandharipande and R. P. Thomas. Curve counting via stable pairs in the derived
category. preprint. math.AG/0707.2348.

R. Pandharipande and R. P. Thomas. Stable pairs and BPS invariants. preprint.
math.AG/0711.3899.

B. Szendrdi. Non-commutative Donaldson-Thomas invariants and conifold.
Geom. Topol. , Vol. 12, pp. 1171-1202, 2008.

R. Thomas. A holomorphic casson invariant for Calabi-Yau 3-folds and bundles on
K3-fibrations. J. Differential. Geom, Vol. 54, pp. 367-438, 2000.

Y. Toda. Generating functions of stable pair invariants via wall-crossings in derived
categories. preprint. math.AG/0806.0062.

Y. Toda. Stability conditions and crepant small resolutions. Trans. Amer. Math. Soc.,
Vol. 360, pp. 6149-6178, 2008.

Y. Toda. Curve counting theories via stable objects in the derived category. in
preparation.

Institute for the Physics and Mathematics of the Universe, University of Tokyo
E-mail address:toda@ms.u-tokyo.ac.jp

10



Induced nilpotent orbits and birational
geometry

Yoshinori Namikawa

Department of Mathematics, Kyoto University

This exposition is based on two lectures in the conferences at Kinosaki
(Oct. 2008), and at Tokyo (Dec. 2008).

Introduction.

Let G be a complex simple algebraic group and let g be its Lie algebra.
A nilpotent orbit O in g is an orbit of a nilpotent element of g by the adjoint
action of G on g. Then O admits a natural symplectic 2-form w and the
nilpotent orbit closure O has symplectic singularities in the sense of [Be] and
[Na3| (cf. [Pal, [Hi]). In [Ri], Richardson introduced the notion of so-called
the Richardson orbit. A nilpotent orbit O is called Richardson if there is
a parabolic subgroup @ of G such that O N n(q) is an open dense subset
of n(q), where n(q) is the nil-radical of q. Later, Lusztig and Spaltenstein
[L-S] generalized this notion to the induced orbit. A nilpotent orbit O is an
induced orbit if there are a parabolic subgroup ) of G and a nilpotent orbit
O’ in the Levi subalgebra [(q) of q := Lie(Q) such that O meets n(q) + O’ in
an open dense subset. If O is an induced orbit, one has a natural map (cf.

(1.2)) ) )
v:Gx9(n(q)+0) — 0.

The map v is a generically finite, projective, surjective map. This map is
called the generalized Springer map. In this paper, we shall study the in-
duced orbits from the view point of birational geometry. For a Richardson
orbit O, the Springer map v is a map from the cotangent bundle T*(G/Q)
of the flag variety G/Q to O. In [Fu], Fu proved that, if O has a crepant
(projective) resolution, it is a Springer map. Note that @ is not unique (even
up to the conjugate) for a Richardson orbit ©. This means that O has many



different crepant resolutions. In [Nal, the author has given a description of
all crepant resolutions of O and proved that any two different crepant resolu-
tions are connected by Mukai flops. The purpose of this paper is to generalize
these to all nilpotent orbits @. If O is not Richardson, O has no crepant
resolution. The substitute of a crepant resolution, is a Q-factorial termi-
nalization. Let X be a complex algebraic variety with rational Gorenstein
singularities. A partial resolution f : Y — X of X is said to be a Q-factorial
terminalization of X if Y has only Q-factorial terminal singularities and f
is a birational projective morphism such that Ky = f*Kx. A Q-factorial
terminalization is a crepant resolution exactly when Y is smooth. Recently,
Birkar-Cascini-Hacon-McKernan [B-C-H-M] have established the existence
of minimal models of complex algebraic varieties of general type. As a corol-
lary of this, we know that X always has a Q-factorial terminalization. In
particular, O should have a Q-factorial terminalization. The author would
like to pose the following conjecture.

Conjecture. Let O be a nilpotent orbit of a complex simple Lie algebra
g. Let O be the normalization of O. Then one of the following holds:
(1) O has Q-factorial terminal singularities.

(2) There are a parabolic subalgebra q of g with Levi decomposition q =
[@n and a nilpotent orbit O of | such that (a): O = Ind}(O') and (b): the
normalization of G x% (n(q) + @) is a Q-factorial terminalization of O via
the generalized Springer map.

Moreover, if O does not have Q-factorial terminal singularities, then ev-
ery Q-factorial terminalization of @ is of the form (2). Two Q-factorial
terminalizations are connected by Mukai flops (cf. [Na/, p.91).

The main result of this report is that Conjecture is true when g is classical.
Recently, Fu checked Conjecture for g exceptional by a case-by-case method
using the computer program GAP 4 (arxiv: 0809.5109, version 2). Combining
this with our result, Conjecture holds true in full generality. However, a
conceptual proof without the classification of nilpotent orbits, is still missing.
This is a summary of [Na -1]. For details on proofs, see the original paper
[Na -1].

81. Preliminaries

(1.1) Nilpotent orbits and resolutions: Let G be a complex simple alge-
braic group and let g be its Lie algebra. G has the adjoint action on g. The



orbit O, of a nilpotent element = € g for this action is called a nilpotent
orbit. By the Jacobson-Morozov theorem, one can find a semi-simple ele-
ment h € g, and a nilpotent element y € g in such a way that [h, 2] = 2z,
[h,y] = —2y and [z,y] = h. For i € Z, let

g, :=1{z¢€glhz]=1iz}.

Then one can write
g = Diczbi-
Let b be a Cartan subalgebra of g with h € h. Let ® be the corresponding

root system and let A be a base of simple roots such that A is A-dominant,
i.e. a(h) >0 for all & € A. In this situation,

a(h) € {0,1,2}.

The weighted Dynkin diagram of O, is the Dynkin diagram of g where each
vertex « is labeled with a(h). A nilpotent orbit O, is completely determined
by its weighted Dynkin diagram. A Jacobson-Morozov parabolic subalgebra
for x is the parabolic subalgebra p defined by

p = Dixo08i-
Let P be the parabolic subgroup of G determined by p. We put
Ny = Bi>20;.

Then ny is an ideal of p; hence, P has the adjoint action on ny. Let us
consider the vector bundle G x n, over G/ P and the map

p:GxPny—g

defined by p([g, 2]) := Ad,y(z). Then the image of ;1 coincides with the closure
O, of O, and pu gives a resolution of O, (cf. [K-P], Proposition 7.4). We call
u the Jacobson-Morozov resolution of O,. The orbit O, has a natural closed
non-degenerate 2-form w (cf. [C-G], Prop. 1.1.5., [C-M], 1.3). By u, w is
regarded as a 2-form on a Zariski open subset of G x” ny. By [Pa], [Hi], it
extends to a 2-form on G'x*ny. In other words, O, has symplectic singularity.
Let O, be the normalization of @,. In many cases, one can check the Q-
factoriality of @, by applying the following lemma to the Jacobson-Morozov
resolution:



Lemma (1.1.1). Let 7 : Y — X be a projective resolution of an affine
variety X with rational singularities. Let p be the relative Picard number for
7. If Exc(m) contains p different prime divisors, then X is Q-factorial.

