高橋 篤史 (ATSUSHI TAKAHASHI)

ABSTRACT. いろいろ考えた結果,代数学シンポジウムでの講演で用いたプロジェクター 原稿をほぼそのままの形で報告集原稿とすることにしました.より詳しい内容は参考文献 を御覧ください.

1. MOTIVATION

Mirror Symmetry

"Algebra" \iff "Geometry"

In many cases,

"Geometry" is difficult but "Algebra" is easy.

So, Mirror Symmetry tells us:

Use "Algebra" to study difficult "Geometry"

Our aim:

to study geometry of vanishing cycles in the Milnor fiber of isolated singularities (quite difficult) by the representation theory of finite dimensional algebras (not easy but not too difficult)

Date: 2007年8月9日(木).

高橋 篤史 (ATSUSHI TAKAHASHI)

2. Application

Can give a correspondence

"Graded Cohen-Macauley modules"

 \iff

"Representations of finite dimensional algebras"

3. Preparations

Definition 3.1. Fix $a, b, c, h \in \mathbb{Z}_{>0}$ such that gcd(a, b, c, h) = 1. W := (a, b, c; h) is a regular weight system if

$$\chi(W,T) := \frac{(1 - T^{h-a})(1 - T^{h-b})(1 - T^{h-c})}{(1 - T^a)(1 - T^b)(1 - T^c)}$$

is a polynomial in T.

Theorem 3.2 (Kyoji Saito). The followings are equivalent:

- (i) W = (a, b, c; h) is a regular weight system.
- (ii) A generic Element $f \in \mathbb{C}[x, y, z]$ satisfying

$$E_W f := [a \cdot x \frac{\partial}{\partial x} + b \cdot y \frac{\partial}{\partial y} + c \cdot z \frac{\partial}{\partial z}]f = hf,$$

(a polynomial of degree h) has an isolated singularity only at the origin.

 $\mathbb{C}[x, y, z]$ is a graded ring with respect to E_W :

$$\mathbb{C}[x, y, z] = \bigoplus_{d \in \mathbb{Z}_{\geq 0}} \mathbb{C}[x, y, z]_d,$$
$$\mathbb{C}[x, y, z]_d := \{g \in \mathbb{C}[x, y, z] \mid E_W g = dg\}$$

Remark 3.3. Fix $f_W \in \mathbb{C}[x, y, z]_h$ for a regular weight system W. Then,

$$J(f_W) := \mathbb{C}[x, y, z] \left/ \left(\frac{\partial f_W}{\partial x}, \frac{\partial f_W}{\partial y}, \frac{\partial f_W}{\partial z} \right) \right.$$

is a finite dimensional \mathbb{C} -algebra. In particular, $\chi(W,T)$ is a **Poincaré polynomial** of $J(f_W)$.

Example 3.4. (Regular weight system of type A_l) W = (1, b, l + 1 - b; l + 1).

$$\chi(W,T) = \frac{1-T^l}{1-T}.$$

$$f_W(x,y,z) = x^{l+1} + yz$$

$$J(f_W) \simeq \mathbb{C}[x]/(x^l)$$

Definition 3.5 (Milnor number).

$$\mu_W := \dim_{\mathbb{C}} J(f_W)$$
$$= \chi(W, 1)$$
$$= \frac{(h-a)(h-b)(h-c)}{abc}.$$

Definition 3.6. The integer

$$\epsilon_W := a + b + c - h$$

is called the **minimal exponent** or **Gorenstein parameter** of W.

Remark 3.7. The quotient ring $R_W := \mathbb{C}[x, y, z]/(f_W)$ is a Gorenstein ring such that

$$K_{R_W} \simeq R_W(-\epsilon_W).$$

 $(1) \in \operatorname{Aut}(\operatorname{gr-}R_W)$: the grading shift by 1

Remark 3.8 (Classification). (i) If $\epsilon_W > 0$, then $\epsilon_W = 1$, in particular,

W	f_W	Type
(1, b, l+1-b; l+1)	$x^{l+1} + yz$	A_l
(2, l-2, l-1; 2l-2)	$x^{l-1} + xy^2 + z^2$	D_l
(3, 4, 6; 12)	$x^4 + y^3 + z^2$	E_6
(6,4,9;18)	$x^3 + xy^3 + z^2$	E_7
(6, 10, 15; 30)	$x^5 + y^3 + z^2$	$E_8.$

(ii) If $\epsilon_W=0$, then W corresponds to a simple elliptic singularity:

W	f_W	type
(1, 1, 1; 3)	$x^3 + y^3 + z^3 + axyz$	\widetilde{E}_6
(1, 1, 2; 4)	$x^4 + y^4 + z^2 + axyz$	\widetilde{E}_7
(1, 2, 3; 6)	$x^6 + y^3 + z^2 + axyz$	$\widetilde{E}_8.$

(iii) If $\epsilon_W < 0$, then the number of regular weight systems is finite for each fixed ϵ_W .

