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The first goal of this talk is to help celebrate Saito-San’s birthday and
his many contributions to integrable systems and moduli spaces of
connections.

The second goal of this talk is to explain some aspects of the
Geometric Langlands Conjecture, as it relates to:

e (homological mirror symmetry)
e Hitchin's system, and
e non abelian Hodge theory.

Joint work with Tony Pantev, and partially with Carlos Simpson.
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The conjecture:

A G-local system V on a Riemann surface C &

an automorphic D-module ¢y on the moduli space Bun¢ 1 of
LG-bundles on C.

A fancier version of the Geometric Langlands conjecture predicts the
existence of a canonical equivalence of categories

¢ : Deon(Loc, ©) —> Deop(“Bun, D), (GLC)

which is uniquely characterized by the property that ¢ sends the
structure sheaves of points V in Loc to Hecke eigen D-modules ¢(Oy)
(corresponding to the above cy) on “Bun:

EHE (c(O)) = o(Ov) B pH(V).

Here 11 is an appropriate character, and H* is the Hecke
correspondence bounded by .
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Motivation:

The Langlands program is the non-abelian extension of class field
theory (CFT). The abelian case is well understood. Its geometric
version, or geometric CFT, is essentially the theory of a curve C and
its Jacobian J = J(C). This abelian case of the Geometric Langlands
Conjecture (GLC) amounts to the well known result that any rank 1
local system (or: line bundle with flat connection) on the curve C
extends uniquely to J, and this extension is natural with respect to
the Abel-Jacobi map. The structure group of a rank 1 local system is
of course just the abelian group C* = GL(1, C). The GLC is the
attempt to extend this classical result from C* to all complex
reductive groups G. This goes as follows.
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The Jacobian is replaced by the moduli stack Bun of principal
bundles V on C whose structure group is the Langlands dual group
LG of the original G. The analogues of the Abel-Jacobi maps are
the Hecke correspondences H C Bun x Bun x C. These parametrize
quadruples (V, V', x, 8) where x is a point of C, while V, V' are
(-G)-bundles on C, with an isomorphism 3 : Vicx — \/|’C7X away
from the point x having prescribed order of blowing up at x. (In case
G = LG = C* these become triples (L, L', x) where the line bundle L’
is obtained from L by tensoring with some fixed power of the line
bundle O¢(x). By fixing L and varying x we see that this is indeed
essentially the Abel-Jacobi map.) For bigger groups, there are many
ways to specify the allowed order of growth of 3, indexed by dominant
characters p € char[J[G] = cochar[J“G]. So there is a collection of Hecke
correspondences H*, each inducing a Hecke operator on various
categories of objects on Bun. The resulting Hecke operators form a
commutative algebra , so can have simultaneous eigen-objects.



GLC

Correspondences

A correspondence between varieties A, B is a subscheme H C A x B.
It induces a transform from objects on A to objects on B, by
pull-push. (May have to specify a kernel.) Each Hecke
correspondence H* C Bun x Bun x C induces a transform from
D-modules on Bun to D-modules on Bunx C.
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The Geometric Langlands Conjecture says that an irreducible G-local
system on C determines a perverse sheaf on Bun which is a
simultaneous eigensheaf for the action of the Hecke operators - this
turns out to be the right generalization of naturality with respect to
the Abel-Jacobi map. (A perverse sheaf is, roughly, a local system on
a Zariski open subset of Bun, extended in a natural way across the
complement.) Fancier versions of the conjecture recast this as an
equivalence of derived categories: of D-modules on Bun vs. coherent
sheaves on the moduli space Loc of local systems. There are many
related conjectures and extensions, notably to punctured curves via
parabolic bundles and local systems. Some of these make an
appearance below.
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The conjecture:

A G-local system V on a Riemann surface C &

an automorphic D-module ¢y on the moduli space Bun¢ 1 of
LG-bundles on C.

A fancier version of the Geometric Langlands conjecture predicts the
existence of a canonical equivalence of categories

¢ : Deon(Loc, ©) — Deop(“Bun, D), (GLC)

which is uniquely characterized by the property that ¢ sends the
structure sheaves of points V in Loc to Hecke eigen D-modules ¢(Oy)
(corresponding to the above cy) on “Bun:

EHE (c(O)) = o(Ov) B pH(V).

Here 1 is an appropriate character, and LH* is the Hecke
correspondence bounded by .
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Some known results

Significant progress has been made towards understanding these
conjectures, through works of Drinfeld, Laumon, Beilinson, Lafforgue,
Frenkel, Gaitsgory, Vilonen, Heinloth, ... Some vesions are known for
GL(n). The conjecture is unknown for other groups. There are more
recent results of Heinloth in the parabolic case. Even for GL(n), the
proof is indirect: no construction of non-abelian Hecke eigensheaves is
known.
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HMS and Geometric Langlands

Idea: Hitchin's integrable system Higgsc ¢ associated to (C, G) is a
twistor rotation of Locc . It is a hyper Kahler SYZ fibration. It also
is (or: contains) T*Bunc g.