(1.2) Induced orbits

(1.2.1). Let G and g be the same as in (1.1). Let @ be a parabolic
subgroup of G and let q be its Lie algebra with Levi decomposition q = [&n.
Here n is the nil-radical of q and [ is a Levi-part of q. Fix a nilpotent orbit
O in [. Then there is a unique nilpotent orbit @ in g meeting n + O’ in
an open dense subset ([L-S]). Such an orbit O is called the nilpotent orbit
induced from O" and we write

O = Ind{(O").

Note that when O = 0, O is the Richardson orbit for Q. Since the adjoint
action of @ on g stabilizes n+ ', one can consider the variety G x% (n+O’).
There is a map

v:Gx%(n+0) -0

defined by v([g,2]) := Ady(z). Since Codim(0’) = Codimyz(O) (cf. [C-
M], Prop. 7.1.4), v is a generically finite dominating map. Moreover, v is
factorized as

Gx?n+0)—=G/Qx0 -0

where the first map is a closed embedding and the second map is the 2-nd
projection; this implies that v is a projective map. In the remainder, we call
v the generalized Springer map for (Q, O’).

(1.2.2). Assume that @) is contained in another parabolic subgroup Q
of G. Let L be the Levi part of @ which contains the Levi part L of Q.
Let § = [@ 1 be the Levi decomposition. Note that L N Q is a parabolic
subgroup of L and [(L N Q) = [. Let O; C [ be the nilpotent orbit induced
from (L N Q,O’). Then there is a natural map

T:Gx%(n+0) — G x?(n+0y)

which factorizes v as 7 o™ = v. Here v is the generalized Springer map for
(Qv 01)

(1.2.3). Assume that there are a parabolic subgroup @ of L and a
nilpotent orbit O, in the Levi subalgebra [(Q) such that O’ is the nilpotent
orbit induced from (Qr,Os). Then there is a parabolic subgroup @’ of G



such that Q' C @, [(Q') = (Qr) and O is the nilpotent orbit induced from
(@', Os). The generalized Springer map v/’ for (Q)’, Os) is factorized as

GxY (M +0,) - GxY(n+0)— 0.
Lemma (1.2.4). Let
v:Gx%(n+0) -0

be a generalized Springer map defined in (1.2.1). Then the normalization of
G x9 (n+ O') is a symplectic variety.

(1.3) Nilpotent orbits in classical Lie algebras: When g is a classical Lie
algebra, g is naturally a Lie subalgebra of End(V") for a complex vector space
V. Then we can attach a partition d of n := dim V to each orbit as the Jordan
type of an element contained in the orbit. Here a partition d := [dy, d, ..., di]
of n is a set of positive integers with Xd; = n and d; > dy > ... > d. Another
way of writing d is [d}', ..., d}*] with d; > ds... > d), > 0. Here d; is an s;
times d;’s: d;, d;, ...,d;. The partition d corresponds to a Young diagram. For
example, [5,42% 1] corresponds to

When an integer e appears in the partition d, we say that e is a member
of d. We call d very even when d consists with only even members, each
having even multiplicity.

Let us denote by € the number 1 or —1. Then a partition d is e-admissible
if all even (resp. odd) members of d have even multiplicities when € = 1 (resp.
¢ = —1). The following result can be found, for example, in [C-M, §5].

Proposition (1.3.1) Let No(g) be the set of nilpotent orbits of g.

(1)(An_1): When g = sl(n), there is a bijection between No(g) and the
set of partitions d of n.

(2)(Bn): When g = s0(2n + 1), there is a bijection between No(g) and
the set of e-admissible partitions d of 2n + 1 with e = 1.



(3)(Ch): When g = sp(2n), there is a bijection between No(g) and the

set of e-admissible partitions d of 2n with e = —1.

(4)(Dy): When g = so(2n), there is a surjection f from No(g) to the set
of e-admissible partitions d of 2n with e = 1. For a partition d which is not
very even, f~1(d) consists of exactly one orbit, but, for very even d, f~1(d)
consists of exactly two different orbits.

Take an e-admissible partition d of a positive integer m. If ¢ = 1, we put
g = so(m) and if e = —1, we put g = sp(m). We denote by Oq4 a nilpotent
orbit in g with Jordan type d. Note that, except when ¢ = 1 and d is very
even, (Oq is uniquely determined. When ¢ = 1 and d is very even, there
are two possibilities for Oq. If necessary, we distinguish the two orbits by
the labelling: O} and OF. Let us fix a classical Lie algebra g and study
the relationship among nilpotent orbits in g. When g is of type B or D
(resp. C'), we only consider the e-admissible partitions with € = 1 (resp.
e = —1). We introduce a partial order in the set of the partitions of (the
same number): for two partitions d and f, d > f if ¥,cxd; > ¥, f; for all
k > 1. On the other hand, for two nilpotent orbits @ and O’ in g, we write
O > 0O if O C O. Then, Oq > Of if and only if d > f. When d and f
are e-admissible partitions with f > g, we call this pair an e-degeneration or
simply a degeneration.

Now let us consider the case g is of type B, C' or D.

Assume that an e- degeneration d > f is minimal in the sense that there
is no e-admissible partition d’ (except d and f) such that d > d’ > f. Kraft
and Procesi [K-P] have studied the normal slice Nqg of Of C Oq in such
cases. If, for two integers r and s, the first » rows and the first s columns of
d and f coincide and the partition (dy,...,d,) is e-admissible, then one can
erase these rows and columns from d and f respectively to get new partitions
d’ and ' with d’ > f'. If we put € := (—1)%, then d’ and f’ are both
¢’-admissible. The pair (d’,f’) is also minimal. Repeating such process, one
can reach a degeneration d;., > fj.,. which is #rreducible in the sense that
there are no rows and columns to be erased. By [K-P], Theorem 2, Ng¢ is
analytically isomorphic to Ng,, ¢, around the origin. According to [K-P], a
minimal and irreducible degeneration d > f is one of the following:

ag—sp() = (2), aJndf—( ?).

s g=sp(2n ) (n>1),d=(2n), and f = (2n — 2,2).

c:g=s02n+1) (n>0),d=(2n+1), and f = (2n — 1,1?).

d: g=sp(dn+2) (n>0),d=(2n+1,2n+ 1), and f = (2n, 2n, 2).



e: g=so(4n) (n > 0),d = (2n,2n), and f = (2n — 1,2n — 1,1?).

f: g=s02n+1) (n>1),d=(2%1>""3), and £ = (1?"1).

g g=sp(2n) (n>1),d=(2,1>"72), and f = (1*").

h: g =s0(2n) (n>2),d=(22,1*""%), and f = (17").

In the first 4 cases (a,b,c,d,e), O¢ have codimension 2 in Oq4. In the last
3 cases (f,g,h), Of have codimension > 4 in Oq.

Proposition (1.3.2) Let O be a nilpotent orbit in a classical Lie algebra
g of type B, C or D with Jordan type d := [(d1)®, ..., (dg)**] (dy > dy > ... >
dy). Let X be the singular locus of O. Then Codimg(X) > 4 if and only if
the partition d has full members, that is, any integer j with 1 < j < d; is a
member of d. Otherwise, Codimg(3) = 2.