4. Geometry of Regular Weight Systems

Fix a polynomial f_W for W.

$$f_W: \mathbb{C}^3 \setminus f_W^{-1}(0) \to \mathbb{C} \setminus \{0\}$$

is a topologically locally trivial fiber bundle.

 $X_{W,1} := f_W^{-1}(1)$ Milnor fiber

is a complex manifold of dimension 2, therefore, there exists an intersection form

$$I: H_2(X_{W,1}, \mathbb{Z}) \times H_2(X_{W,1}, \mathbb{Z}) \to \mathbb{Z}.$$

Milnor's theorem implies that

$$H_2(X_{W,1},\mathbb{Z})\simeq \mathbb{Z}^{\mu_W}.$$

It is generated by vaniching cycles.

$$\rho : \pi_1(\mathbb{C} \setminus \{0\}, *) (\simeq \mathbb{Z}) \to \operatorname{Aut}(H_2(X_{W,1}, \mathbb{Z}), -I)$$

 $c_W := \rho(1) \quad \text{Milnor Monodromy}.$

 $\mathcal{R} := \{ [L] \in H_2(X_{W,1}, \mathbb{Z}) \mid L : \text{vanishing cycle} \}$

Claim 4.1. The data $(H_2(X_{W,1},\mathbb{Z}), -I, \mathcal{R}, c_W)$ satisfies axioms of the generalized root system introduced by K. Saito (a generalization of classical root systems).

$(H_2(X_{W,1},\mathbb{Z}),-I)$	root lattice				
\mathcal{R}	set of roots				
c_W	Coxeter transformation				

In particular, if W gives a singularity of type ADE, then it is the classical root system of the corresponding type.

Remark 4.2. Generalized root systems will play important roles in the study of **Frobe**nius structures (K.Saito's flat structures) on the base space of the universal unfolding. Indeed, it is \mathfrak{h}/\mathcal{W} for an ADE singularity where \mathfrak{h} is the **Cartan subalgebra** and \mathcal{W} is the **Weyl group** of the corresponding type.

Problem 4.3 (K.Saito, in transl. AMS). Construct directly from W = (a, b, c; h), algebraically, arithmetically or combinatorically, without the geometry of the Milnor fiber, the generalized root system isomorphic to $(H_2(X_{W,1}, \mathbb{Z}), -I, \mathcal{R}, c_W)$.

Remark 4.4. Beyond the classical root system, there is no **canonical** choice of a **simple basis** (or a **distinguished basis** of vanishing cycles). As a result, **Dynkin diagram** given by the intersection matrix of a distinguished basis is not unique. Indeed, the group $B_{\mu_W} \ltimes (\mathbb{Z}/2\mathbb{Z})^{\mu_W}$ acts on the set of Dynkin diagrams. $(B_{\mu_W}$ is the braid group on μ_W strings.)

Problem 4.5. Define a notion of a "good simple basis" for the generalized root system $(H_2(X_{W,1},\mathbb{Z}), -I, \mathcal{R}, c_W).$

5. An Approach to Problems

Claim 5.1 (T, math.AG/0506347). Consider

- Categorification of Generalized Root Systems.
- Use the idea of Homological Mirror Symmetry.
- Construct algebraically **Triangulated Category** mirror dual to the singularity associated to W.

Root systems	Categorification
$H_2(X_{W,1},\mathbb{Z}) = K_0(\mathcal{T})$	T
Grothendieck group	triangulated category
$L = [\mathcal{E}]$	E
vanishing cycle	indecomposable object
$L_1 \cap L_2$	$\mathcal{E}_1 ightarrow \mathcal{E}_2$
intersection	$\operatorname{morphism}$
$c_W = [\tau_{AR}]$	$\tau_{AR} := \mathcal{S} \circ T^{-1}$
Milnor monodromy	Coxeter functor
(L_1,\ldots,L_{μ_W})	$(\mathcal{E}_1,\ldots,\mathcal{E}_{\mu_W})$
distinguished basis	full strongly
of vanishing cycles	exceptional collection

T: the translation functor on \mathcal{T} .

S: the Serre functor on \mathcal{T} .

 τ_{AR} : Auslander–Reiten translation.

