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1. Introduction to differential Ga-
lois theory

A differential field is a field K provided with a

differentiation ′. We suppose that the field of

constants C := {a ∈ K| a′ = 0} is algebraically

closed, has characteristic zero and C 6= K.

The basic example is K = C(z) and ′ = d
dz. A

homogeneous linear differential equation over

K has the form

Ly = 0; L = ∂n + an−1∂n−1 + · · ·+ a1∂ + a0,



∂ = ′ =
d

dz
; all ai ∈ K.

The solutions y ∈ K form a C-vector space.

One expects that this space has dimension n.

However, in general, there are not enough so-

lutions in K itself. There exists a minimal dif-

ferential ring R ⊃ K such that the solutions

y ∈ R form indeed a C-vector space of dimen-

sion n. This R is unique, up to non unique

isomorphism, and is called the Picard-Vessiot

ring of the equation L over K.

One builds R as follows. Consider the differ-

ential ring

R0 = K[X1, . . . , Xn, X
(1)
1 , · · · , X

(n−1)
n−1 , X

(n−1)
n ,

1

D
],

where ′ on K is the given one; X ′
i := X

(1)
i ;

(X(1)
i )′ = X

(2)
i etc.,

(X(n−1)
i )′+an−1X

(n−1)
i + · · ·+a1X

(1)
i +a0Xi =

0 and D = det(X(j)
i )n−1

i,j=0.



Let I ⊂ R0 be an ideal, maximal among the

differential ideals of R0. Then I is a prime

ideal and R = R0/I is the Picard-Vessiot ring.

Its field of fractions is the Picard-Vessiot field

of L over K.

The differential Galois group G of L/K is the

group of the K-linear differential automorphisms

of R = K[x1, . . . , xn, . . . ].

An element g ∈ G acts linearly on the solution

space V := Cx1 + · · ·+ Cxn.

This induces a homomorphism G → GL(V ),

which is injective and has as image a linear

algebraic group. Thus the differential Galois

group has a natural structure as linear alge-

braic group and V is a faithful representation

of G. The Lie algebra g of G can be identified

with the K-linear derivations d on R commut-

ing with ′. Further V is a faithful representa-

tion of g.



Examples.

(1). y′ = ay has differential Galois group G ⊂
C∗. Let m ≥ 1 be minimal such that f ′ = maf

has a non zero solution t in K, then R =

K( m
√

t) and G = µm. If m does not exists,

then G = C∗.

(2). If y′ = a has no solution in K, then

R = K[t] with t′ = a and G = C.

For K = C(z) it is easy to provide an algorithm

for these examples.

(3). A breakthrough is Jerry Kovacic’s algo-

rithm which computes the Picard-Vessiot ring

and the differential Galois group for the order

two linear equations y′′ + a1y′ + a0y = 0. It is

based upon the following classification of (the

conjugacy classes) of the algebraic subgroups

H ⊂ SL(2, C)



(a). H = SL2(C);

(b). H is a subgroup of the Borel group B;

(c). H is not contained in the Borel group B

and lies in the infinite dihedral group D∞;

(d). H is one of the groups A
SL2
4 , S

SL2
4 , A

SL2
5 ,

i.e., the preimages of the groups A4, S4, A5 ⊂
PSL(2, C) under SL(2, C) → PSL(2, C).

With a small trick one reduces to a1 = 0 and

then the differential Galois group lies in SL(2, C).

One considers the Riccati equation u′ + u2 +

a0 = 0 satisfied by u = y′
y if y′′ + a0y = 0

and y 6= 0. In case (a) the Riccati equation

has no algebraic solution. In the next cases

the Riccati equation has an algebraic solution

of degrees 1, 2, 4, 6, 12. For the differential

field K = C(z) there is an algorithm computing

the algebraic solutions of this Riccati equation.

This algorithm first computes truncated local

formal solutions at the singular points of the

equation (i.e., the poles of a0) and then tries



to match these data globally.

Example: y′′ = ry, u′ + u2 = r := 5
16z−2 + z.