(1.4.1) Jacobson-Morozov resolutions in the case of classical Lie alge-
bras(cf. [CM], 5.3): Let V be a complex vector space of dimension m with
a non-degenerate symmetric (or skew-symmetric) form < , >. In the sym-
metric case, we take a basis {e;}1<i<m of V in such a way that < e;, e, >=1
if j +k = m + 1 and otherwise < ¢e;, e, >= 0. In the skew-symmetric case,
we take a basis {e;}1<i<m of V in such a way that < ej, e >=11if j < k
and j+k=m+1, and < ej,e, >=01if j+k #m+1. When (V,<, >)
is a symmetric vector space, g := so(V) is the Lie algebra of type B(,_1/2
(resp. Dy, j2) if m is odd (resp. even). When (V, <, >) is a skew-symmetric
vector space, g := sp(V) is the Lie algebra of type Cy, /2. In the remainder of
this paragraph, g is one of these Lie algebra contained in End(V'). Let h C g
be the Cartan subalgebra consisting of all diagonal matrices, and let A be
the standard base of simple roots. Let x € g be a nilpotent element. As in
(1.1), one can choose h, y € g in such a way that {z,y,h} is a sl(2)-triple.
If necessary, by replacing x by its conjugate element, one may assume that
h € h and h is A-dominant. Assume that = has Jordan type d = [dy, ...., d].
The diagonal matrix h is described as follows. Let us consider the sequence
of integers of length m:

di—1,d1—3, ..., —di+3,—dy+1,dyo—1,dy—3, ..., —do+3, —do+ 1, ..., dj —
Ldy —3, ., —dy + 3, —dy + 1.

Rearrange this sequence in the non-increasing order and get a new se-
quence p'', ...,pfl with p; > po... > p; and Xt; = m. Then

h = diag(p, ..., p}').

Here pgi means the t; times of p;’s: p;, pi, ..., p;. It is then easy to describe



explicitly the Jacobson-Morozov parabolic subalgebra p of = and its ideal n,
(cf. (1.1)). The Jacobson-Morozov parabolic subgroup P is the stabilizer
group of certain isotropic flag {F;}1<i<, of V. Here, an isotropic flag of V
(of length r) is a increasing filtration 0 C Fy} C F, C ... C F, C V such
that F,,_; = Fi* for all i. The flag type of P is (ty,...,%;). The nilradical
n:= @;>08; of p consists of the elements z of g such that z(F;) C F;_; for all
7. On the other hand, it depends on the weighted Dynkin diagram for  how
ny takes its place in n.

Lemma (1.4.2) Assume that d has full members. For each minimal
e-degeneration d > £, the fiber u=*(Of) has codimension 1 in G x¥ n,.

Corollary (1.4.3) Assume that d is an e-admissible partition and it has
full members. Let Oq be the normalization of Oq. Then, O4 has only Q-
factorial termainal singularities except when g = so(dn + 2), n > 1 and
d = [22",17].

Proof. Let k be the maximal member of d. Then there are kK — 1 minimal
degenerations d > f. By Lemma (1.4.2), Exc(u) contains at least k — 1
irreducible divisors. When ¢ = 1 (i.e, g = so(V)) and there is a minimal
degeneration d > f with f very even, there are two nilpotent orbits with
Jordan type f. Thus, in this case, Exc(u) contains at least k irreducible
divisors. On the other hand, for the Jacobson-Morozov parabolic subgroup
P, by(G/P) =k —1 when g = sp(V), or g = so(V) with dim V" odd. When
g = so(V) and dim V' is even, we must be careful; if the flag type of P is
of the form (p1,..., pr—1;2; pr—1,.--,01), b2(G/P) = k. This happens when
dimV = 4n + 2 and d = [2?",1%] or when dimV = 8m + 4n + 4 and
d = [4°™,3,2?" 1]. In the latter case, d has a minimal degeneration d > f
with £ = [4*™ 22"+2] which is very even. Note that by(G/P) coincides with
the relative Picard number p of the Jacobson-Morozov resolution. By these
observations, we know that p has at least p exceptional divisors except when
g = so(4n +2), n > 1 and d = [2%",1%]. Therefore, Oq are Q-factorial in
these cases. By (1.3.2) they have terminal singularities. When g = so(4n+2),
n > 1 and d = [2*",1?], O4 is a Richardson orbit and the Springer map
gives a small resolution of Oq. Therefore, @4 has non-Q-factorial terminal
singularities.

(1.5) Induced orbits in classical Lie algebras: Let d = [d}*, ..., d;*] be an e-
admissible partition of m. According as e = 1 or e = —1, we put G = SO(m)
or G = Sp(m) respectively. Assume that d does not have full members. In



other words, for some p, d, > d,y1 + 2 or di, > 2. We put r = Yi<j<pS;.
Then Oy4 is an induced orbit (cf. [C-M], 7.3). More explicitly, there are
a parabolic subgroup @ of G with (isotropic) flag type (r,m — 2r,r) with
Levi decomposition g = [ @ n, and a nilpotent orbit O of [ such that Ogq =
Ind?(O’). Here, [ has a direct sum decomposition [ = ¢l(r) @ ¢’, where ¢’ is a
simple Lie algebra of type B(m—2r—1)/2 (resp. Dn—2r)/2, resp. Clm—2r)/2) When
e = 1 and mis odd (resp. € = 1 and m is even, resp. ¢ = —1). Moreover, (' is
a nilpotent orbit of g/ with Jordan type [(d1 —2)*', ..., (d, —2)*, d, .., d;*].
Let us consider the generalized Springer map

v:G x9(n(q)+0) — Oq4

(cf. (1.2)).

Lemma (1.5.1). The map v is birational. In other words, deg(v) = 1.

§2. Main Results

(2.1) Let X be a complex algebraic variety with rational Gorenstein sin-
gularities. A partial resolution f : Y — X of X is said to be a Q-factorial
terminalization of X if Y has only Q-factorial terminal singularities and f is
a birational projective morphism such that Ky = f*Kx. In particular, when
Y is smooth, f is called a crepant resolution. In general, X has no crepant
resolution; however, by [B-C-H-M], X always has a Q-factorial terminaliza-
tion. But, in our case, the Q-factorial terminalization can be constructed
very explicitly without using the general theory in [B-C-H-M].

Proposition (2.1.1). Let O be a nilpotent orbit of a classical simple Lie
algebra g. Let O be the normalization of O. Then one of the following holds:
(1) O has Q-factorial terminal singularities.

(2) There are a parabolic subalgebra q of g with Levi decomposition q =
[@n and a nilpotent orbit O of | such that (a): O = Ind}(O') and (b): the
normalization of G x% (n(q) + @) is a Q-factorial terminalization of O via
the generalized Springer map.

Proof. When g is of type A, every O has a Springer resolution; hence
(2) always holds. Let us consider the case g is of B, C or D. Assume that
(1) does not hold. Then, by (1.4.3), the Jordan type d of O does not have
full members except when g = so(4n +2), n > 1 and d = [22*,1%]. In
the exceptional case, O is a Richardson orbit and the Springer map gives a
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crepant resolution of O; hence (2) holds. Now assume that d does not have
full members. Then, by (1.5), O is an induced nilpotent orbit and there is a
generalized Springer map

v:Gx%(n(q)+0) — O.