6. "NICE" TRIANGULATED CATEGORIES

A triangulated category is

- an additive category \mathcal{T} with
- $T \in Auteq(\mathcal{T})$ called a **translation**
- which has a class of **exact triangles**:

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

satisfying certain axioms.

Consider \mathcal{T} with the following properties:

- \mathcal{T} is \mathbb{C} -linear, i.e., $\operatorname{Hom}_{\mathcal{T}}(E, F)$ is a \mathbb{C} -vector space for all $E, F \in \mathcal{T}$.
- T is locally finite, i.e.,

$$\sum_{i} \dim_{\mathbb{C}} \operatorname{Hom}_{\mathcal{T}}(E, T^{i}F) < \infty, \quad ^{\forall}E, F \in \mathcal{T}.$$

• \mathcal{T} is **Krull-Scmidt**, i.e., any object $E \in \mathcal{T}$ is a finite direct sum of indecomposable objects.

Moreover, we need

- *T* is an enhanced triangulated category, i.e, there exists an A_∞-category (or a differential graded category) whose derived category is triangulated equivalent to *T*.
- \mathcal{T} has a strongly exceptional collection (E_1, \ldots, E_n) , i.e.,
 - (i) $\operatorname{Hom}_{\mathcal{T}}(E_i, E_i) = \mathbb{C}$ for all $i = 1, \ldots, n$,
 - (ii) $\operatorname{Hom}_{\mathcal{T}}(E_i, T^k E_j) \neq 0$ only if k = 0 and i < j,

which is **full**, i.e., the smallest full triangulated subcategory containing the objects $\{E_1, \ldots, E_n\}$ is equivalent to \mathcal{T} .

Proposition 6.1. \mathcal{T} has the Serre functor \mathcal{S} , *i.e.*, $\mathcal{S} \in \text{Auteq}(\mathcal{T})$ which induces bifunctorial isomorphisms

$$\operatorname{Hom}_{\mathcal{T}}(E,F) \simeq \operatorname{Hom}_{\mathcal{T}}(F,\mathcal{S}E)^*, \quad {}^{\forall}E, F \in \mathcal{T}.$$

 $A := \operatorname{End}_{\mathcal{T}}(\bigoplus_{i=1}^{n} E_i)$ is a basic (i.e., $A/\operatorname{rad} A \simeq \mathbb{C} \times \cdots \times \mathbb{C}$) finite dimensional algebra over \mathbb{C} .

Proposition 6.2 (Gabriel). Let A be a basic finite dimensional algebra. Then, there exists a unique quiver (an oriented graph) $\vec{\Delta}$ such that $A \simeq \mathbb{C}\vec{\Delta}/I$ for some ideal $I \subset \mathbb{C}\vec{\Delta}$. $(\mathbb{C}\vec{\Delta} \text{ is the path algebra of the quiver } \vec{\Delta}.)$

Proposition 6.3. $\mathcal{T} \simeq D^b (\text{mod} \text{-} \mathbb{C} \vec{\Delta} / I).$

7. TRIANGULATED CATEGORY \mathcal{T}_W

W: a regular weight system of **dual type** (i.e., W has a dual W^* , explained later). Fix f_W and set $R_W := \mathbb{C}[x, y, z]/(f_W)$.

Consider the triangulated category

$$D_{Sa}^{gr}(R_W) := D^b(\operatorname{gr-}R_W)/K^b(\operatorname{grproj-}R_W),$$

and set

$$\mathcal{T}_W := D_{Sq}^{gr}(R_{W^*}).$$

Remark 7.1. If gl. dim $(R) < \infty$, then

 $K^{b}(\text{grproj-}R) \simeq D^{b}(\text{gr-}R).$

 $\mathbf{6}$

8. Properties of \mathcal{T}_W

Definition 8.1. $M \in \text{gr-}R_W$ is a **Cohen-Macauley** module if

 $\operatorname{Ext}_{R_W}^i(R_W/\mathfrak{m}, M) = 0, \quad i < \dim R_W = 2.$

Definition 8.2.

$$\mathrm{CM}^{gr}(R_W) \subset \mathrm{gr} \cdot R_W$$

an exact category of CM-modules.

Lemma 8.3 (Auslander). $CM^{gr}(R_W)$ is a Frobenius category.

A Frobenius category is an exact category with enough injectives and projectives and its class of injectives coincides with that of projectives.

Definition 8.4. Define a category $\underline{CM}^{gr}(R)$ as follows:

$$Ob(\underline{CM}^{gr}(R_W)) = Ob(CM^{gr}(R_W)).$$

$$\underline{Hom}_{R_W}(M, N) := Hom_{gr-R_W}(M, N) / \mathcal{P}(M, N)$$

 $(g \in \mathcal{P}(M, N)$ iff there exist a projective object P and homomorphisms $g' : M \to P$ and $g'' : P \to N$ such that $g = g'' \circ g'$.