The truncated local solutions at z = 0 are

u = (1
2 ±

3
4)z

−1 + ∗z>0 and at z = ∞ they are

±z1/2+∗z≤0. Inspection of the 4 combinations

yield the solutions u = −1
4z−1 ± z1/2. A basis

of solutions for y′′ = ry is then z−1/4e±
2
3z3/2

.

The differential Galois group is D∞.

(4). There is a vast literature on extending

Kovacic’s algorithm to higher order equations.

Everything is based upon the classification of

the algebraic subgroups of SL(n, C) and repre-

sentations of linear algebraic groups. A basic

ingredient is the (local formal, global) factor-

ization of differential operators by Mark van

Hoeij and others.



(5). A result of C. Tretkoff and M. Tretkoff

is: any linear algebraic group G ⊂ GL(n, C)

can be realized as differential Galois group of

a regular singular differential equation of order

n over the field C(z).

More sophisticated solutions of the ‘inverse prob-

lem’, involving irregular singularities, have been

developed by J.-P. Ramis. Explicit equations

have been found by M.F. Singer and C. Mitschi.

As an example: any connected semi-simple

group G can be obtained as the differential

Galois group of a matrix differential equation

of the form y′ = (A0 + A1z)y with A0, A1 ∈
Matr(n, C). More recent work of Julia Hart-

mann covers the general case explicitly.

2. The work of Fano
Gino Fano published in 1900 an extremely in-

teresting paper (of almost 100 pages) on linear

differential equations. His aim was to answer



a question posed by L. Fuchs:

Is it possible to express the n independent so-

lutions of a scalar linear differential equation of

order n over K = C(z), under the assumption

that these solutions satisfy a non trivial homo-

geneous equation over C, in terms of solutions

of scalar linear differential equations of lower

order ?

Fano gave a positive answer for n ≤ 6 and

many examples for larger n. An interesting

example is: A basis of solutions for L5 :=

∂5+2p∂3+3p′∂2+(3p′′+p2−4q)∂+(p′′′+pp′−2q′)

with p, q ∈ K can be written as u1u′2 − u′1u2

where u1, u2 are solutions of L4 := ∂4+∂p∂+q.



A modern interpretation of Fano’s method.

Let Ln be again a scalar equation of order n.
Consider the subring C[X1, . . . , Xn] of the ring

R0 = K[X1, . . . , Xn, X
(1)
1 , .., X

(n−1)
n−1 , X

(n−1)
n ,

1

D
],

that we had before. The ideal H ⊂ C[X1, .., Xn],
generated by the homogeneous polynomials in
the variables X1, . . . , Xn that belong to the ideal
I. Since I is a prime ideal, also H is a (homo-
geneous) prime ideal and defines an irreducible
projective variety S ⊂ P(V ) ∼= Pn−1. Fano for-
mulates this by: “the solutions of L lie on S”.
The interpretation of this terminology seems
to be the following.

Take a point z0 in the complex plane where
the equation Ln has n independent local, mero-
morphic solutions f1, . . . , fn. For z in a neigh-
bourhood D of z0, there is a well defined ana-
lytic map m : D → Pn−1, given by the formula



z 7→ (f1(z) : f2(z) : · · · : fn(z)). The smallest

projective subspace of Pn−1, containing the im-

age of m, is easily seen to be S.

The group F that Fano considers is the al-

gebraic subgroup of PGL(V ) consisting of the

elements A with A(S) = S. This group is a

rather coarse approximation of the differential

Galois group G ⊂ GL(n, C). In fact, F contains

the image of G in PGL(n, C) and is, in general,

much larger.

In Fuchs’ question it is given that S 6= Pn−1.

Fano considered especially the cases dimS =

1,2 and S is a hypersurface. Using his exten-

sive knowledge of low dimensional varieties he

was able to prove the conjecture for n ≤ 6.

Example: Let a scalar equation L4 of order

4 give rise to a non singular quadric surface

S ⊂ P3. Now S is the image of P1 × P1 → P3.



This implies that there are two scalar equa-

tions L2, L′2 of order 2 such that a basis of the

solutions of L4 has the form {fg} where f and

g are solutions of L2 and L′2.

A modern solution of Fuchs’ question.