HMS applied to Hitchin's system —>
D, should be the relative Floer homology between two Lagrangians in
Higgsc v, one fixed, the other moving:

e View L as a point of Higgsc ¢. Its Fourier-Mukai dual is a
Lagrangian (with line bundle) in Higgsc cv.

e A general cotangent fiber of Higgsc ¢v.
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briefly.
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The work described here is based on an abelianization of the GLC in
terms of Higgs bundles. A Higgs bundle is a pair (V, ¢) consisting of
a vector bundle V with a Kc-valued endomorphism ¢ : V — V @ QL,
where QL = K¢ is the canonical bundle of C. More generally, a
G-Higgs bundle is a pair (V, ¢) consisting of a principal G-bundle V
with a section ¢ of ad(V) ® QL, where ad(V) is the adjoint vector
bundle of V. Hitchin studied the moduli space Higgs of such Higgs
bundles (subject to an appropriate stability condition) and showed
that it is an algebraically integrable system: it is algebraically
symplectic, and it admits a natural map h : Higgs — B to a vector
space B such that the fibers are Lagrangian subvarieties. In fact the
fiber over a general point b € B (in the complement of the
discriminant hypersurface) is an abelian variety, obtained as Jacobian
or Prym of an appropriate spectral cover C,. The description in terms
of spectral covers is somewhat ad hoc, in that it depends on the
choice of a representation of the group G. A uniform description is
oiven in terms of ceneralized Prvms of cameral covers.
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The main result of [DP1] is formulated as a duality of the Hitchin
system: There is a canonical isomorphism between the bases B, LB of
the Hitchin system for the group G and its Langlands dual £ G, taking
the discriminant in one to the discriminant in the other. Away from
the discriminants, the corresponding fibers are abelian varieties, and
we exhibit a canonical duality between them. The case of the groups
GL(n), SL(n) and PGL(n) had appeared earlier in work of Hausel and
Thaddeus in the context of hyperkahler mirror symmetry. There are
abelianized versions of the Hecke correspondences. The [DP] results
allow the construction of eigenseaves for these abelianized Hecke
correspondences.
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Abelianized Hecke eigensheaves

On Higgs there are two Lagrangian fibrations:
The Hitchin map: h : Higgs — B

The projection: 7 : Higgs O T* Bun — Bun
(This is a rational map)

Hecke: HCBun x Bun xC
Abelianized Hecke: H C Higgs x Higgs xC

Abelianized Hecke eigensheaves: . of degree-0 line bundles on
Hitchin fibers h~1(b). We are thinking of Bun as the base space and
of h=1(b) as its spectral cover.
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Abelianization via Hitchin's system

It is very tempting to try to understand the relationship of this
abelianized result to the full GLC. The view of the GLC pursued in
[BeDr] is that it is a quantum theory. The emphasis in [BeDr] is
therefore on quantizing Hitchin's system, which leads to the
investigation of opers. One possibility, discussed in [DP1] and [Ar], is
to view the full GLC as a quantum statement whose classical limit is
the result in [DP1]. The idea then would be to try to prove GLC by
deforming both sides of the result of [DP1] to higher and higher
orders. Arinkin has carried out some deep work in this direction. But
there is another path.
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| want to explore the tantalizing possibility that the abelianized
version of GLC is in fact equivalent, via recent breakthroughs in Non
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Instead of viewing the solution constructed in [DP1] as a classical limit
of the full solution, it is interpreted as the z = 0 incarnation of an
equivalent twistor-type object. The twistor space is fibered over the
complex z-line (or its compactification). The twistor space also has a
z = 1 interpretation which is identified with the full solution of GLC.

This leads us to non-abelian Hodge theory and the connection with
Simpson's talk.
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Non Abelian Hodge theory (NAHT), as developed by Hitchin,
Donaldson, Corlette, Simpson, Saito, Sabbah, Mochizuki, and others,
establishes under appropriate assumptions the equivalence of local
systems and Higgs bundles. A richer object (harmonic bundle or
twistor structure) is introduced, which specializes to both local
systems and Higgs bundles. This is closely related to Deligne's notion
of a A-connection: at A = 1 we have ordinary connections (or local
systems), while at A = 0 we have Higgs bundles. Depending on the
exact context, these specialization maps are shown to be
diffeomorphisms or categorical equivalences.
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The projective (or compact Kahler) case and the one dimensional
open case were settled by Simpson twenty years ago - but the open
case in higher dimension had to await the recent breakthroughs by
Saito, Sabbah, Mochizuki, Jost-Yang-Zuo, Biquard, etc. This higher
dimensional theory produces an equivalence of parabolic local systems
and parabolic Higgs bundles. This is quite analogous to what is
obtained in the compact case, except that the objects involved are
required to satisfy three key conditions discovered by Mochizuki.
Below we review these exciting developments, and outline our
proposal for using NAHT to construct the automorphic sheaves
required by the GLC.