 $\underline{\mathrm{CM}}^{gr}(R_W)$: stable category of $\mathrm{CM}^{gr}(R_W)$.

Proposition 8.5 (Happel). $\underline{CM}^{gr}(R_W)$ is a triangulated category.

 $S := \mathbb{C}[x, y, z].$ For $M \in CM^{gr}(R_W)$,

 \exists graded free resolution of M in gr-S

$$0 \to \tau^{-h} F_1 \xrightarrow{f_1} F_0 \to M \to 0, \quad F_0, F_1.$$

 $\exists f_0: F_0 \to F_1$ of degree 0 such that

$$f_1 f_0 = f_W \cdot \operatorname{id}_{F_0}, \quad f_0 f_1 = f_W \cdot \operatorname{id}_{F_1}.$$

Definition 8.6 (Eisenbud).

$$\overline{F} := \left(\begin{array}{cc} F_0 & \xrightarrow{f_0} & F_1 \\ \xrightarrow{f_1} & f_1 \end{array} \right),$$

is called a graded **matrix factorization** of f_W .

Remark 8.7.

$$Q := \begin{pmatrix} 0 & f_1 \\ f_0 & 0 \end{pmatrix}, \quad Q^2 = f_W \cdot \mathrm{Id}.$$

Example 8.8.

$$Q := \begin{pmatrix} 0 & x^2 \\ x & 0 \end{pmatrix}, \quad Q^2 = x^3$$

Example 8.9.

$$Q_0 := \begin{pmatrix} 0 & f \\ 1 & 0 \end{pmatrix}, \quad Q_f := \begin{pmatrix} 0 & 1 \\ f & 0 \end{pmatrix}, \quad Q_f^2 = f.$$

Example 8.10.

$$Q := \begin{pmatrix} 0 & 0 & y & x \\ 0 & 0 & x & -y \\ y & x & 0 & 0 \\ x & -y & 0 & 0 \end{pmatrix}, \quad Q^2 = x^2 + y^2.$$

Lemma 8.11. The category $MF_S^{gr}(f_W)$ of graded matrix factorizations of f_W is a Frobenius category. Therefore, its stable category

$$\operatorname{HMF}_{S}^{gr}(f_{W}) := \underline{\operatorname{MF}}_{S}^{gr}(f_{W})$$

is triangulated.

Remark 8.12.

$$\overline{F} = \left(\begin{array}{cc} F_0 & \overleftarrow{f_0} \\ \overbrace{f_1}^{f_0} & F_1 \end{array} \right) \mapsto \operatorname{Coker}(f_1) \in \operatorname{CM}^{gr}(R_W).$$

Proposition 8.13 (Buchweitz '85, Orlov '05).

$$D^{b}(\text{gr-}R_{W})/D^{b}(\text{grproj-}R_{W}) \simeq \underline{CM^{gr}}(R_{W})$$

 $\simeq \mathrm{HMF}_{S}^{gr}(f_{W}).$

Proposition 8.14. $\underline{CM}^{gr}(R_W)$ is locally finite and Krull-Schmidt.

Proposition 8.15 (Auslander-Reiten).

$$\mathcal{S} = T \circ (-\epsilon_W)$$

is the Serre functor on $\underline{CM}^{gr}(R_W)$.

Proposition 8.16. $T^2 \simeq (h)$. Therefore

$$\mathcal{S}^h \simeq T^{h-2\epsilon_W}, \quad \tau^h_{AB} \simeq T^{-2\epsilon_W}.$$

Proposition 8.17 (T). $\text{HMF}_{S}^{gr}(f_{W})$ is an enhanced triangulated category.

8

9. Conjecture

Let W be a regular weight system of **dual type** (explained later). Fix f_{W^*} and set $R_W := \mathbb{C}[x, y, z]/(f_{W^*})$.

$$\mathcal{T}_W := D_{Sg}^{gr}(R_{W^*}) \simeq \underline{\mathrm{CM}}^{gr}(R_{W^*}) \simeq \mathrm{HMF}_S^{gr}(f_{W^*}).$$

Conjecture 9.1 (T). Let W be a regular weight system of dual type.

