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1. MOTIVATION
Mirror Symmetry
7 Algebra” <= 7 Geometry”

In many cases,

”Geometry” is difficult but 7 Algebra” is easy.

So, Mirror Symmetry tells us:

Use 7 Algebra” to study difficult ” Geometry”

Our aim:

to study geometry of vanishing cycles
in the Milnor fiber of isolated singularities
(quite difficult)
by the representation theory
of finite dimensional algebras
(not easy but not too difficult)
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2. APPLICATION

Can give a correspondence

”Graded Cohen-Macauley modules”
<~

"Representations of finite dimensional algebras”

3. PREPARATIONS

Definition 3.1. Fix a,b,c,h € Z~o such that ged(a,b,c,h) = 1. W = (a,b,c;h) is a
regular weight system if
(1 _ Thfa)(l _ Thfb)(l _ Thfc)

WD) = a1 -1

is a polynomial in 7.

Theorem 3.2 (Kyoji Saito). The followings are equivalent:
(i) W = (a,b,c; h) is a reqular weight system.
(ii) A generic Element f € Clx,y, 2] satisfying

ox

(a polynomial of degree h) has an isolated singularity only at the origin.

0 0 0
Eywf = [a~x—+b-y8—y—|—c-z&]f—hf,

Clz,y, 2] is a graded ring with respect to Ey:
Clz,y, z] = @ Clz,y, z]a,
dGZZO

C[x,y,z]d = {g S C[l‘,y, Z] | FEwg = dg}

Remark 3.3. Fix fy € Clz,y, 2], for a regular weight system W. Then,

Ofw Ofw 0
J(fw) =Clz.y,4] / ( gf | (;ZV ’ éfzv )

is a finite dimensional C-algebra. In particular, x(W,T') is a Poincaré polynomial of

J(fw).

Example 3.4. (Regular weight sytem of type A;)

W= (1,bl+1—-0bl+1).

1-T
1-T
fw (2, y,2) = 2 +yz

x(W,T) =
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J(fw) = Cla]/(a")
Definition 3.5 (Milnor number).
pw :=dime J(fw)

:X<W71)
_(h—a)h—bh—o)

abe

Definition 3.6. The integer
ew: ' =a+b+c—h

is called the minimal exponent or Gorenstein parameter of V.
Remark 3.7. The quotient ring Ry := Clz,y, z]/(fw) is a Gorenstein ring such that
KRW ~ Rw<—€w>.

(1) € Aut(gr-Ryw): the grading shift by 1

Remark 3.8 (Classification). (i) If ey > 0, then ey = 1, in particular,
W Jw Type
(L,b,l+1—=b;1+1) ot yz A
(2,0 —=2,1—1;21=2) | 2P+ x> + 22| Dy
(3,4,6;12) x84 22 E
(6,4,9;18) a4+ 22 | By
(6,10, 15; 30) PP+ | B
(i) If eyy = 00 then W corresponds to a simple elliptic singularity:
W Jw type

(1,1,1;3) | 23 + 3 + 22 + axyz Eq
(1,1,2:4) | 2* + y* + 22 + azyz | Ex
(1,2,3:6) | 2% + 3 + 22 + azyz | Es.

(iii) If ey < 0, then the number of regular weight systems is finite for each fixed ey 0

4. GEOMETRY OF REGULAR WEIGHT SYSTEMS
Fix a polynomial fy for W.
fw 1 C\fy'(0) — C\{0}
is a topologically locally trivial fiber bundle.
Xwi = f;/(1) Milnor fiber
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is a complex manifold of dimension 2, therefore, there exists an intersection form
I: Hy(Xw1,Z) x Hy(Xwpn,Z) — Z.
Milnor’s theorem implies that
Hy(Xwa,Z) ~ 7M.
It is generated by vaniching cycles.
p: m(C\{0}, %) (~ Z) — Aut(Hy(Xw1,Z),—1)

cw = p(1) Milnor Monodromy .

R :={[L] € Hy(Xw.1,Z) | L : vanishing cycle}

Claim 4.1. The data (Ho(Xwa,Z),—1, R, cw) satifies azioms of the generalized root

system introduced by K. Saito (a generalization of classical root systems).