M.F. Singer (1988) produced a counterexam-

ple for n = 7. The complete answer to this

question was given by A.K. Nguyen and MvdP.

The important step is the Observation:

Suppose that the solutions of a linear differen-

tial equation cannot be expressed in terms of

equations of lower order and algebraic exten-

sions of K.

Then the Lie algebra g of the differential Galois

group is simple and its action on the solution

space V is a faithful representation of smallest

dimension.



The question now translates into: Let g be

simple and let V be a faithful representation

of smallest dimension. Does there exists a non

trivial, g-invariant homogeneous form F on V ?

The next table is the answer.

Simple Lie algebras, smallest dimension, degree of F

symbol Lie algebra smallest degF
An n ≥ 1 sln+1 n + 1 NO
Bn n ≥ 3 so2n+1 2n + 1 2
Cn n ≥ 2 sp2n 2n NO
Dn n ≥ 4 so2n 2n 2
E6 e6 27 3
E7 e7 56 4
E8 e8 248 2
F4 f4 26 2
G2 g2 7 2

We note that : so3
∼= sl2, so4

∼= sl2 × sl2,

so5
∼= sp4 and so6

∼= sl4. This confirms Fano’s



result for n ≤ 6 and Singer’s counterexample

is the case so7.

3. Differential modules, Tannakian
categories

In the above example of Fano, the operator L5

corresponds to the Lie algebra g = sp4 and V5

is its 5-dimensional representation. The oper-

ator L4 corresponds to sp4 with the standard

4-dimensional representation. The formula for

the solutions reflects that Λ2V4 = V5 ⊕ 1.

In the sequel we show how this ad hoc case

of reducing a differential equation to one of

lower degree can be done systematically. First

we have to introduce differential modules, re-

placing scalar linear differential equations.



A differential module M is a vector space over

K provided with a C-linear map ∂ : M → M

satisfying ∂(fm) = f ′m + f∂m for f ∈ K, m ∈
M . In other words M is a left K[∂]-module

which has finite dimension over K. It is known

that M has a cyclic vector e, i.e., K[∂]e = M .

Since K[∂] is a left principal ideal domain, one

has M ∼= K[∂]/K[∂]L for some monic operator

L ∈ K[∂]. Operations of linear algebra with

differential modules are the obvious ones. The

translations into operations with operators are

somewhat unnatural.

Let DiffK denote the category of all differen-

tial modules over K. This category has the

following features:

(1) For two objects M, N , there is a tensor

product M⊗N . It is the K-vector space M⊗KN

equipped with ∂(m⊗n) := ∂(m)⊗n + m⊗∂n.

It has a unit object 1 := K equipped with ∂ =′.



(2) For each object M there is a dual M∗ :=

HomK(M, K), equipped with (∂`)(m) = `(∂m)−
(`(m))′ for m ∈ M, ` ∈ M∗.
(3) It is an abelian category, i.e., a category

of (left) modules over some ring, closed un-

der taking kernels, cokernels and finite direct

sums.

(4) There is an isomorphism End(1) ∼= C.

(5) There is a fibre functor ω : DiffK → VectC

(meaning C-linear, faithful, exact, commut-

ing with tensor products). Here VectC de-

notes the category of the finite dimensional

vector spaces over C. Indeed, there exists a

universal Picard-Vessiot ring Univ, the direct

limit of the Picard–Vessiot rings for all objects

M of DiffK. The fibre functor is defined by

M 7→ ω(M) = ker(∂, Univ ⊗K M).

A category with these 5 features (including

a lot of rules and commutative diagrams) is



called a C-linear, neutral Tannakian category.

For any linear algebraic group G over C (or

more generally an affine group scheme over

C) the objects of the category ReprG are the

representations of G on finite dimensional C-

vector spaces and the morphisms are the usual

homomorphisms of representations. This is a

C-linear neutral Tannakian category. The fi-

bre functor ω : ReprG → VectC is the forgetful

functor which associates to a representation V

of G the C-vector space V .

For any (C-linear, neutral) Tannakian category

A and any object M of A one forms the full

subcategory {{M}} whose objects are the sub-

quotients of finite sums of objects of the form

M∗ ⊗ · · · ⊗ M∗ ⊗ M ⊗ · · · ⊗ M . Then {{M}} is

also a neutral Tannakian category. For a set of



objects {Mi} one defines the full subcategory

{{{Mi}}} of A in a similar way.