- (i) \mathcal{T}_W has a full strongly exceptional collection (E_1, \ldots, E_{μ_W}) .
- (ii) $(K_0(\mathcal{T}_W), \chi + {}^t\chi) \simeq (H_2(X_{W,1}, \mathbb{Z}), -I), \text{ where }$

$$\chi(E,F) := \sum_{i \in \mathbb{Z}} (-1)^i \dim_{\mathbb{C}} \operatorname{Hom}_{\mathcal{T}_W}(E,T^iF).$$

10. Theorems

Theorem 10.1. The conjecture is true if $\epsilon_W = 1$, i.e., if W corresponds to ADE singularities which is self-dual ($W = W^*$). In particular, $D_{Sg}^{gr}(R_W) \simeq D^b(\text{mod}-\mathbb{C}\vec{\Delta})$, where $\vec{\Delta}$ is a **Dynkin quiver** (Dynkin diagram with an orientation) of the corresponding type.

[T] for A_l -singularities, [H.Kajiura-K.Saito-T, math.AG/0511155], for general cases.

Theorem 10.2 (KST, arXiv:0708.0210). The conjecture is true if $\epsilon_W = -1$, i.e., if W corresponds to one of Arnold's 14 exceptional singularities. In particular, $D_{Sg}^{gr}(R_W) \simeq D^b (\text{mod}-\mathbb{C}\vec{\Delta}_{A_W}/I)$, where A_W is the **Dolgachev number** of W (=**Gabrielov numver** of W^*) and $\vec{\Delta}_{A_W}$ with I is a quiver with relations as follows:

W	f_W	A_W	W^*
(6, 14, 21; 42)	$x^7 + y^3 + z^2$	(2,3,7)	(6, 14, 21; 42)
(6, 8, 15; 30)	$x^5 + xy^3 + z^2$	(2,3,8)	(4, 10, 15; 30)
(4, 10, 15; 30)	$x^5y + y^3 + z^2$	(2,4,5)	(6, 8, 15; 30)
(6, 8, 9; 24)	$x^4 + y^3 + xz^2$	(2,3,9)	(3, 8, 12; 24)
(3, 8, 12; 24)	$zx^4 + y^3 + z^2$	(3,3,4)	(6, 8, 9; 24)
(4, 6, 11; 22)	$yx^4 + xy^3 + z^2$	(2,4,6)	(4, 6, 11; 22)
(4, 5, 10; 20)	$x^5 + y^2 z + z^2$	(2,5,5)	(4, 5, 10; 20)
(3, 5, 9; 18)	$zx^3 + xy^3 + z^2$	(3,3,5)	(4, 6, 7; 18)
(4, 6, 7; 18)	$x^3y + y^3 + xz^2$	(2,4,7)	(3, 5, 9; 18)
(3, 4, 8; 16)	$x^4y + y^2z + z^2$	(3,4,4)	(4, 5, 6; 16)
(4, 5, 6; 16)	$x^4 + zy^2 + z^2$	(2,5,6)	(3, 4, 8; 16)
(3, 5, 6; 15)	$zx^3 + y^3 + xz^2$	(3,3,6)	(3, 5, 6; 15)
(3, 4, 5; 13)	$x^3y + y^2z + z^2x$	(3,4,5)	(3, 4, 5; 13)
(3, 4, 4; 12)	$x^4 + y^2z + yz^2$	(4, 4, 4)	(3, 4, 4; 12)

FIGURE 1. Diagram for $A_W = (3, 3, 4)$. I: two relations along the double dotted line.

11. Sketch of Proof

(i) Find enough "good" matrix factorizations.

- (ii) Show that these matrix factorizations form a strongly exceptional collection. (Use Serre duality.)
- (iii) Use the following to prove the above strongly exceptional collection is full.

Lemma 11.1 (Category Generating Lemma). Let $\mathcal{T}' := \langle E_0, \ldots, E_n \rangle$ be a full triangulated subcategory of $D_{Sg}^{gr}(R_W)$ generated by an exceptional collection (E_0, \ldots, E_n) satisfying the following:

- (i) (1) \in Auteq(\mathcal{T}'),
- (ii) \mathcal{T}' has an object E isomorphic to R_W/\mathfrak{m}

Then $\mathcal{T}' \simeq D_{Sg}^{gr}(R)$.

This follows from the well-known facts:

Lemma 11.2 (\mathcal{T}' is **right admissible**). For any $X \in \mathcal{T}$ there is an exact triangle

$$N \to X \to M \to TN$$

where $N \in \mathcal{T}'$ and $\operatorname{Hom}_{\mathcal{T}}(N, M) = 0$.

Lemma 11.3. $M \in CM^{gr}(R_W)$ is (graded) free if and only if $Ext^i_{R_W}(R_W/\mathfrak{m}, M) = 0$ for $i \neq d$.

Remark 11.4. $M \simeq 0$ in $\underline{CM}^{gr}(R_W)$ if and only if M is free.