NAHT, GLC, and QFT

This approach is purely mathematical of course, but it is parallel to
physical ideas that have emerged from the collaborations of Witten
with Kapustin, Gukov and Frenkel [KW, GW, W3, FW], where the
GLC was placed firmly in the context of quantum field theory.
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Completion of these ideas depends on verification that Mochizuki's
conditions are satisfied in situations arising from GLC. This requires a
detailed analysis of instability loci in moduli spaces. Here we work
with the moduli spaces, rather than the stacks. So stability is
important, e.g. the difference between stability of a Higgs bundle and
stability of the underlying bundle. Particularly important are the
Wobbly locus of non-very-stable bundles, and the Shaky locus,
roughly the Hitchin image of stable Higgs bundles with an unstable
underlying bundle.

A bundle V is very stable if the only nilpotent Higgs field ¢ on V is

¢ =0.



Introduction Abelianization of GLC NAHT and GLC The plan Two forthcoming papers

Completion of these ideas depends on verification that Mochizuki's
conditions are satisfied in situations arising from GLC. This requires a
detailed analysis of instability loci in moduli spaces. Here we work
with the moduli spaces, rather than the stacks. So stability is
important, e.g. the difference between stability of a Higgs bundle and
stability of the underlying bundle. Particularly important are the
Wobbly locus of non-very-stable bundles, and the Shaky locus,
roughly the Hitchin image of stable Higgs bundles with an unstable
underlying bundle.

A bundle V is very stable if the only nilpotent Higgs field ¢ on V is
¢ = 0. (In other words, the cotangent fiber Tf‘V}Bun meets the
Hitchin fiber over 0 only at the point ¢ = 0.)



Introduction Abelianization of GLC NAHT and GLC The plan Two forthcoming papers

Completion of these ideas depends on verification that Mochizuki's
conditions are satisfied in situations arising from GLC. This requires a
detailed analysis of instability loci in moduli spaces. Here we work
with the moduli spaces, rather than the stacks. So stability is
important, e.g. the difference between stability of a Higgs bundle and
stability of the underlying bundle. Particularly important are the
Wobbly locus of non-very-stable bundles, and the Shaky locus,
roughly the Hitchin image of stable Higgs bundles with an unstable
underlying bundle.

A bundle V is very stable if the only nilpotent Higgs field ¢ on V is
¢ = 0. (In other words, the cotangent fiber Tf‘V}Bun meets the
Hitchin fiber over 0 only at the point ¢ = 0.) Laumon: very stable
implies stable.



Introduction Abelianization of GLC NAHT and GLC The plan Two forthcoming papers

Completion of these ideas depends on verification that Mochizuki's
conditions are satisfied in situations arising from GLC. This requires a
detailed analysis of instability loci in moduli spaces. Here we work
with the moduli spaces, rather than the stacks. So stability is
important, e.g. the difference between stability of a Higgs bundle and
stability of the underlying bundle. Particularly important are the
Wobbly locus of non-very-stable bundles, and the Shaky locus,
roughly the Hitchin image of stable Higgs bundles with an unstable
underlying bundle.

A bundle V is very stable if the only nilpotent Higgs field ¢ on V is
¢ = 0. (In other words, the cotangent fiber Tf‘V}Bun meets the
Hitchin fiber over 0 only at the point ¢ = 0.) Laumon: very stable
implies stable.

A bundle V is wobbly if it is stable but not very stable.



Introduction Abelianization of GLC NAHT and GLC The plan Two forthcoming papers

Completion of these ideas depends on verification that Mochizuki's
conditions are satisfied in situations arising from GLC. This requires a
detailed analysis of instability loci in moduli spaces. Here we work
with the moduli spaces, rather than the stacks. So stability is
important, e.g. the difference between stability of a Higgs bundle and
stability of the underlying bundle. Particularly important are the
Wobbly locus of non-very-stable bundles, and the Shaky locus,
roughly the Hitchin image of stable Higgs bundles with an unstable
underlying bundle.

A bundle V is very stable if the only nilpotent Higgs field ¢ on V is
¢ = 0. (In other words, the cotangent fiber Tf‘V}Bun meets the
Hitchin fiber over 0 only at the point ¢ = 0.) Laumon: very stable
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A bundle V is wobbly if it is stable but not very stable.

A bundle V is shaky if it is stable but there is a Higgs bundle (V/, ¢)
mapping to it with V'’ unstable. (More details below.)
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