A useful result, valid for linear algebraic groups

(but not for Lie algebra’s!), is:

Let V be a faithful representation of the linear

algebraic group G over C, then {{V }} = ReprG.

A main result on C-linear, neutral Tannakian

categories is:

For every C-linear, neutral Tannakian category

A, there exists a unique affine group scheme

G over C (i.e., a projective limit of linear alge-

braic groups over C) such that A with all its

structure is equivalent to the category ReprG.



This result applied to DiffK yields an affine

group scheme which is, generally, too big and

too complicated to be useful. However, for any

object M of DiffK, the linear algebraic group

over C corresponding to the C-linear, neutral

Tannakian category {{M}} is the differential

Galois group of M .

Explicitly: Let L ⊃ K denote the Picard–Vessiot

field of M and let G be the group of the K-

linear differential automorphisms of L/K. Then

the equivalence {{M}} → ReprG is given by

N 7→ ker(∂, L ⊗K N). Moreover, the objects

N of {{M}} are the differential modules such

that the solutions of N can be expressed in

the solutions of M . Indeed, the coordinates of

the solutions of M generate the Picard–Vessiot

field extension L of K and the solution space

of N is ker(∂, L⊗K N).



A useful example:

Let g be a semi-simple Lie algebra over C. The

category Reprg is also a neutral Tannakian cat-

egory. The corresponding group is in fact the

simply connected, semi-simple group G+ with

Lie algebra g.

The functor ReprG+ → Reprg, which associates

to each (complex) representation of G+ the

representation of its Lie algebra g, is in fact an

equivalence of Tannakian categories.

A faithful representation W of g of minimal di-

mension can be seen to come from a faithful

representation of G+ of minimal dimension. In

particular {{W}} = Reprg. We give a special

case.

For g = sl2, one has G+ = SL2. The standard

2-dimensional representation W of sl2 comes

from the standard representation of SL2 and



thus {{W}} = Reprsl2. We note that the sec-

ond symmetric power V = sym2W is a faithful

representation of sl2 but {{V }} 6= Reprsl2.

An essential aspect of Fano’s work consists of

reducing (with respect to solutions), if possi-

ble, a differential equation over K = C(z), to

equations of lower order and finite extensions

of K. This leads to replacing K by its algebraic

closure K and to the following translation:

Let M be a differential module over K. Pro-

duce differential modules {Ni} with max {dimNi}
minimal and such that M belongs to {{{Ni}}}.

There are some obvious cases where M can be

solved by modules of lower dimension, e.g., M

reducible or M = A ⊗ B with dimA,dimB <



dimM . We now sketch the proof of the ‘Ob-

servation’ of Section 2:

The differential module M over K cannot be

reduced to modules of lower dimension if and

only if the Lie algebra g of the differential Ga-

lois group is simple and its representation on

the solution space has smallest dimension.

Proof. M is irreducible and one may suppose

that detM = 1 (by solving an equation of order

1). The differential Galois group G ⊂ SL(V ) is

connected (because K is algebraically closed)

and semi-simple because the representation is

irreducible.

Let G+ → G denote the universal covering of

G. Now there is a subtle point, namely the

existence of a differential module M+ over K

with differential Galois group G+ such that M



belongs to {{M+}} and thus {{M}} ⊂ {{M+}}.
The equivalences {{M+}} → ReprG+ → Reprg
permit us to work with representations of g.

Let M correspond to the irreducible represen-

tation V of g. If g is semi-simple but not sim-

ple, then it is known that V is a tensor prod-

uct. Thus g is simple. Let W be a faithful

representation of g of smallest dimension, then

V ∈ {{W}} = Reprg. Thus V has smallest di-

mension. 2

4. Representations of semi-simple
Lie algebras

For an irreducible differential module M , with

a corresponding representation V of a semi-

simple Lie algebra g, there are two cases of

reduction to lower dimension:

(a) g is semi-simple but not simple.

(b) g is simple but V does not have smallest



dimension.

