W/Z and top at the LHC

Takashi Matsushita

Kobe University
Takashi.Matsushita@cern.ch

Thursday 6th January 2011
LHC experiments have been built for discovery

- New physics = measurement – standard model physics (background)
 - Need re-discovery of the standard model particles at the first stage of the experiment

- W/Z and top are the heavy particles in the standard model
 - Measurements of these particles are good exercise for discovery
 - yesterday’s signal is today’s control sample and tomorrow’s background, in other word, bridge to New Physics
 - Let’s start with W/Z and top as today’s signal

- K. Hanagaki: Higgs searches at the LHC
- A. Ishikawa: BSM physics at the LHC
• **ATLAS/CMS detectors**

• *W/Z at LHC*
 - *W → lν*: E_T^{miss}, M_T
 - *Z → ll*: invariant mass
 - *W → lν, Z → ll*: cross sections
 - *W/Z to τ*
 - *W/Z distributions with full 2010 data*
 - *W/Z + jets*

• **top at LHC**
 - top control plots
 - top cross sections

• summary
ATLAS detector overview

- length: ~45 m
- diameter: ~22 m
- weight: $\sim7,000$ tons
- 2 T solenoid and air-core toroids

CMS detector overview

- length: 21.6 m
- diameter: 15 m
- weight: 12,500 tons
- 3.8 T solenoid and iron return york
ATLAS detector layout

- Tracker
 - silicon tracker (pixel + strip), transition radiation tracker
- Calorimeter
 - EM: lead/LAr, HAD: steel/scintillator, copper/LAr
- Muon system
 - drift tube, cathod strip chamber, thin-gap chamber, resistive plate chamber

CMS detector layout

- Tracker
 - silicon tracker (pixel + strip)
- Calorimeter
 - EM: lead tungsten crystal, HAD: brass/steel and scintillator
- Muon system
 - drift tube, cathod strip chamber, resistive plate chamber
• ATLAS/CMS detectors

• **W/Z at LHC**
 - $W \rightarrow l\nu$: E_T^{miss}, M_T
 - $Z \rightarrow ll$: invariant mass
 - $W \rightarrow l\nu$, $Z \rightarrow ll$: cross sections
 - W/Z to τ
 - W/Z distributions with full 2010 data
 - $W/Z + \text{jets}$

• top at LHC
 - top control plots
 - top cross sections

• summary
W/Z at LHC

W/Z are important for:

- detector performance study with high-p_T objects
 - lepton identification
 - E_T^{miss}
- test of the SM at 7 TeV
 - cross section known at NNLO

 \[
 \frac{\sigma_{W \rightarrow l \nu}^{\text{NNLO}}}{\sigma_{Z/\gamma^* \rightarrow ll}^{\text{NNLO}}} = 10.5 \pm 0.5 \text{ nb} \\
 \frac{\sigma_{Z/\gamma^* \rightarrow ll}^{\text{NNLO}}}{\sigma_{W \rightarrow l \nu}^{\text{NNLO}}} = 1.0 \pm 0.1 \text{ nb}
 \]
- background study for new physics searches

Proton - (anti)proton cross sections

- σ_{W}
- σ_{Z}
- $\sigma_{\text{jet}}(E_T^{\text{jet}} > \sqrt{s}/20)$
- $\sigma_{\text{jet}}(E_T^{\text{jet}} > 100 \text{ GeV})$
- $\sigma_{\text{jet}}(E_T^{\text{jet}} > \sqrt{s}/4)$
- $\sigma_{\text{Higgs}}(M_H = 150 \text{ GeV})$
- $\sigma_{\text{Higgs}}(M_H = 500 \text{ GeV})$

- Tevatron
- LHC

Events/Sec for $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

2011-01-06 | **W/Z and top at the LHC** | T. Matsushita (Kobe)
$W \rightarrow l\nu$ event topology

- High-p_T lepton
 - Cluster of energy deposit in electro-magnetic calorimeter
 - Track in muon spectrometer
- E_T^{miss}
- Characterised by transverse mass

 \[
 M_T = \sqrt{2E_T\nu E_{Tl} - 2p_{T\nu} \cdot p_{Tl}}
 \]

$Z \rightarrow ll$ event topology

- Two high-p_T leptons
 - Cluster of energy deposit in electro-magnetic calorimeter
 - Track in muon spectrometer
- Characterised by invariant mass of di-lepton
• ATLAS/CMS detectors
• W/Z at LHC
 • $W \rightarrow l\nu$: E_T^{miss}, M_T
 • $Z \rightarrow ll$: invariant mass
 • $W \rightarrow l\nu$, $Z \rightarrow ll$: cross sections
 • W/Z to τ
 • W/Z distributions with full 2010 data
 • $W/Z +$ jets
• top at LHC
 • top control plots
 • top cross sections
• summary
$W \rightarrow e\nu$ candidate