This map is birational by (1.5.1). Let us consider the orbit O instead of O.
If (1) holds for @', then v induces a Q-factorial terminalization of O. If (1)
does not hold for @', then O is an induced orbit. By (1.2.3), one can replace
@ with a smaller parabolic subgroup )’ in such a way that O is induced from
(@', Os) for some nilpotent orbit Oy C [(Q'). The generalized Springer map
V' for (Q', O,) is factorized as

Gx? (W +0,) - Gx%n+0)— 0.

The second map is birational as explained above. The first map is locally
obtained by a base change of the generalized Springer map

L(Q) xMO" (n(L(Q)N Q") + O,) — O.

This map is birational by (1.5.1). Therefore, the first map is also birational,
and v/ is birational. This induction step terminates and (2) finally holds.

(2.2) We shall next show that every Q-factorial terminalization of O is of
the form in Proposition (2.1.1) except when O itself has Q-factorial terminal
singularities. In order to do that, we need the following Proposition.

Proposition (2.2.1). Let O be a nilpotent orbit of a classical simple
Lie algebra g. Assume that a Q-factorial terminalization of O is given by
the normalization of G x% (n(q) + Q")) for some (Q, ') as in (2.1.1). As-
sume that Q) is a mazimal parabolic subgroup of G (i.e. bo(G/Q) = 1), and
this Q-factorial terminalization is small. Then @ is a parabolic subgroup
corresponding to one of the following marked Dynkin diagrams and O’ = 0:

Aoy (k < 1/2)
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The following is the main theorem:

Theorem (2.2.2). Let O be a nilpotent orbit of a classical simple Lie
algebra g. Then O always has a Q-factorial terminalization. If O itself does
not have Q-factorial terminal singularities, then every Q-factorial terminal-
ization is given by the normalization of G x% (n(q) + ")) in (2.1.1). More-
over, any two such Q-factorial terminalizations are connected by a sequence
of Mukai flops of type A or D defined in [Na/, pp. 91, 92.

Proof. The first statement is nothing but (2.1.1). The proof of the second
statement is quite similar to that of [Na], Theorem 6.1. Assume that O does
not have Q-factorial terminal singularities. Then, by (2.1.1), one can find a
generalized Springer (birational) map

v:Gx9(n(q)+0)— 0.

Let Xg be the normalization of G x% (n(q) + @'). Then v induces a Q-
factorial terminalization f : Xo — O. The relative nef cone Amp(f) is a
rational, simplicial, polyhedral cone of dimension by(G/Q) (cf. (1.2.2) and
[Na], Lemma 6.3). Each codimension one face F' of Amp(f) corresponds
to a birational contraction map ¢r : Xg — Yy. The construction of ¢p
is as follows. The parabolic subgroup () corresponds to a marked Dynkin
diagram D. In this diagram, there are exactly by(G/Q) marked vertexes.
Choose a marked vertex v from D. The choice of v determines a codimension
one face F' of Amp(f). Let D, be the maximal, connected, single marked
Dynkin subdiagram of D which contains v. Let D be the marked Dynkin
diagram obtained from D by erasing the marking of v. Let Q be the parabolic
subgroup of G corresponding to D. Then, as in (1.2.2), we have a map

7Gx (n+0) = G x? @[+ 0).

Let Y, be the normalization of G x@ (& + O;). Then 7 induces a birational
map X¢g — Yp. This is the map ¢r. Note that 7 is locally obtained by a
base change of the generalized Springer map

L(Q) x*@M? (n(L(Q) N Q) + O") — Oy.

Let Z(I(q)) (resp. Z(1(g))) be the center of [(q) (resp. I(q)). By the definition
of Q, the simple factors of [(§)/Z(1(g)) are common to those of I(q)/Z(I(q))
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except one factor, say m. Put O” := O'Nm. By (2.2.1), 7 (or ¢F) is a small
birational map if and only if ©” = 0 and D, is one of the single Dynkin
diagrams listed in (2.2.1). In this case, one can make a new marked Dynkin
diagramD’ from D by replacing D, by its dual D} (cf. [Na], Definition 1).
Let @’ be the parabolic subgroup of G corresponding to D’. We may assume
that Q and @’ are both contained in Q. The Levi part of @’ is conjugate
to that of @); hence there is a nilpotent orbit in [(q’) corresponding to O'.
We denote this orbit by the same O'. Then O is induced from (@', O'). As
above, let X¢ be the normalization of G x% (n(q’) + O’). Then we have a
birational map ¢ : X¢o» — Y. The diagram

XQ — YQ <—XQ/

is a flop. Assume that g : X — O is a Q-factorial terminalization. Then, the
natural birational map X — — — X is an isomorphism in codimension one.
Let L be a g-ample line bundle on X and let Ly, € Pic(Xg) be its proper
transform of L by this birational map. If Ly is f-nef, then X = Xg and f = g.
Assume that Lg is not f-nef. Then one can find a codimension one face F'
of Amp(f) which is negative with respect to Lg. Since Lg is f-movable, the
birational map ¢r : Xg — Yj is small. Then, as seen above, there is a new
(small) birational map ¢ : Xor — Yo. Let f/: Xor — O be the composition
of ¢ with the map Yy — O. Then f'is a Q-factorial terminanization of
O. Replace f by this f’ and repeat the same procedure; but this procedure
ends in finite times (cf. [Na], Proof of Theorem 6.1 on pp. 104, 105). More
explicitly, there is a finite sequence of Q-factorial terminalizations of O:

Xo(Z: XQ) - — — Xl(I: XQ/) e A Xk(: XQk)

such that Lj, € Pic(Xy) is fy-nef. This means that X = Xg,.

Example (2.3). We put G = SP(12). Let O be the nilpotent orbit in
sp(12) with Jordan type [6,3%]. Let Q; C G be a parabolic subgroup with
flag type (3,6,3). The Levi part [; of q; has a direct sum decomposition

[, = gl(3) & sp(6).

Let O be the nilpotent orbit in sp(6) with Jordan type [4,1?]. Then O =

Indff(m)((’)’). Next consider the parabolic subgroup Q2 C SP(6) with flag
type (1,4,1). The Levi part [5 of gy has a direct sum decomposition

[o = gl(1) ® sp(4).
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Let O” be the nilpotent orbit in sp(4) with Jordan type [2,1?]. Then Q' =
Indff(ﬁ)((’)”). One can take a parabolic subgroup @ of SP(12) with flag type
(3,1,4,1,3) in such a way that the Levi part [ of q contains the nilpotent
orbit @”. Then O is the nilpotent orbit induced from O”. We shall illustrate
the induction step above by

(12,17, sp(4)) — ([4,1°], sp(6)) — ([6,37], sp(12)).