We give explicit data.

A table of irreducible representations

We present here a list of irreducible represen-

tations V, dimV = d, of semi-simple Lie alge-

bras, including the decomposition of Λ2V and

sym2V .

We adopt here and in the sequel the efficient

notation of the online program [LiE] for irre-

ducible representations.

This is the following. After a choice of sim-

ple roots α1, . . . , αd, the Dynkin diagram (with

standard numbering of the vertices by the roots)

and the fundamental weights ω1, . . . , ωd are well

defined. The irreducible representation with

weight n1ω1+· · ·+ndωd is denoted by [n1, . . . , nd].



In particular, [0, . . . ,0] is the trivial representa-

tion of dimension 1.

Table of the irreducible representations of

dimension d ≤ 6.

d Lie alg repr Λ2 sym2

2 sl2 [1] [0] [2]
3 sl2 [2] ∗ [2] [4], [0]
3 sl3 [1,0] [0,1] [2,0]
4 sl2 [3] ∗ [4], [0] [6], [2]
4 sl4 [1,0,0] [0,1,0] [2,0,0]
4 sp4 [1,0] [0,1], [0,0] [2,0]
4 sl2 × sl2 [1]⊗ [1] ∗ [0]⊗ [2], [2]⊗ [0] [0]⊗ [0], [2]⊗ [2]
5 sl2 [4] ∗ [6], [2] [8], [4], [0]
5 sp4 [0,1] ∗ [2,0] [0,2], [0,0]
5 sl5 [1,0,0,0] [0,1,0,0] [2,0,0,0]
6 sl2 [5] ∗ [8], [4], [0] [10], [6], [2]
6 sl3 [2,0] ∗ [2,1] [4,0], [0,2]
6 sl4 [0,1,0] ∗ [1,0,1] [0,2,0], [0,0,0]
6 sl6 [1,0,0,0,0] [0,1,0,0,0] [2,0,0,0,0]
6 sp6 [1,0,0] [0,1,0], [0,0,0] [2,0,0]
6 sl2 × sl2 [1]⊗ [2] ∗ [0], [0]⊗ [4], [2]⊗ [2] [0]⊗ [2], [2]⊗ [0], [2]⊗ [4]
6 sl2 × sl3 [1]⊗ [1,0] ∗ [0]⊗ [2,0], [2]⊗ [0,1] [0]⊗ [0,1], [2]⊗ [2,0]



For the sln with n > 2 we have omitted duals

of representations. Further we have left out

symmetric cases. The ∗ indicates that there

is a reduction to lower dimension and all these

cases are present in Fano’s work.

The decompositions of the second symmetric

power and the second exterior power are useful

to distinguish the various cases. We are here

especially interested in those representations

which can be expressed in terms of representa-

tions of lower dimension. In dimensions 7−11,

one finds for the new items of this sort (here

we omit the case sl2 and duals and symmetric

situations) the list:

sl3 with [1,1] (dim 8), [3,0] (dim 10);

sl4 with [2,0,0] (dim 10);

sl5 with [0,1,0,0](dim 10);

so7 with [0,0,1](dim 8);

sp4 with [2,0](dim 10);

sl2 × sl2 with [1] ⊗ [3] (dim 8), with [2] ⊗ [2]



(dim 9), with [1]⊗ [4] (dim 10);

sl2× sl3 with [2]⊗ [1,0] (dim 9); sl2× sl4 with

[1]⊗ [1,0,0] (dim 8);

sl2×sp4 with [1]⊗[1,0] (dim 8), with [1]⊗[0,1]

(dim 10);

sl2×sl5 with [1]⊗[1,0,0,0] (dim 10); sl3×sl3
with [1,0]⊗ [1,0] (dim 9);

sl2 × sl2 × sl2 with [1]⊗ [1]⊗ [1] (dim 8).

Subcategories of Reprg for a semi-simple g

Let G+ denote the simply connected, linear al-

gebraic group with Lie algebra g. Its center Z

is a finite group. Any connected group with

Lie algebra g has the form G+/Z′ where Z′ is a

subgroup of Z. The list of the groups Z that

occur for the simple Lie algebra’s is:

Z/(n+1)Z for An; Z/2Z for B`, C`, E7; Z/2Z×
Z/2Z for D` with ` even; Z/4Z for D` with `

odd; Z/3Z for E6; 0 for E8, F4, G2.