Example 11.5.

$$Q := \begin{pmatrix} 0 & f_1 \\ f_0 & 0 \end{pmatrix}, \quad Q^2 = f_W = x^4 z + y^3 + z^2,$$

where $f_0 = f_1$ is given by

$\left(z \right)$	$-y^2$	0	0	0	0	$-x^2y$	0	$-x^4$	0	0	0	0	0)
-xy	-z	0	0	0	0	0	0	0	0	$-x^4$	0	x^2y	0
0	-xy	z	0	0	0	$-x^{3}$	0	xy^2	0	0	0	0	0
0	0	0	z	y^2	0	0	0	0	xy^2	0	x^4	0	$-x^3y$
0	0	0	0	-z	0	0	0	0	0	$-xy^2$	0	$-x^4$	0
0	0	0	0	0	z	y^2	0	0	$-x^2y$	0	xy^2	0	x^4
0	0	$-x^2$	0	0	0	-z	0	0	0	x^2y	0	$-xy^2$	0
0	0	0	0	0	0	-xy	z	0	x^3	0	$-x^2y$	0	xy^2
-x	0	y	0	0	0	0	0	-z	0	0	0	0	0
0	0	-y	y	0	0	0	x^2	0	-z	y^2	0	0	0
0	-x	0	0	-y	0	0	0	xy	0	z	0	0	0
0	0	0	x	0	y	0	0	0	0	0	-z	y^2	0
0	0	0	0	-x	0	-y	0	0	0	0	0	z	0
0	0	0	0	0	x	0	y	0	0	0	0	0	-z)

This matrix factorization (with suitable gradings) gives the "bottom vertex".

Remark 11.6. The size of matrix factorizations Q corresponding to the "bottom vertex" are very large!! Generally, $Q \in M(S, n)$, $n \ge 20$.

12. DUALITY OF REGULAR WEIGHT SYSTEMS

Remark 12.1. For W with $\epsilon_W = -1$, W^* is the **Arnold's strange dual** partner of W.

A natural generalization of strange duality \implies (topological) mirror symmetry.

Definition 12.2 (Vafa's formula). $G \subset GL(3, k)$: finite, diagonal.

$$\chi(W,G)(y,\bar{y})$$

$$:= \frac{(-1)^3}{|G|} \sum_{\alpha \in G} \sum_{\beta \in G} \prod_{\omega_i \alpha_i \notin \mathbb{Z}} (y\bar{y})^{\frac{1-2\omega_i}{2}} \left(\frac{y}{\bar{y}}\right)^{-\omega_i \alpha_i + [\omega_i \alpha_i] + \frac{1}{2}}$$

$$\times \prod_{\omega_i \alpha_i \in \mathbb{Z}} \mathbf{e} \left[\omega_i \beta_i + \frac{1}{2} \right] \frac{1 - \mathbf{e} \left[(1 - \omega_i \beta_i) \right] (y\bar{y})^{1-\omega_i}}{1 - \mathbf{e} \left[\omega_i \beta_i \right] (y\bar{y})^{\omega_i}},$$

where $\omega_i := a_i/h$.

$\chi(W,G)(y,\bar{y})$: orbifoldized Poincare polynomial.

Remark 12.3. $\chi_W(T) = \chi(W, \{1\})(T^{\frac{1}{h}}, 1).$

Definition 12.4 (Topological Mirror Symmetry). (W^*, G^*) is **topological mirror dual** to (W, G) if

$$\chi(W^*, G^*)(y, \bar{y}) = (-1)^3 \bar{y}^{\hat{c}_W} \chi(W, G)(y, \bar{y}^{-1}),$$

where $\hat{c}_W := 1 - 2\frac{\epsilon_W}{h} (\hat{c}_W = \hat{c}_{W^*}).$

Remark 12.5. Serve functor on \mathcal{T}_W satisfies

 $\mathcal{S}^h \simeq T^{h \cdot \hat{c}_W}.$

 \mathcal{T}_W is **fractional Calabi–Yau** of dimension \hat{c}_W .

Definition 12.6. W = (a, b, c; h) is dual to $W^* = (a^*, b^*, c^*; h^*)$ if the pair $(W, \{1\})$ is topological mirror symmetric to the pair $(W^*, \mathbb{Z}/h^*\mathbb{Z})$.