Since O" has only Q-factorial terminal singularities, the Q-factorial termi-
nalization of O is given by the generalized Springer map

v:Gx9(n(q)+0") — O.
The induction step is not unique; we have another induction step
([2,1%), sp(4)) — ([4,3%], sp(10)) — ([6,3%], sp(12)).
By these inductions, we get another generalized Springer map
VG x9 (n(q)+0") — O,

where @' is a parabolic subgroup of G with flag type (1,3,4,3,1). This gives
another Q-factorial terminalization of 0. The two Q-factorial terminaliza-
tions of O are connected by a Mukai flop of type As.
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Twisted Fourier-Mukai number of a K3 surface

Shouhei Ma*

In my poster, I exhibited a counting formula for the twisted Fourier-Mukai
(FM) partners of a projective K3 surface. Let S be a projective K3 surface over
C. A twisted K3 surface (5, ') is called a twisted FM partner of S if there
is an exact equivalence D?(S) ~ DP(S’,a’) between their derived categories.
Let FMY(S) be the set of isomorphism classes of twisted FM partners (S, o)
of S with ord(a’) = d. I calculated the number #FM?(S) from severel lattice-
theoretic informations about the lattice H2(S, Z) equipped with a natural Hodge
structure. The number ), #FM?(S) has the following meanings.

e The number of certain geometric origins of the category D?(S).

e The number of isomorphism classes of 2-dimensional compact moduli
spaces of stable sheaves on S, considered with natural obstruction classes.

e The number of the 0-dimensional cusps of the Kahler moduli of S.

Now the formula is stated as follows.

Theorem 0.1. Let e(d) = 1 or 2 according to d < 2 or > 3. For a projective
K3 surface S the following formula holds.

x

#FMd(S) = Z { Z #(OHodge(Txa az)\O(Dar)/O(M) )
M

M’

+ &(d) Z#(OHOdge(Txa O‘x)\O(DM’)/O(M/>) } .

Here x runs over the set Opoage(T(S))\I?(Dns(s)) and the lattices M, M’ run
over the sets G1(M,), Go(M,) respectively.

This formula is simplified if S satisfies either of the following conditions : (1)
The Neron-Severi lattice N.S(S) contains the hyperbolic plane U. (2) NS(S) is
2-elementary. (3) The rank of NS(S) equals to 1.

As an application of the formula, I gave a set of explicit Mukai vectors for a
projective K3 surface of Picard number 1 such that the set of the corresponding
moduli spaces of stable sheaves, considered with natural obstruction classes,
coincides with the set FM?(S).

Finally, I would like to express my gratitude to the organizers for their efforts
for the wonderful symposium.

*University of Tokyo, E-mail: sma@ms.u-tokyo.ac.jp



Enriques surfaces covered by Jacobian Kummer surfaces

October, 2008.
at Kinosaki.
H. Ohashi, RIMS, Kyoto Univ.

1 Introduction 2 Main Result
Jacobian Kummer surface X Main Theorem There are 31 = 6+ 10 + 15 fixed-point-
free involutions on X, up to the isomorphism of the quo-
C: a genus 2 curve tient Enriques surfaces.
(8 They are exactly as follows.
J(C) = Pic®(C): Jacobian of C
4 . .
X = Km(J(C)) := J(C)/{=1} 3 free involutions on X
(Kummer’s quartic surface) -
U Switches

X := Km(J(C)): the minimal desing. of X.
Os={p—plpeC}.

50 For p € J(C), (05 +p)N (05 —p) = {q, —q}.
og: £pr Xq.
l/ﬂ

o3 € Bir(X) = Aut(X).

X min_defi(nf KEm(J(C)) ( runs over even theta characteristics of C'; we obtain 10

free switches.
HG involutions

Restriction of the Cremona involution to X:

Definition 1111
X is Picard-general if p(X) = 17, which we assume in what oG (z,y,2,t) — (Ev 57 PR ;)
follows.

G : four points of X, called Gopel subgroup.

oq is well-defined, because

Aut(X) h?bj been stuflied by many authors. Theorem[Hutchinson] If we choose the four points of G
One definitive result is the following as the reference points of P3, the equation of X becomes
Theorem(S. Kondo, 1998)
Aut(X) is generated by A2 + y?2%) + B(y*t? + 2%2?) + O (22 + 2%y?) + Dayzt
o . E(yt + zz)(2t + wy) + G(2t + wy) (vt +yz) + H(xt +yz)(yt + zz)
16 x 4 Klein’s involutions (tu, 08, Pas P3), 0
60 Hutchinson’s involutions (og), -
192 Keum’s automorphisms (¢w,w). There are 15 Gopel subgroups.

HW involutions

Where Restriction of the Cremona involution oy : (s;) +— (s; ')

a € {2-torsion pts of J(C)}, of P* to Xy, where W: a Weber hexad (definition omit-

3 € {theta characteristics of C}. ted), Xw: another quartic model of X.

— |Op3(2)—W
X | ]}1'3_(_)-) ‘ XW - ]P)4.

Theorem[Hutchinson] The equation of Xy is
Corollary of the Main Theorem

. 5 5
Aut(X) is generated by Z 5 = Z Ai/si=0, A €C*.
i=1

i=1

16 x 4 Klein’s involutions (t«, 08, Pa;P3),
60 Hutchinson’s(HG) involutions (og), We obtain 6 HW involutions.
192 Hutchinson- Weber(HW) involutions (ow ).

4 Sketch of the Proof

We compute certain invariant, the patching subgroups of
free involutions. For our X, it exactly classifies the isom.
classes of quotient Enriques surfaces. The definition of it
uses Nikulin’s lattice theory.

Where did oy come from ?
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On finite group actions on an irreducible symplectic 4-fold
Kotaro Kawatani
Osaka universty

1 Introduction

In this section, we will talk about background of our
study. At first, we define an irreducible symplectic
manifold.

Definition 1.1. Let X be a compact Kdihler mani-
fold. When following two conditions are satisfied, we
call X irreducible symplcetic manifold.

1. X is simply connected.

2. H'(X,0%) = C(ox). where ox is an every-
where non-degenerate holomorphic 2-form.

In particular oy is said to be the symplectic form.

Remark 1.2. From existence of symplectic form,
dim X is even, and a canonical bundle Kx is triv-
ial. i.e.

dim X = 2’)’L, KX = OX

We will introduce some famous examples. The
easiest example is a K3 surface. Kodaira proved that
a deformation equivalent class of K3 surface is unique.
In higher dimensional case, there are only 4 types of
deformation equivalent class which have been already
known. Representative elements of each class are be-
low.

r Example ~N

(i) m-pointed Hilbert scheme of K3 surface,
Hilb™(K3) ([Bea])

(ii) Generalized Kummer variety defined by
Abelian surface A. We denote it by Kum"(A)
([Bea]). Definition of Kum™(A) is below.

7 Hilb" T (A) £ Sym™tH(A) S A4

Where p is Hilbert-Chow morphism. We define
Kum™(A) := 7~1(0).

(iii),(iv) O’Grady’s six and ten dimensional ex-
ample ([Ogr2],[Ogr])

J

We don’t know whether above classes are all or
not. By the way, Beaville and Donagi found another
explicit example which is different from (i)0O (iv). Let
Y be a smooth cubic 4-fold, and let F(Y") be all lines
contained in Y. Then F(Y) is an irreducible sym-
plectic 4-fold ([B-DJ]). However, F(Y) is deformation
equivalent to a 2-pointed Hilbert scheme of a certain
K3 surface Hilb*(K3).

