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²
±

¯
°automorphic rep + rep of G(A) with high symmetry

G : semisimple algebraic group over Q
A =

∏
p≤∞

′Qp : adele ring of Q, loc cpt top ring

p : prime or ∞, Q∞ = R
Q ↪→ A : diagonal embedding, discrete subring

π : irred automorphic rep of G(A)

G(A) =
∏

p≤∞

′
G(Qp) ⇒ π =

⊗
p≤∞

′
πp

πp : irred rep of G(Qp)
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G(A) is a loc cpt gp (∃ Haar measure).

G(Q) ⊂ G(A) : discrete subgroup

ρ : rep of G(A) on the space

L2(G(Q)\G(A))

where

[ρ(g)φ](x) = φ(xg)

for g, x ∈ G(A), φ ∈ L2(G(Q)\G(A))

Consider an irreducible subrepresentation

π ⊂ L2(G(Q)\G(A))

and call it an automorphic rep.
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Example¶ ³
1 ∈ L2(G(Q)\G(A))

(Fact: G(Q)\G(A) is not nec cpt, but finite volume.)

⇒ the trivial rep is automorphic rep (high symmetry).µ ´

“Building blocks” are cuspidal automorphic rep.

L2(G(Q)\G(A)) = L2
disc ⊕ L2

cont L2
disc = L2

cusp ⊕ L2
res

The trivial rep belongs to L2
res and is non-cuspidal.
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§2 L-functions

7



π =
⊗

p≤∞

′
πp : irred cusp aut rep of G(A) =

∏
p≤∞

′
G(Qp)

LG = Ĝ o Gal(Q̄/Q) : L-group of G

Ĝ : dual group of G (over C)

r : fin dim rep of LG

s ∈ C

L(s, π, r) :=
∏

p:good

det
[
1 − p−s · r(c(πp))

]−1 ∏
p:bad

· · ·

(Fact: almost all primes p are good.)

c(πp) ∈ LG : Satake parameter of πp at good p

®
­

©
ªL-function is defined by an Euler product
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LG = Ĝ o Gal(Q̄/Q) : L-group of G
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Theorem (Langlands).

L(s, π, r) is absolutely convergent for Re(s) ≫ 0.

Problem¶ ³
Show that automorphic L-functions are “nice”.

• meromorphic continuation (MC) to C
• functional equation (FE)

L(s, π, r) = ε(s, π, r) · L(1 − s, π∨, r)

(π∨ : contragredient of π)

• holomorphy, poles, non-vanishing . . .µ ´
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E : elliptic curve over Q
E(Q) is fin gen abelian group.

L(s, E) : L-function of E

(defined by an Euler product, abs conv for Re(s) > 3
2)

BSD conjecture (worth for $1,000,000).

ord
s=1

L(s, E) = rankE(Q)

s = 1 is the center of FE (s ↔ 2 − s),

which is out of the range of convergence.
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Taniyama-Shimura conjecture (proved after Wiles).
E : elliptic curve over Q
⇒ ∃ πE : irred cuspidal automorphic rep of GL2(A) s.t.

L(s, E) = L(s + 1
2, πE, st)

st : the standard 2-dim rep of GL2(C) + L-gp of GL2

®
­

©
ªWe have analytic theory of automorphic L-functions

Integral representation:

L(s + 1
2, πE, st) =

∫
Q×\A×

φ

(
a 0
0 1

)
|a|s da

φ ∈ πE : suitably normalized

RHS is abs conv for all s ∈ C, so ord
s=1

L(s, E) is well-def.
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Method to study aut L-functions¶ ³
• Integral representation (more difficult to find)

• Langlands-Shahidi method (∃ complete list)µ ´

Let’s consider L(s, πE,Symn).

Symn : symmetric power rep of GL2(C) of dim n + 1

Around 1999-2000, using LS-method,

Kim-Shahidi proved MC & FE for n ≤ 9.

In 2006, using R = T ,

Taylor proved MC & FE for all n,

and “nice” enough to prove Sato-Tate conj for most E!

I’m very shocked.
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§3 Periods
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G0 ⊂ G1 : both semisimple over Q
πi : irred aut rep of Gi(A) (i = 0,1)

φi ∈ πi : aut form

Recall φi is a left Gi(Q)-invariant function on Gi(A).