Theorem 12.7 (T '98). W has the dual W^* if and only if $W(f_W)$ is one of the following 5 types:

Type I: $(W = W^*)$.

$$\mathbf{f}_{\mathbf{W}}(\mathbf{x},\mathbf{y},\mathbf{z}) := \mathbf{x}^{\mathbf{p_1}} + \mathbf{y}^{\mathbf{p_2}} + \mathbf{z}^{\mathbf{p_3}},$$

where $(p_i, p_j) = 1, i = 1, 2, 3.$

Type II:

$$\begin{split} \mathbf{f}_{\mathbf{W}}(\mathbf{x},\mathbf{y},\mathbf{z}) &:= \mathbf{x}^{\mathbf{p_1}} + \mathbf{y}^{\mathbf{p_2}} + \mathbf{y}\mathbf{z}^{\frac{\mathbf{p_3}}{\mathbf{p_2}}}, \\ \mathbf{f}_{\mathbf{W}^*}(\mathbf{x}_*,\mathbf{y}_*,\mathbf{z}_*) &= \mathbf{x}^{\mathbf{p_1}}_* + \mathbf{y}^{\frac{\mathbf{p_3}}{\mathbf{p_2}}}_* + \mathbf{y}_*\mathbf{z}^{\mathbf{p_2}}_*, \end{split}$$

where $p_2 \neq p_3$, $p_2|p_3$, $(p_1, p_3) = 1$, $(p_2 - 1, p_3) = 1$ and $(p_3/p_2 - 1, p_3) = 1$. Type III: $(W = W^*)$.

$$\mathbf{f}_{\mathbf{W}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \mathbf{x}^{\mathbf{p_1}} + \mathbf{y}^{\mathbf{q_3}+1}\mathbf{z} + \mathbf{y}\mathbf{z}^{\mathbf{q_2}+1},$$

where $(p_1, p_2) = 1$, $p_2 + 1 = (q_2 + 1)(q_3 + 1)$ and $(q_2, q_3) = 1$. Type IV:

$$\begin{split} \mathbf{f}_{\mathbf{W}}(\mathbf{x},\mathbf{y},\mathbf{z}) &:= \mathbf{x}^{\mathbf{p}_1} + \mathbf{x} \mathbf{y}^{\frac{\mathbf{p}_2}{\mathbf{p}_1}} + \mathbf{y} \mathbf{z}^{\frac{\mathbf{p}_3}{\mathbf{p}_2}},\\ \mathbf{f}_{\mathbf{W}^*}(\mathbf{x}_*,\mathbf{y}_*,\mathbf{z}_*) &= \mathbf{x}^{\frac{\mathbf{p}_3}{\mathbf{p}_2}}_* + \mathbf{x}_* \mathbf{y}^{\frac{\mathbf{p}_2}{\mathbf{p}_1}}_* + \mathbf{y}_* \mathbf{z}^{\mathbf{p}_1}_* \end{split}$$

where $p_1 \neq p_2 \neq p_3$, $p_1|p_3$, $p_2|p_3$, $(p_1-1, p_2) = 1$, $(p_2-p_1+1, p_3) = 1$, $(p_3/p_2-1, p_3/p_1) = 1$ and $(p_3/p_1 - p_3/p_2 + 1, p_3) = 1$.

Type V:

$$\begin{split} \mathbf{f}_{\mathbf{W}}(\mathbf{x},\mathbf{y},\mathbf{z}) &:= \mathbf{z}\mathbf{x}^{\mathbf{k}} + \mathbf{x}\mathbf{y}^{\mathbf{m}} + \mathbf{y}\mathbf{z}^{\mathbf{l}}, \\ \mathbf{f}_{\mathbf{W}^{*}}(\mathbf{x}_{*},\mathbf{y}_{*},\mathbf{z}_{*}) &= \mathbf{z}_{*}\mathbf{x}^{\mathbf{k}}_{*} + \mathbf{x}_{*}\mathbf{y}^{\mathbf{l}}_{*} + \mathbf{y}_{*}\mathbf{z}^{\mathbf{m}}_{*}, \end{split}$$

where (lm - m + 1, klm + 1) = 1, (mk - k + 1, klm + 1) = 1, and (kl - l + 1, klm + 1) = 1.

Remark 12.8. If W^* is dual to W, then W^* is dual to W in the sense of K. Saito (duality defined by Coxeter transformations).

Remark 12.9. Regular weight systems with $\epsilon_W = 0$ (simple elliptic singularities) are not of dual type.

13. Homological Mirror Symmetry

Conjecture 13.1. There should exists an A_{∞} -category

 $\operatorname{Fuk}^{\rightarrow}(X_{W,1}),$

(objects are finite number of vaniching cycles in the Milnor fiber and homomorphism spaces are given by Floer homology) satisfying certain properties, such that

$$D^{b}\operatorname{Fuk}^{\rightarrow}(X_{W,1}) \simeq \operatorname{HMF}_{S}^{gr}(f_{W^{*}}).$$

Remark 13.2. Fuk^{\rightarrow}($X_{W,1}$) can be considered as a geometrical categorification of a distinguished basis of vanishing cycles.