(Hy(Xwa1,Z),—1) root lattice
R set of roots
cw Coxeter transformation

In particular, if W gives a singularity of type ADE, then it is the classical root
system of the corresponding type.

Remark 4.2. Generalized root systems will play important roles in the study of Frobe-
nius structures (K.Saito’s flat structures) on the base space of the universal unfolding.
Indeed, it is h/W for an ADE singularity where b is the Cartan subalgebra and W is
the Weyl group of the corresponding type.

Problem 4.3 (K.Saito, in transl. AMS). Construct directly from W = (a,b,c; h), alge-
braically, arithmetically or combinatorically, without the geometry of the Milnor

fiber, the generalized root system isomorphic to (Ha(Xw1,Z), —1, R, cw).

Remark 4.4. Beyond the classical root system, there is no canonical choice of a simple
basis (or a distinguished basis of vanishing cycles). As a result, Dynkin diagram
given by the intersection matrix of a distinguished basis is not unique. Indeed, the group
B, X (Z/2Z)"" acts on the set of Dynkin diagrams. (B

strings.)

is the braid group on -

Bw

Problem 4.5. Define a notion of a ”good simple basis” for the generalized root system

(H2<XW,17 Z)a _[7 Ra CW)'
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5. AN APPROACH TO PROBLEMS

Claim 5.1 (T, math.AG/0506347). Consider
e Categorification of Generalized Root Systems.
e Use the idea of Homological Mirror Symmetry.

e Construct algebraically Triangulated Category mirror dual to the singularity
assoctated to W .

Root systems Categorification
Hy(Xwa,Z) = Ko(T) T
Grothendieck group | triangulated category

L=[&] &
vanishing cycle indecomposable object
LN Ly E — &
intersection morphism
cw = [Tar] Tap =S oT™!
Milnor monodromy Coxeter functor
(L1,..., Lyy,) (& )
distinguished basis full strongly
of vanishing cycles exceptional collection

T: the translation functor on 7.
S the Serre functor on 7.

Tar: Auslander—Reiten translation.

6. "NICE” TRIANGULATED CATEGORIES
A triangulated category is
e an additive category 7 with
o T € Auteq(7) called a translation
e which has a class of exact triangles:
X3Y S5 7257TX
satisfying certain axioms.

Consider 7 with the following properties:

e 7 is C-linear, i.e., Hom7(FE, F) is a C-vector space for all E, F € T.
e 7 is locally finite, i.e.,

> " dim¢ Homy (B, T'F) <0, "E,F€T.
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e 7 is Krull-Scmidt, i.e., any object F € 7 is a finite direct sum of indecompos-
able objects.
Moreover, we need

e 7 is an enhanced triangulated category, i.e, there exists an A,-category (or a
differential graded category) whose derived category is triangulated equivalent to
7.

e 7 has a strongly exceptional collection (F1,..., E,), i.e.,

(i) Homz(E;, E;) =Cforalli =1,...,n,

(ii) Homz(E;, T*E;) # 0 only if k = 0 and i < j,
which is full, i.e., the smallest full triangulated subcategory containing the objects
{E1,...,E,} is equivalent to 7.

Proposition 6.1. 7 has the Serre functor S, i.e., S € Auteq(7) which induces bi-

functorial isomorphisms
Homy(E, F) ~ Homs(F,SE)*, "E,FcT.

A = End7 (D), E;) is a basic (i.e., A/radA ~ C x --- x C) finite dimensional

algebra over C.

Proposition 6.2 (Gabriel). Let A be a basic finite dimensional algebra. Then, there exists
a unique quiver (an oriented graph) A such that A ~ C&/[ for some ideal I C CA.
(CA is the path algebra of the quiver A.)

Proposition 6.3. 7 ~ D’(mod-CA/I).
7. TRIANGULATED CATEGORY Ty

W: a regular weight system of dual type (i.e., W has a dual W*, explained later).
Fix fw and set Ry := Clz,y, z]/(fw).
Consider the triangulated category

D%, (Rw) := D’(gr-Rw )/ K"(grproj-Rw ),

and set

Remark 7.1. If gl. dim(R) < oo, then

K*(grproj-R) ~ D(gr-R).
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8. PROPERTIES OF Ty,
Definition 8.1. M € gr-Ry, is a Cohen-Macauley module if
Ext%W(RW/m, M)=0, i<dimRy =2.