As remarked before, the obvious functor T :
ReprG+ → Reprg is an equivalence of Tan-
nakian categories. For any subgroup Z′ of Z,
the restriction of the functor T to ReprG+/Z′
induces an equivalence with a full Tannakian
subcategory of Reprg. And this describes all
these subcategories. The largest one Reprg,
corresponding to G+, equals {{V }}, where V is
the standard faithful g-module. The smallest
one, corresponding to G+/Z, equals {{W}},
where W is the adjoint representation.

Example: G+ = SL3 is simply connected and
g = sl3. There is only one other connected
group with Lie algebra sl3, namely PSL3 =
SL3/µ3. Let V be the standard representa-
tion of SL3 with T -image (sl3, [1,0]). Then
sym3V is a faithful representation for PSL3

and its T -image is W := (sl3, [3,0]). Then
{{V }} = Reprsl3

and {{W}} is the full sub-
category of Reprsl3

for which the irreducible



objects are the [a, b] with a ≡ b mod 3. The

adjoint representation of PSL3 on sl3 has T -

image (sl3, [1,1]) which also generates this full

subcategory.

5. Strategy for reduction to lower
dimension

The essential case to consider is an irreducible

differential module N over K with connected

differential Galois group and such that the ac-

tion of its semi-simple Lie algebra g on the so-

lution space is the adjoint representation. We

will call N an adjoint differential module.

An explicit standard differential module (M, ∂S)

for g is defined by:



(a) Let, as before, G+ be the simply con-

nected group with Lie algebra g. Write G+ =

G1 × · · · × Gs with each Gi simple and let Vi

be a faithful representation of smallest dimen-

sion of Gi. Define the (standard) G+-module

V := ⊕s
i=1Vi.

(b) Define M := K ⊗C V and define ∂S on M

by ∂S = ∂0 + S. Here ∂0 is the derivation on

M given by ∂0(f ⊗ v) = f ′⊗ v for f ∈ K, v ∈ V .

Further g ⊂ End(V ) and S ∈ g(K).

(c) S should be such that the differential Ga-

lois group of M is G+.

The step from an explicit standard differen-

tial module (M, ∂S) to an adjoint module N ,

is just a construction of linear algebra. One

considers the direct summand N := K ⊗C g

of EndK(M) = K ⊗C End(V ). Let ∂0 be the

derivation on N , given by ∂0(f ⊗ g) = f ′⊗ g for

f ∈ K, g ∈ g. One easily verifies that (M, ∂S)



induces on N the derivation A 7→ ∂0(A)+[A, S].
In this way (M, ∂S) induces the adjoint differ-
ential module N .

The other direction: from an adjoint differ-
ential module N for g to an explicit standard
differential module is the strategy for reduc-
tion to lower dimension.

Theorem

Let N be an adjoint differential module for G.
The C-Lie algebra structure of on the solution
space g of N induces a K-Lie algebra structure
[ , ] on N satisfying ∂[a, b] = [∂a, b] + [a, ∂b]
for all a, b ∈ N . This structure is unique up to
multiplication by an element in C∗.

The assumption that K is a C1-field implies
that there exists an isomorphism of K-Lie al-
gebras φ : N → K⊗Cg. After choosing φ, there



exists a unique S ∈ g(K) such that N is iso-

morphic to the adjoint module induced by the

explicit standard module (M, ∂S).

Comments. The computation of the Lie alge-

bra structure on N amounts to computing a

rational solution (i.e., with coordinates in K)

of the differential module Hom(Λ2N, N). The

computation of S ∈ g(K) is an easy exercise

on Lie algebras. The computation of an iso-

morphism φ leads to

The problem:

Let K ⊃ C be a C1-field and N a semi-simple

Lie algebra over K. Compute an isomorphism

φ : K ⊗C g → N for some C-Lie algebra g. This

amounts to finding a Cartan subalgebra of N ,

defined over C.