We investigated finite group actions on F(Y) to
make a new deformation equivalent class. We could
not find it, but we met very interesting phenomena.
We will introduce a part of them.

2 Preparation

In this section, we prepare some tools of our study.

Definition 2.1. Let Y be a smooth cubic 4-fold. Let
F(Y) be all lines contained inY . i.e

F(Y):={lCY[l 2P degl =1}

Remark 2.2. F(Y) is a compact complex manifold
whose dimension is 4.

Proposition 2.3 (Beauville-Donagi, [B-D]).
F(Y)is an irreducible symplectic manifold. In par-
ticular, F(Y') is deformation equivalent to 2-pointed
Hilbert scheme of a certain K3 surface Hilb®> K 3.

Let G be a finite group;
G C PGL(5), G™Y.

Since we want to make an irreducible symplectic
manifold, first question is below.

Qustion 1. When does G™F(Y) preserve the
symplectic form ¢

Let T" be a universal family of F(Y).

I:={(ly)e FY) x Y|l 5>y}

There are two natural projections p : I' — F(Y)
and ¢ : I' — Y. We define Abel-Jacobi map « :
HY(Y,C) —» H*(F(Y),C) as a(w) := p.q*(w). Abel-
Jacobi map tells us whether G preserves the symplec-
tic form or not.

H(Y,C) H?(F(Y

H3,1( ) H2O(F

(C<R€S%> —_— (C<O'F(y)>

Where Q is five form on C® defined as Q :=
Z?:o( 1)izidzo A - -dz; -+ A dzs. Since Abel-Jacobi
map « is G—equlvarlant, we get a following lemma.

Answer of Question 1.

Lemma 2.4. Notations as above.

G preserves op(yy <= G preserves Resﬁ

In general, F(Y)/G may have singular points. So, we
have to take resolution of F(Y)/G. We require that
a resolution of F(Y)/G has a symplectic form. So,
second question is

Qustion 2. When does F(Y)/G have a crepant
resolution F( )/G ?

It is easy to find group actions G™F(Y) which pre-
serve the symplectic form, but it’s difficult to find

—~

group actions such that F(Y)/G exists.
We have two examples of* good” actions. In this
poster, our topic is one of them.

3 First example

First example was found by Namikawa.

Assumption
4 P A
We consider special cubic 4-fold Y;

Y= {f(Z(),Zl,ZQ) +g(23,2’472’5) = O}’

where f and g are homogeneous polynomial with
degree 3.

Assume that G = Zs(order three cyclic group)
and 7 is a generator of G: G = (1) = Zs. We
consider following group action;

TOP% as (20021 22 : 231 C2a : (25),

where (zg : -+ : z5) is homogeneous coordinate

of P, and ¢ = exp(%ﬁ). In particular, G acts

onY.

- J
From Lemma 2.4, we know that the induced ac-

tion on F(Y") preserves the symplectic form. Next we

consider singular points of F(Y)/Zs.

Does F(Y)/Zs3 have a crepant resolution ?
{23—2’4—25—0} PZ

Q (/Z = ([ (20,21, 22) = 0}

l Smg Y)/Zs3) = {l = (pg)lp € C, q € D}

@ (/Z = {g(z3, 24, 25) = 0}

A/{ZO—Zl—ZQ—O}—Pz
C and D are elliptic curves defined as above. CUD
is fixed locus of Z3™Y. Singular locus of F(Y)/Z3 is
isomorphic to C' x D. Since Zg preserves the symplec-
tic form, F'(Y)/Zs has As singularities along C' x D.
So, F(Y)/Z3 does exist. What is F(Y)/Z3 ?
Answer

Proposition 3.1 ([Nam)]). Notations as above.
F(Y)/Zs is birational to Kum?(C x D)

Remark 3.2. If two irreducible symplectic manifold X
and X’ are birational, then X and X’ are deformation

equivalent. So, F(Y')/Z3 is not new example.

—_—~—

Proof. We construct birational map ¢ : F(Y)/Z3 --+
Kum?(C x D). Instant picture of ¢ is below.

[,

Y AL, T (D} = s @) i

Let {1,7(1), 72(1)} be in F(Y)/Zs. Let W, be a liner
space spanned by [, 7(l) and 7%(1).

Wy = (1, 7(1), 7)) = P3.

Suppose that P = {z3 = z4 = 25 = 0}, P =
{z0 = z1 = 22 = 0}. If we choose [ in general,
we may assume that S := W; NY is a smooth cu-
bic surface. There are 27 lines in S(classical re-
sults). From the configuration of 27 lines, we know
that there exist three lines mgq,mg, m3 such that
each m; meets [,7(l),72() like above picture. Each
m;(i = 1,2,3) meets C (resp D) at one point. So
we set notations as p; = m; N C,q; := m; N D. Since
three points {p1, pa, p3}(resp. {q1. g2, 3}) are coliner,
p1+p2+p3=0¢€CC(resp. q1 +g2+¢g3=0¢€ D). So
we have a pair of three points {(pi, ¢:;)}5_;. O

Where is the indeterminacy of ¢ 7
We determine the indeterminacy of ¢ and 1.
Indeterminacy of v is

([1] == {1, 7(1), (1)} € F(Y)/Z3 |[I] spans P2}.

This locus is 18 copies of P2. Indeterminacy of 1)1
are two types. First one is

Py = {(p a): (p,¢2), (p,g3)} € Kum(C'xD)[3p = 0}

Second one is

Pury = {{(»1,9), (P2, 9), (p3,¢)} € Kum(C'xD)|3¢q = 0}

Py and P(py are isomorphic to 9 copies of P2,

Let X and X’ be an irreducible symplectic 4-fold.
It is known that any birational map from X to X’
is decomposed into Mukai-flop. We have a following
theorem.

Theorem 3.3. The indeterminacy of ¥ can be re-
solved by Mukai-flop on 18 copies of P2.
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Flips and variation of moduli scheme
of sheaves on a surface

Kimiko Yamada
Dept. of Math., Kyoto Univ., Japan. kyamada@math.kyoto-u.ac.jp

Let H be an ample line bundle on a non-singular projective surface X over C.
Denote by M (H) the coarse moduli scheme of rank-two H-stable sheaves on X with
Chern classes (1, ¢y, c2). We shall consider birational aspects of the problem how
M (H) changes as H varies. See arXiv:0811.3522 for details.

There is a union of hyperplanes W C Amp(X) called (¢, ¢)-walls in the ample
cone Amp(X) such that M (H) changes only when H passes through walls. Let H
and H, be ample line bundles separated by just one wall W, and Hy =tH + (1 —
t)Hy lie in W. (More exactly, we also consider parabolic stability.) For simplicity
we assume that M, are compact, that is valid if ¢; = 0 and ¢ is odd for example.
Denote My = M(Hy) and My = M(H,). There are natural morphisms f : M —
My and fy : My — M,. Let f: X — Y be a birational proper morphism such that
K is Q-Cartier and — Ky is f-ample, and that the codimension of the exceptional
set Ex(f) of f is more than 1. We say a birational proper morphism f, : X; — Y
is a flip of f if (1) Kx, is Q-Cartier, (2) Kx, is fi-ample and (3) the codimension
of the exceptional set Ex(f,) is more than 1.