14. BEYOND ADE AND 14 EXCEPTIONALS

- **Theorem 14.1** (T, in progress). (i) For any regular weight system W of Type I and II, \mathcal{T}_W has a full strongly exceptional collection (E_1, \ldots, E_{μ_W}) and $(K_0(\mathcal{T}_W), \chi + {}^t\chi) \simeq (H_2(X_{W,1}, \mathbb{Z}), -I).$
 - (ii) For any W of Type III, \mathcal{T}_W has a full strongly exceptional collection (E_1, \ldots, E_{μ_W}) .

Proofs for these are similar to previous theorems: calculations of matrix factorizations, calculations of homomorphisms based on Serre duality and the "Category Generating Lemma".

Quivers and relations for these types are given as follows :

(注:非常に込み入った図のため,頂点・辺の数は正確ではない.また矢印も省略)
 Type I

$$f_W(x, y, z) := x^{p_1} + y^{p_2}$$

 $f_W(x, y, z) := x^{p_1} + y^{p_2} + z^{p_3}$

14

$$f_W(x, y, z) := y^{p_2} + y z^{\frac{p_3}{p_2}}$$

 $f_W(x, y, z) := x^{p_1} + y^{p_2} + yz^{\frac{p_3}{p_2}}$

$$f_W(x, y, z) := y^{q_3+1}z + yz^{q_2+1}$$

$$f_W(x, y, z) := x^{p_1} + y^{q_3 + 1}z + yz^{q_2 + 1}$$

15. FUTURE DREAMS, FANCIES AND ...

Want to construct

- Lie algebras
- period maps
- automorphic forms

from "nice" triangulated categories.

"nice" triangulated categories

 \Downarrow Lie algebra, Weyl group, invariant theory, ...

Frobenius (K.Saito's flat) structures on Space of stability conditions (Bridgeland)

References

- M. Auslander and I. Reiten, Almost split sequences for Z-graded rings, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), 232–243, Lecture Notes in Math., 1273, Springer, Berlin, 1987.
- [2] A. Bondal and M. Kapranov, Enhanced triangulated categories, Math. USSR Sbornik, Vol.70, (1991) No.1, 93–107.
- [3] R. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, preprint.
- [4] I. V. Dolgachev, Conic quotient singularities of complex surfaces, (Russian) Funkcional. Anal. i Prilo v zen. 8 (1974), no. 2, 75–76.
- [5] A. M. Gabrielov, Dynkin diagrams of unimodal singularities, (Russian) Funkcional. Anal. i Prilo v zen. 8 (1974), no. 3, 1–6.
- [6] H. Kajiura, K. Saito and A. Takahashi, Matrix Factorizations and Representations of Quivers II: type ADE case, math.AG/0511155, Adv. in Math. 211, 327–362 (2007).
- [7] _____, Triangulated Categories of matrix Factorizations for regular systems of weights with $\varepsilon = -1$, arXiv:0708.0210.
- [8] _____, Weighted Projective Lines Associated to Regular Systems of Weights, work in progress.
- [9] D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, math.AG/0503632.
- [10] K. Saito, Duality for Regular Systems of Weights, Asian. J. Math. 2 no.4 (1998) 983-1048.
- [11] _____, Around the Theory of the Generalized Weight System: Relations with Singularity Theory, the Generalized Weyl Group and Its Invariant Theory, Etc., Amer. Math. Soc. Transl. (2) Vol.183 (1998) 101-143.
- [12] A. Takahashi, K. Saito's Duality for Regular Weight Systems and Duality for Orbifoldized Poincaré Polynomials, Commun. Math. Phys. 205 (1999) 571-586.
- [13] _____, Matrix Factorizations and Representations of Quivers I, math.AG/0506347.
- [14] _____, MATRIX FACTORIZATIONS AND MIRROR SYMMETRY, 行列因子化とミラー対称性, 研究会「環論とその周辺」報告集, 2007, 名古屋大学.
- [15] _____, Weighted Projective Lines Associated to Regular Systems of Weights of Dual Type, 数理解 析研究所考究録別冊, in preparation.
- [16] _____, Matrix Factorizations and Mirror Symmetry, 数理解析研究所考究録別冊, in preparation.
- [17] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990. viii+177 pp.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka, 560-0043, Japan

E-mail address: takahashi@math.sci.osaka-u.ac.jp