CMS

CMS Experiment at LHC, CERN
Run 133874, Event 21466935
Lumi section: 301
Sat Apr 24 2010, 05:19:21 CEST

Electron $p_T = 35.6$ GeV/c
$M_{E_T} = 36.9$ GeV
$M_T = 71.1$ GeV/c^2
$W \rightarrow l\nu$

CMS: 2.9 pb$^{-1}$

electron channel

- $p_T > 20$ GeV, $|\eta| < 1.44$ or $1.57 < |\eta| < 2.5$
- unbinned likelihood fit:
 - QCD background modelled with a modified Rayleigh distribution
- fit distribution describes data well

muon channel

- $p_T > 20$ GeV, $|\eta| < 2.1$
- binned likelihood fit:
 - QCD background shape from data
- fit distribution describes data well
$W \rightarrow l\nu$

ATLAS: 0.3 pb$^{-1}$

electron channel

- $p_T > 20$ GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$
- W MC populates in high-E_T^{miss} region

muon channel

- $p_T > 20$ GeV, $|\eta| < 2.47$
- W MC gives Jacobian peak in M_T distribution

- without $E_T^{\text{miss}} > 25$ GeV and $M_T > 40$ GeV cuts
• ATLAS/CMS detectors

• W/Z at LHC
 • $W \rightarrow l\nu$: E_T^{miss}, M_T
 • $Z \rightarrow ll$: invariant mass
 • $W \rightarrow l\nu, Z \rightarrow ll$: cross sections
 • W/Z to τ
 • W/Z distributions with full 2010 data
 • $W/Z +$ jets

• top at LHC
 • top control plots
 • top cross sections

• summary
$Z \rightarrow \mu\mu$ candidate

ATLAS
Z → ll
ATLAS: 0.3 pb⁻¹

electron channel

- \(p_T > 20 \text{ GeV}, |\eta| < 1.37 \text{ or } 1.52 < |\eta| < 2.47 \)

muon channel

- \(p_T > 20 \text{ GeV}, |\eta| < 2.4 \)
- worse resolution in data taken into account in the systematics

- backgrounds are negligible and not shown
$Z \rightarrow ll$

CMS: 2.9 pb$^{-1}$

electron channel

- $p_T > 20$ GeV, $|\eta| < 1.44$ or 1.57
- $|\eta| < 2.5$

- backgrounds are negligible and not shown

muon channel

- $p_T > 20$ GeV,
- $|\eta| < 2.1$
• ATLAS/CMS detectors

• W/Z at LHC
 • $W \rightarrow l\nu$: E_T^{miss}, M_T
 • $Z \rightarrow ll$: invariant mass
 • $W \rightarrow l\nu, Z \rightarrow ll$: cross sections
 • W/Z to τ
 • W/Z distributions with full 2010 data
 • $W/Z + \text{jets}$

• top at LHC
 • top control plots
 • top cross sections

• summary
W/Z cross sections

ATLAS: 0.3 pb$^{-1}$

- Measured cross sections agree with the prediction within errors (stat. + syst. + lumi.) (Theory: FEWZ with MSTW 08 NNLO PDF)
- Expected asymmetry between W^+ and W^- confirmed
W/Z cross sections: systematics

ATLAS: 0.3 pb$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>$W \rightarrow e\nu$</th>
<th>$Z \rightarrow ee$</th>
<th>$W \rightarrow \mu\nu$</th>
<th>$Z \rightarrow \mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>trigger eff.</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>material/reco./id</td>
<td>5.6</td>
<td>8.8</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>E scale/res.</td>
<td>3.3</td>
<td>1.9</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>E_T^{miss} scale/res.</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>problematic calo. region</td>
<td>1.4</td>
<td>2.7</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>pile-up</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>charge mis-id</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>FSR modelling</td>
<td>0.3</td>
<td>0.3</td>
<td>4.0</td>
<td>5.5</td>
</tr>
<tr>
<td>PDF</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>7.0</td>
<td>9.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- electron have larger uncertainties due to higher sensitivity to the material effects in the inner detector.
W/Z cross sections
CMS: 2.9 pb$^{-1}$

• measured cross sections agrees with the prediction within errors (stat. + syst. + lumi.) (Theory: FEWZ with MSTW 08 NNLO PDF)
• expected asymmetry between W^+ and W^- confirmed
W/Z cross sections: systematics