Find an algorithm, based on the C1-property of

K, that produces a Cartan subalgebra defined

over C.

The case K ⊗K N = K ⊗C sl2.

Take a basis n1, n2, n3 of N . An element n :=∑
xini is mapped to the characteristic poly-

nomial of [ , n] acting on N , which is T3 −
q(x1, x2, x3)T and q is homogeneous of degree

2. By the C1-property of K there exists a non

trivial solution of q(x1, x2, x3) = 0 in K. The

resulting element e has the property [ , e] is

nilpotent. Inspection of K ⊗K N yields that

Ke lies in [N, e]. Thus there exists an element

h ∈ N with [h, e] = 2e. The eigenvalues of [h, ]

are 0,2,−2 and has eigenvectors h, e1 = e, e2.

After multiplying e2 by an element in K∗ one

has [e1, e2] = h. Thus Ch+Ce1+Ce2 = sl2 and

we have an explicit isomorphism N → K⊗C sl2.



6. Examples

For all the cases with dimM ≤ 11, where re-

duction to lower dimension is possible, explicit

algorithm are given. In many cases, a shortcut

is chosen instead of going to an adjoint differ-

ential module. Instead of working with the al-

gebraic closure K of C(z) one makes the more

natural choice: ‘K is a finite extension of C(z)’.

This introduces a new technical problem (with

technical solutions for dimM ≤ 11) of comput-

ing the minimal finite extension K+ ⊃ K such

that the differential Galois group of K+⊗K M

is connected.

Notation: M = K ⊗K M .

These technicalities are reading material but

come along with interesting statements, like:



Theorem The (sl4, [0,1,0]) case. Let M

be a differential module of dimension 6. The

following properties of M are equivalent (no

conditions on M and K).

(1) M ∼= Λ2N for some module of dimension 4

with detN = 1.

(2) There exists F ∈ sym2M with ∂F = 0 such

that F is non degenerate and M has a totally

isotropic subspace of dimension 3.

Using F one finds an explicit formula for N .

Theorem The (sp4, [0,1]) case. Let M be ab-

solutely irreducible of dimension 5 and detM =

1. The representation of the Lie algebra of

the differential Galois group is (sp4, [0,1]) if

and only if sym2M is a direct sum of two irre-

ducible spaces of dimensions 1,14.

Working with M ⊕1 and using the previous re-

sult one finds a standard differential module

for (sp4, [1,0]).



Theorem The (sl2×sl2, [1]⊗[1]) case. Let M

be a differential module over K of dimension
4 with detM = 1 (no further conditions on M

and K). Then M ∼= A⊗B for modules A, B of
dimension 2 and with detA = detB = 1 if and
only if there exists F ∈ sym2M , ∂F = 0, F is
non degenerate and has an isotropic subspace
of dimension 2.
Using F one obtains explicit formulas for A, B.

The (sl2 × sl3, [1]⊗ [1,0]) case.
Let M with detM = {1} be an absolutely irre-
ducible differential module correspond to these
data. The problem is to decompose M as
N2 ⊗ N3 with dimNi = i, detNi = 1, corre-
sponding to and (sl2, [1]) and (sl3, [1,0]).

The construction follows from the observation
that [1]⊗ [1,0] ‘generates’ the Tannakian cat-
egory Reprsl2×sl3

.



Explicitely, ([1]⊗ [1,0])⊗ ([1]⊗ [1,0]) is the di-

rect sum of the irreducible objects

[0]⊗ [2,0], [0]⊗ [0,1], [2]⊗ [2,0], [2]⊗ [0,1]

of dimensions 6,3,18,9. The corresponding

direct sum decomposition of M ⊗M is already

present over K, since the Galois group Gal(K/K)

cannot permute subspaces of distinct dimen-

sions. Choose N3 to be the dual of the factor

of M ⊗M of dimension 3.

Next, consider ([1]⊗ [1,0])⊗([0]⊗ [0,1]) which

is the direct sum of the irreducible objects

[1]⊗ [0,0], [1]⊗ [1,1] of dimensions 2,16.

As before, M ⊗N∗
3, has a direct summand N2

of dimension 2 and it can be proven that

M ∼= N2 ⊗N3.