Definition 8.2.
CMQT(R[/V) C gr—RW

an exact category of CM-modules.
Lemma 8.3 (Auslander). CMY"(Ry ) is a Frobenius category.

A Frobenius category is an exact category with enough injectives and projectives

and its class of injectives coincides with that of projectives.
Definition 8.4. Define a category CMY"(R) as follows:
OB(CMY (Ruy)) = OB(CMY (R ).
Homp (M, N) := Homg,. g, (M,N)/P(M,N)

(g € P(M, N) iff there exist a projective object P and homomorphisms ¢’ : M — P and
g": P — N such that g = ¢" o ¢'0)

CMY"(Ry ): stable category of CM?" (Ry).
Proposition 8.5 (Happel). CMY (Ry) is a triangulated category.

S = Clz,y, z|.
For M € CM?"(Rw),

3 graded free resolution of M in gr-S
0sr"m L M0 R, F.
3fy : Fy — F} of degree 0 such that
fifo=fw-1dr, fofi = fw - idpg.

Definition 8.6 (Eisenbud).

— fo

F = < FQ P —— F1 > s

fi

is called a graded matrix factorization of fy .

— (0 2= fw-1d
Q: <f0 0)’ Q" = fw -1d.

Remark 8.7.
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Example 8.8.

Example 8.9.

Example 8.10.

0 Yy x
0 r —y
Q:= CQP=atey
y x 0
z —y 0

Lemma 8.11. The category MFY (fw) of graded matriz factorizations of fw is a Frobe-

nius category. Therefore, its stable category
HMFE (fw) == MEE (fw)

18 triangulated.

Remark 8.12.

_ fo
F= ( Fy == F, ) s Coker(f1) € CM#" (Ryy).

Proposition 8.13 (Buchweitz 85, Orlov '05).
D*(gr-Rw)/D*(grproj-Rw) ~  CM?"(Ryy)
~  HMFY (fir).
Proposition 8.14. CM?"(Ry) is locally finite and Krull-Schmidt.

Proposition 8.15 (Auslander-Reiten).
S = T O (—Ew)
is the Serre functor on CMY (Ry).

Proposition 8.16. T? ~ (h). Therefore

~ T726W .

h h—2ew h
S'~T . TAR =~

Proposition 8.17 (T). HMFY (fw) is an enhanced triangulated category.
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9. CONJECTURE

Let W be a regular weight system of dual type (explained later). Fix fy -« and set

Ry = C[JZ,y,Z]/(fW*)

Ty = D% (Rw~) = CM” (Ry+) = HMFZ (fu-).

Conjecture 9.1 (T). Let W be a reqular weight system of dual type.

(1) Tw has a full strongly exceptional collection (Ey, . ..
(i) (Ko(Tw), x +'X) = (H2(Xw, Z),

—1), where

» By ).

X(E,F) :=> (~1)' dim¢c Homg,, (E, T'F).

1€EZ

10. THEOREMS

Theorem 10.1. The conjecture is true if ey = 1, i.e., if W corresponds to ADE singu-
larities which is self-dual (W = W*). In particular, D% (Rw) =~ D(mod-CA), where A

is a Dynkin quiver (Dynkin diagram with an orientation) of the corresponding type.

[T] for A;-singularities, [H.Kajiura-K.Saito-T, math.AG/0511155], for general cases.

Theorem 10.2 (KST, arXiv:0708.0210). The conjecture is true if ey = —1, i.e., if W
corresponds to one of Arnold’s 14 exceptional singularities. In particular, Dg;(RW) ~
D(mod-CAy,, /1), where Ay is the Dolgachev number of W (=Gabrielov numver

of W*) and &Aw with I is a quiver with relations as follows:

w Jw Aw w=
(6,14,21;42) | 2" +y3+ 22 | (2,3,7) | (6,14,21;42)
(6,8,15;30) | 2° +azy®+ 2% |(2,3,8) | (4,10,15;30)
(4,10,15;30) | 2y +y>+ 2% | (2,4,5) | (6,8,15;30)
(6,8,9;24) | z'+y>+xz? |(2,3,9)] (3,8,12;24)
(3,8,12;24) | zxt+y3+2% |(3,34)| (6,8,9;24)
(4,6,11;22) | yat + 23 + 22 | (2,4,6) | (4,6,11;22)
(4,5,10;20) | 25+ 922+ 2% |(2,55) | (4,5,10;20)
(3,5,9;18) | za® +xy® + 2% | (3,3,5)| (4,6,7;18)
(4,6,7;18) | 23y + >+ 22 | (2,4,7) | (3,5,9;18)
(3,4,8;16) | zly+y?z+2% | (3,4,4) | (4,5,6;16)
(4,5,6;16) | z*+ 292 +22 | (2,5,6) | (3,4,8;16)
(3,5,6;15) | za3+ o3 +x2% | (3,3,6) | (3,5,6;15)
(3,4,5;13) | 3y +y*2 + 2%x | (3,4,5) | (3,4,5;13)
(3,4,4;12) | 2 +y?z+y2? | (44,4) | (3,4,4;12)
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FIGURE 1. Diagram for Ay = (3,3,4). I: two relations along the double
dotted line.

11. SKETCH OF PROOF

(i) Find enough ”good” matrix factorizations.
ii) Show that these matrix factorizations form a strongly exceptional collection. (Use
gly
Serre duality.)

(iii) Use the following to prove the above strongly exceptional collection is full.

Lemma 11.1 (Category Generating Lemma). Let 7' := (Ey, ..., E,) be a full triangu-
lated subcategory of D§ (Rw) generated by an exceptional collection (E, ..., E,) satisfy-
ing the following:

() (1) € Auteq(T"),

(ii) 7" has an object E isomorphic to Ry /m
Then T' ~ D§ (R).

This follows from the well-known facts:

Lemma 11.2 (7" is right admissible). For any X € T there is an exact triangle
N—-X—-M-—TN
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where N € T" and Homz (N, M) = 0.

Lemma 11.3. M € CMY (Ry) is (graded) free if and only if Ext}, (Rw/m, M) =0 for
i #d.
Remark 11.4. M ~ 0 in CMY"(Ry ) if and only if M is free.

Example 11.5.

Q= (;l "’3) Q? = fw =z'2+ > + 22,

where fy = f; is given by

z —y> 0 0 0 0 —2%9y 0 -2t 0 0 0 0
—ry —z 0 0O O O 0 0 O —zt 0 2y 0
0 —zy =z 0 0 0 —22 0 ay> O 0 0
0 0 0 =z % 0 0 0 0 ay? 0 z? —x3y
0 0 0 0 —2 0 0 0 0 0 —xzy> 0 —zt 0
0 0 0O 0 0 =z ¢ 0 0 —2%% 0 zy? 0 x?
0 0 —-z2 0 0 0 -z 0 0 0 %y —x1? 0
0 0 0O 0 0 0 -—zy 0 3 0 —x2y 0 xy?
—z 0 y 0 0 0 0 -z 0 0 0 0 0
0 0 -y v 0 0 0 22 0 —z y? 0 0
0 —T 0 0 —y O 0 0 =xy 0 z 0 0
0 0 0 =z 0 y 0 0 0 0 0 —2 y? 0
0 0 0 —x 0 —y O 0 0 2 0
0 0 0 0 2 0 y 0 0 0 —z

This matrix factorization (with suitable gradings) gives the ”bottom vertex”.

Remark 11.6. The size of matrix factorizations () corresponding to the "bottom vertex”
are very large!! Generally, @ € M(S,n), n > 20.

12. DUALITY OF REGULAR WEIGHT SYSTEMS

Remark 12.1. For W with ey = —1, W* is the Arnold’s strange dual partner of W.