Theorem 0.1. Assume cy is sufficiently large. Suppose Kx does not lies in the
wall W separating H and H,, and that Kx and H lie in the same connected
components of NS(X)g \ W. (See the left gure below.) Then the birational map

(1) My oM

Suppose M (H) is compact, and let us observe this theorem in case where X is
minimal and x(X) > 1. There is an ample line bundle Hx such that no wall of type
(c1,¢2) divides Kx and Hyx. When H € {(1 —t)Hy + tKx|t € [0,1)} starts from a
polarization Hy and gets closer to Kx, one gets a finite sequence of flips

M(H = Hy)---> M(H,) --->M(Hy = Hy),

which terminates in M(Hx). (See the right figure above.) It is known that the

canonical divisor of M(Hx) is nef. Thus one can regard this “natural” process

described in a moduli-theoretic way as an analogy of minimal model program of

M (H), although it is unknown whether M (Hx) admits only terminal singularities.
1
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ACTIONS OF LINEAR ALGEBRAIC GROUPS OF EXCEPTIONAL TYPE ON PROJECTIVE VARIETIES

Kiwamu WATANABE
Waseda University / JSPS Reserch Fellow (DC1)

Question

Main Theorem (W)

X: smooth proj. var. of dim. n/ C,

n =rqg+ 1 = What Kinds of varieties appear?

G: simple linear alg. group of exceptional type,

G ~ X IlOIl-tl'iVial, n — rG =+ 1. - Theorem [A, ’()1] N
Then X is one of the following: It n =rg + 1 and G 1s classical, then X 1s one of the following:
1) P", 2) 0",

MHF, (20 o hp

(3) P(Ip2), (4) Co(wy + wy),
(3) E6(w1)9 (4) Gr(w1 + wy), (5) Y x C, where Y is P*~! or 0"! and C is a smooth curve,

(6) P(Oy & Oy(m)), where Y 1s as 1n (5) and m > 0.
(S)Y xC, . o N

Furthermore, the action of G 1s unique for each case 1t G 1s simply
where Y is Eq(w1), E7(w1), Eg(wy), connected.

J

Fy(w1), F4lws), Ga(wy) or Gz(w;)

and C is a smooth curve, o Points of Our Argument

(6) P(O y D O y(m)), G-equiv. extremal contraction of X + G-orbit

where Y is as in (5) and m > 0. ¢

: : : determination of the structure of X.
Furthermore, the action of G is unique for each case

if G is simply connected.

Difterent point

¢ Known Results (Andreatta’s Work) G: classical = G-orbit: well-known var.

, | G: except. = G-orbit: not well-known var.
G ~ X, G: simple alg. gp. of Dynkin type.

X: non-G-homog. var. with p(X) = 1 = 4G /P C X: ample div.

xrg :=min{ dimG/P | P Cc G : parabol. subgp. }

* (. classical

= G/P =P" ! or Q!

TABLE ) )
G rg Xstn=rg Grg Xstn=rg = X = P" or Q" (well-known fact).
A p! Eq 16 E¢(w1) *x G: exceptional
B 2i-1 01 E;27 E7(wy) = G/P = E¢(wy), E7(wy), Eg(wy), Fa(wy), Fa(ws), Ga(wy) or
c, -1 PV Eg57T  Eg(w) Go(w).
D21-2 02 F415 Fa(wi) = X = P% 0° or E¢(w) by the following.
G 5 Gowy) or Go(wy) \

(X, L): sm. polarized var. s.t. A € |L|: homog. var. with p(A) = 1.
If dimA > 2, then (X, L) 1s one of the following:

w: dom. int. weight of G

V! 1rt. rep. sp. of G with highest weight w
G(w): min. orbit of Gin B(V,,) | (D E" L 0pi(@),i= 1,2, (2)(Q",0gm(1)),

(3) (G(2,C™), Opiiicker(1),  (4) (E6(@1), O () (D).
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On the birational unboundedness of higher dimensional

Q-Fano varieties

Takuzo Okada

Research Institute for Mathematical Sciences, Kyoto University

October 20-24, 2008

1 Introduction

By a Q-Fano variety, we mean a normal projective Q-factorial va-
riety with only log terminal singularities whose anticanonical divisor is
ample.

We say that a class of varieties U is birationally bounded if there
is a morphism f: X — S between algebraic schemes such that every
variety in ¥ is birational to one of the geometric fibres of f. We say
that U is birationally unbounded if it is not birationally bounded.

Main theorem

Theorem 1. If n > 6 then the family of Q-Fano n-folds defined
over C with Picard number one is birationally unbounded.

This result is known for 3-folds by the work of J. Lin [3].

Conjecture 2 (Borisov-Alexeev-Borisov). Fix € > 0. Then the family
of Q-Fano varieties of a given dimension with log discrepancy greater
than € is bounded.

Conjecture 2 is solved in the surface case by Alexeev and in the toric
case by A. Borisov and V. Borisov. Theorem 1 shows that we can-
not remove the restriction on log discrepancies from the hypothesis of
Conjecture 2 even if we replace “boundedness” by “birational bound-
edness”.

Followings are some of the classes of Q-Fano varieties which have
been known to be bounded:

e Smooth Fano varieties (in arbitrary dimension) (cf. [1]).

e Q-Fano 3-folds with canonical singularities (cf. [2]).

e Log terminal Q-Fano pairs of bounded index (in arbitrary dimen-

sion) (cf. [4]).
2 QOutline of the proof

Let a,l,m and n be positive integers, where a and [ are odd. Put
b= (al —1)/2. Let k be an algebraically closed field of char 2.

Step 1. Non-ruled Q-Fano weighted hypersurfaces.

Let k[xg, ..., x,] and k[x, ..., z,,y] be the graded rings whose grad-
ings are given by degx; = 1 for 0 <i <m,degx; =aform+1<i<n

and degy = b. We define weighted projective spaces as follows.

m+1 n m

NN
o P, =P(1,...,1,a,...,a,b) := Proj klzo, ..., T,y
m+1 n m
— e —
o Qr=Pc(1,...,1,a,...,a) ;= Proj k[xg, ..., x,).

For f = f(zo,..., %)
o Xj:i=(y*zo — f(
Condition 3. (1) lisodd, 4 <nand 0 <m < n.

€ klzo, ..., z,]a (the degree al part), we define
Io,...,JZn) :0) CPk

(2) n—m+1<l<2(n—m).

— Non-ruled weighted hypersurfaces —
Theorem 4 ([5], Theorem 7.3). Assume that [,m and n satisfy

Condition 3. Then, the following assertions hold for every odd
integer a > (m +1)/2.