Consider an integral

〈φ1|G0
, φ0〉 :=

∫
G0(Q)\G0(A)

φ1(g)φ0(g) dg ∈ C

(if it converges) and call it a period.
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E : elliptic curve over Q
Ã πE : irred cusp aut rep of PGL2(A)

Ã L(1, E) = L(1
2, πE, st) =

∫
Q×\A×

φ

(
a 0
0 1

)
da = c

∫
E(R)

ω

φ ∈ πE : suitably normalized

ω : non-zero diff form on E over Q
c ∈ π−1 · Q

Forget geometry and consider only automorphic rep.
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Problem¶ ³
Relate periods to special values of aut L-functions

• non-vanishing

• explicit formula

• . . .µ ´

There are many case-by-case examples.

• Integral representation

• Relative trace formula (Jacquet, Lapid . . . )

So far, there is no method to study problems in general.
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Gross-Prasad case:

G0 = SOn ⊂ G1 = SOn+1

[
φ1 ⊗ φ̄0 7→ 〈φ1|G0

, φ0〉 =
∫
G0(Q)\G0(A)

φ1(g)φ0(g) dg

]
∈ HomG0(A)(π1 ⊗ π̄0, C)

Multiplicity free¶ ³
We expect that

dimC HomG0(Qp)(π1,p ⊗ π̄0,p, C) ≤ 1

for all p ≤ ∞.µ ´
17
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π0 : irred cusp aut rep of G0(A) = SOn(A)
π1 : irred cusp aut rep of G1(A) = SOn+1(A)

Assumption¶ ³
• πi is tempered (i = 0,1).

• No local obstruction:

HomG0(Qp)(π1,p ⊗ π̄0,p, C) ̸= 0 ∀p ≤ ∞
µ ´
Gross-Prasad conjecture (’92).

〈φ1|G0
, φ0〉 ̸= 0 for some φi ∈ πi ⇔ L(1

2, π1 £ π0) ̸= 0

L(s, π1 £ π0) : associated to the tensor product
of the standard rep of LG1 and LG0

s = 1
2 is the center of FE (s ↔ 1 − s).
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Difficulty:

L(1
2, π1 £ π0) has not been defined in general.

Best result so far¶ ³
If Gi is split, πi is generic and stable, then ⇒ holds.

(Ginzburg-Jiang-Rallis ’05)µ ´

Not only the non-vanishing criterion,

we want a formula for 〈φ1|G0
, φ0〉, at least conjecturally.
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Conjecture (with Tamotsu Ikeda).

|〈φ1|G0
, φ0〉|2

∥φ1∥2 · ∥φ0∥2
= 2β · C0 · LS(M∨

1 (1))

×
LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×
∏
p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p
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Conjecture (with Tamotsu Ikeda).
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Conjecture (with Tamotsu Ikeda).

|〈φ1|G0
, φ0〉|2

∥φ1∥2 · ∥φ0∥2
= 2β · C0 · LS(M∨

1 (1))

×
LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×
∏
p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

C0 : constant dep on normalization of Haar measures

M1 : Gross’ Artin motive attached to G1
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Conjecture (with Tamotsu Ikeda).

|〈φ1|G0
, φ0〉|2

∥φ1∥2 · ∥φ0∥2
= 2β · C0 · LS(M∨

1 (1))
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LS(1, π1,Ad)LS(1, π0,Ad)

×
∏
p∈S
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Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p
≥ 0 : local object dep only on φi,p ∈ πi,p
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Conjecture (with Tamotsu Ikeda).
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LS(1, π1,Ad)LS(1, π0,Ad)

×
∏
p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

β ∈ Z : global object

We believe that β is related to Arthur’s conjecture

(multiplicity of rep in the space of automorphic forms).
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Known results¶ ³
• SO2 ⊂ SO3 : Waldspurger ’85

• SO3 ⊂ SO4 : Garrett ’87, Harris-Kudla ’91 . . . I.µ ´
When n ≥ 4, our L-values are not well-def in general.
But, for SO4 ⊂ SO5,
∃ example of Böcherer-Furusawa-Schulze-Pillot ’04.

∃ non-tempered cusp aut rep of SOn(A)

Some non-tempered examples¶ ³
• SO4 ⊂ SO5 : I. ’05

• SO5 ⊂ SO6 : I.-Ikedaµ ´
But ∃ more difficulty to formulate a conjecture.
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Thank you!
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