A natural generalization of strange duality = (topological) mirror symmetry.
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Definition 12.2 (Vafa’s formula). G C GL(3,k): finite, diagonal.

x(W,G)(y, )

—1)3 12
IR L

a€G BEG w;a; ¢

o 1 —e[(l —wif)] (yy)'
- H © {wﬁz N 2} 1 —efwB] (yy)

)—Wiai‘f‘[wiai}-i';

Wi EL
where w; := a;/h.
X(W,G)(y,y): orbifoldized Poincare polynomial.
Remark 12.3. xu (T) = x(W, {1})(T'%,1).
Definition 12.4 (Topological Mirror Symmetry). (W*, G*) is topological mirror dual
to (W, G) if
X(W*, Gy, 5) = (=15 x(W, G)(y,57),

~ ~

where ¢y 1= 1 —29% (e = G- ).
Remark 12.5. Serre functor on 7y, satisfies
Sh ~ Théw,
Ty is fractional Calabi—Yau of dimension ¢y .

Definition 12.6. W = (a,b,c; h) is dual to W* = (a*,b*, ¢*; h*) if the pair (W, {1}) is
topological mirror symmetric to the pair (W*,Z/h*Z).

Theorem 12.7 (T '98). W has the dual W* if and only if W (fw) is one of the following
b types:

Type I. (W = W*).
fW(X7 Yy, Z) = xP! + ypz + Zp37

where (p;,p;) =1,i=1,2,3.
Type II:
fw(x,y,2) 1= X" + yP* + yzr2,

pP3

fw*(x*,y*,z*) = XEI + y:2 +y*Z£’27

where py # ps, P2’P3> (Phps) =1, (pz - 1,]93) =1 and (p3/P2 - 1,1?3) = 1.
Type III: (W = W*).

fw (x,y,z) = xP* + y¥ iz 4 yza2th,
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where (p1,p2) =1, po+1=(g2+1)(¢s + 1) and (g2, ¢3) = 1.
Type IV:

fw(x,y,z) :=xP* + Xy®i + yzes,

P3 p2

p p
fw (X, Yy Z6) = X2 + X557 +yazl?,

where p; # ps #P&Pl’m;?z’?& (pl_1>p2) =1, (pz—pl—i‘l,]?:s) =1, (p3/p2—1>]93/p1) =1
and (ps/p1 — ps/p2 + 1,p3) = 1.
Type V:

fw(x,y,2) == 2x* + xy™ + yz,
fW* (X*7 y>M Z*) = Z*Xalf + X*y}k + y*sznu
where (Im—m+1,klm+1) =10 (mk—k+1,klm+1) =1, and (kI —1+1,kim+1) = 1.
Remark 12.8. If W* is dual to W, then W* is dual to W in the sense of K. Saito (duality

defined by Coxeter transformations).

Remark 12.9. Regular weight systems with ey = 0 (simple elliptic singularities) are not

of dual type.

13. HOMOLOGICAL MIRROR SYMMETRY
Conjecture 13.1. There should ezists an Ay -category
Fukﬁ(XW,l),

(objects are finite number of vaniching cycles in the Milnor fiber and homomorphism

spaces are given by Floer homology) satisfying certain properties, such that
DPFuk ™ (Xw,1) ~ HMFY (fu-).

Remark 13.2. Fuk™~(Xy1) can be considered as a geometrical categorification of a dis-

tinguished basis of vanishing cycles.

14. BEYOND ADE AND 14 EXCEPTIONALS

Theorem 14.1 (T, in progress). (1) For any regular weight system W of Type I and
II, Tw has a full strongly exceptional collection (Ey, ..., E,, ) and (Ko(Tw), x +
tX) = (H2(XW,17 Z)7 _[)

(ii) For any W of Type 111, Ty has a full strongly exceptional collection (Ey, ..., E,,, ).
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Proofs for these are similar to previous theorems: calculations of matrix factoriza-
tions, calculations of homomorphisms based on Serre duality and the ”Category Gener-

ating Lemma”.

Quivers and relations for these types are given as follows[
(0ODOO0O000U00D0ODOO0OC0OOUU0UDUDUODOoDOOOoOOOOUooOoODOon)

Type I

fW(xvya Z) =z + ypz




Type 11

Y, 2) =yt yer

fw(l'

Type III
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15. FUTURE DREAMS, FANCIES AND ...

Want to construct
e Lie algebras
e period maps
e automorphic forms

from ”nice” triangulated categories.

"nice” triangulated categories
ﬂ Lie algebra, Weyl group, invariant theory, ...
Frobenius (K.Saito’s flat) structures on Space of stability conditions (Bridgeland)
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