(1) The weighted hypersurface X; C Pc of degree al defined over
C is a non-ruled Q-Fano n-fold with Picard number one for a
very general f € Clxg, ..., Tp]a-

(2) The weighted hypersurface X; C P of degree al defined over
k is not separably uniruled for a general f € k|xo, ..., Zy]a-

\ y

Step 2. Construction of “large” birationally trivial families.
For fixed [, m and n satisfying Condition 3, let X, — S, be the family
of weighted hypersurfaces Xy C P of degree al defined over k.
We say that a family of varieties is birationally trivial if every two
members of the family are birational.

e Large” birationally trivial families ~

Lemma 5. Suppose that the family of Q-Fano n-folds defined over
C with Picard number one is birationally bounded. Then, there
exists a constant R such that, for every odd integer a > m + 1 and
a general point s, € S,, there is a closed subvariety B, of S, with
the following properties:

(1) B, parametrizes a birationally trivial family.
(2) B, passes through s,.
(3) dimS, — dim B, < R.

J
Remark 6. Suppose that [, m,n satisfy Condition 3. Let a; > m + 1

be an odd integer and f; € Clxy,...,2Z,|s; be a very general element
for i = 1,2. We can prove that if X and Xy, are birational (over C)
then their reduction mod 2 models are also birational (over k). This
observation is crucial in the proof of Lemma 5.

Step 3. Bounding birationally trivial families in char 2.

Let f € k[xo, ..., z,|a be a general element. We denote by : X :=
Xt --+ Qx the restriction of the natural projection Py --» Q.

If we are over k, [, m, n satisfy Condition 3 and a > m+1, then there
is a big line bundle £ C Q- ! on a smooth model Y of X. By analyzing
the rational map associated to £, we obtain the following.

Birational invariance of the ma
e Py R

Lemma 7. Suppose that {,m and n satisfy [ < 2(n —m) — 1 in
addition to Condition 3. Let @ > m + 1 be an odd integer and f €
klxo, ..., %n]a & general element. Then, the map ;: Xy --» Q is
a birational invariant.

This means that, if g € k[xg,...,2,]s; is also general for some
a’ > m+1 and there is a birational map : X; --» X, thena = ¢/,

is an isomorphism and there is an automorphism  of ), such
that the diagram

X;—— X,

Tf i Tg

Qk?@k

commutes.

J

By Lemma 7, we can bound the dimension of birationally trivial
subfamilies of X, /S,.

s Bounding birationally trivial families ~

Lemma 8. Suppose that [,m and n satisfy [ < 2(n —m) — 1 in
addition to Condition 3. Then, for every odd integer a > m + 1
and a general point s, € S,, there is a closed subvariety W, of S,
with the following properties:

(1) W, parametrizes the members which are birational to the
member corresponds to s,.

(2) dimS, — dim W, — oo as a — 0.

NS J
If n > 6, then we can find /,m and n satisfying [ < 2(n —m) — 1 in

addition to Condition 3. Now Theorem 1 follows from Lemma 5 and 8.
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On Mixed Plurigenera of Algebraic Plane Curves

Hiroko Yanaba [
Tokyo Denki Univeristy

The purpose is to study algebraic plane curves from the
viewpoint of birational geometry of pairs by making use
of mixed plurigenera. To introduce the notion of mixed
plurigenera, we begin by recalling birational geometry of
pairs (S, D) where D is an algebraic curve on an algebraic
surface S.

We shall consider algebraic varieties defined over the
field of complex numbers. Here by a surface we mean a
2-dimensional projective non-singular variety.

When D is a non-singular curve on .S, we consider com-
plete linear systems |mKg + aD| where K is a canonical
divisor on S and m > a > 0.

It is not hard to check that dim|mKg + aD] is bira-
tionally invariant. Hence, dim |mKg + aD| + 1, denoted
by P..o[D], is called (m,a)-genus of the pair (S, D). Oc-
casionally, it is called (m,a)-genus of D. (m,a)-genera
may be called mixed plurigenera. Note that (m,0)-genus
becomes m-genus of S and (m,m)-genus turns out to be
logarithmic m-genus of S — D, written simply as P,,[D].
From P,,[D], the Kodaira dimension x[D] is introduced.

In what follows, suppose that S is a rational surface.
Thus the study of pairs (S, D) may be understood as bi-
rational geometry of plane curves.

Let C be a curve on P2. Then after successive blowing
ups, we obtain a non-singular curve D and a surface S
which is obtained from P2, Then (S, D) is birationally
equivalent to (P2, C). By making use of (S, D), we define
P,,.4[C] to be P, ,[D].

Occasinally, (S, D) is said to be a non-singular model of
the pair (P2, 0).

In 1928, Coolidge studied algebraic plane curves C' and
obtained the remarkable result to the effect that any ra-
tional plane curve can be transformed into a straight line
on P2 by a birational transformation of P2, whenever
P51[C] = 0. In this case, &[C] = —o0.

In 1961, Nagata obtained the following result. If g =
g(D) > 0, then D? < 4g + 5. Further if D? = 4g + 5,
then g = 1 and (S, D) is birationally equivalent to (P2,T),
where I' is a non-singular cubic.

Since 1983, the theory of minimal models (S, D) was
introduced and has been extensively studied by litaka. He
determined the structure of (S, D) when x[D] = 0 or 1.
Moreover he showed that, if k[D] = 2, then any relatively
minimal pair (S, D) becomes minimal. Therefore, given
a plane curve C, we have a minimal pair (S, D) which is
birationally equivalent to (P2, C), provided that x[D] = 2.
Hereafter we suppose x[D] = 2.

When S # P2, the minimal model (S, D) is derived from
a f-minimal pair (Xp,C), X being a Hirzebruch surface,

which has type
[0*67B;V13V27"’ 7Vr]

By Riemann-Roch theorem and vanishing theorem due
to Kawamata, the following formulas are obtained by

Titaka:
P D] = Z*+2-—g,
Py1[D] = 3Z°+8-Tg+D? (0>6)
Pip[D] = (2Z-D)*+2(Z2° —g+1)+1,
where Z = Kg + D.
Moreover,
Py [D] = 2% +2 (9=0),
PQ[D} = P271[D]+1:ZZ+2 (gil),
( )

Py [D]+39-3=2>+2g—1

Thus, mixed plurigenera (m,a)-genus are computed
through ¢, Z% and D2

So far, the structures of pairs (S, D) have been studied
in the following cases: (1). P,[D] =29 — 1,2g,2g + 1. (2).
Py1[D] =1,2,3. (3). Ps1[D] =1,2,3.

Here, we shall enumerate the types of pairs (.S, D) in the
following cases: P»[D] = 29 + 2, P»1[D] = 4, Ps1[D] =
4, 5, 6 and P472[D] § 12.

The tables of these types will appear in the bottom of
sections.

Finally, we shall give concrete examples which satisfy

P[D]| <29 +2,P1[D] <4,P31[D] <6

Table 1: P3’1[D] =4

k= Py1[D] — 2.

p | « | prototype k g
1|2 [[7x71] 119 | 36
[7 % 14,2; 1] 119 | 36

1 [ [9%13,1;4%] 1 0
0] 6 [6x91] 133 | 40
2 [ [8%9;4% 4 8

0 | [14%14;77,6,4] 1 1

[12 % 12;6°, 53]* 1 1

[12 % 12;67, 5] 3 6

[10 % 10;57]* 5 11

[10 * 10; 56, 43]* 2 3
[8 x 8; 4°]* 8 19
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