CMS: 2.9 pb^{-1}

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>$W \rightarrow e\nu$</th>
<th>$Z \rightarrow ee$</th>
<th>$W \rightarrow \mu\nu$</th>
<th>$Z \rightarrow \mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>reco. & id. eff.</td>
<td>3.9</td>
<td>5.9</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>momentum scale/res.</td>
<td>2.0</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>E_T^{miss} scale/res.</td>
<td>1.8</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>bg subtraction & modelling</td>
<td>1.3</td>
<td>0.1</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>PDF</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>ISR/FSR/norm. & fact. scale</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>total</td>
<td>5.1</td>
<td>6.2</td>
<td>3.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>
W/Z cross section ratio

ATLAS: 0.3 pb^{-1}, CMS: 2.9 pb^{-1}

- Theory: FEWZ with the MSTW 08 NNLO PDF
- Uncertainty on luminosity cancels out
- Measured ratio are consistent with the predictions
 - ATLAS electron channel slightly higher than prediction due to slightly low observed $Z \rightarrow ee$ cross section
W/Z cross sections
ATLAS: 0.3 pb$^{-1}$, CMS: 2.9 pb$^{-1}$

- theoretical predictions are in good agreement with all measurements
- energy dependence of the W and Z production cross sections is well described
• ATLAS/CMS detectors
• W/Z at LHC
 • $W \rightarrow l\nu$: E_T^{miss}, M_T
 • $Z \rightarrow ll$: invariant mass
 • $W \rightarrow l\nu, Z \rightarrow ll$: cross sections
 • W/Z to τ
 • W/Z distributions with full 2010 data
 • W/Z + jets
• top at LHC
 • top control plots
 • top cross sections
• summary
W/Z to τ

$W \rightarrow \tau \nu$ candidate in 7 TeV collisions

$\frac{p_T(\tau)}{} = 29$ GeV
$E_T^{\text{miss}} = 39$ GeV
$\Delta \phi(\tau, E_T^{\text{miss}}) = 3.1$
$m_\tau = 68$ GeV

Run 155697, Event 6769403
Time 2010-05-24, 17:38 CEST
W/Z to τ

Visible mass $= 73$ GeV

$p_T(\tau) = 36.8$ GeV
• ATLAS/CMS detectors
• W/Z at LHC
 • \(W \rightarrow l\nu: E_T^{\text{miss}}, M_T \)
 • \(Z \rightarrow ll: \) invariant mass
 • \(W \rightarrow l\nu, Z \rightarrow ll: \) cross sections
 • \(W/Z \) to \(\tau \)
• \(W/Z \) distributions with full 2010 data
• \(W/Z + \text{jets} \)
• top at LHC
 • top control plots
 • top cross sections
• summary
W/Z distributions with full 2010 data

- good agreement between data and MC
- ATLAS m_Z distribution closer to prediction with improved understanding of detector alignment

<table>
<thead>
<tr>
<th>W candidates</th>
<th>Z candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>305 k</td>
</tr>
<tr>
<td>ATLAS</td>
<td>250 k</td>
</tr>
<tr>
<td>CMS</td>
<td>20 k</td>
</tr>
<tr>
<td>ATLAS</td>
<td>23 k</td>
</tr>
</tbody>
</table>

- good control sample for understanding the detectors
W/Z distributions with full 2010 data

- differential distributions are important for
 - test of QCD
 - constraining PDF
 - M_W measurement

ATLAS Preliminary

$\int L \, dt = 37 \, \text{pb}^{-1}$

$\int L \, dt = 35 \, \text{pb}^{-1}$

- Data 2010 ($\sqrt{s} = 7 \, \text{TeV}$)
- $Z \rightarrow \text{ee}$

Events / 5 GeV

- Statistical Errors Only
- MC normalised to data
- $N_{jets} \geq 1$
• ATLAS/CMS detectors
• W/Z at LHC
 • $W \rightarrow l\nu$: E_T^{miss}, M_T
 • $Z \rightarrow ll$: invariant mass
 • $W \rightarrow l\nu, Z \rightarrow ll$: cross sections
 • W/Z to τ
 • W/Z distributions with full 2010 data

• $W/Z + \text{jets}$

• top at LHC
 • top control plots
 • top cross sections

• summary
Z + jets

detector-level distributions

- anti-k_T: $R = 0.4$, $|\eta| < 2.8$, $p_T > 20$ GeV
- jet multiplicity and p_T of leading jets
- predictions normalised to data
- ME + PS simulation (Alpgen + Herwig) describes data well

electron channel

muon channel
W + jets

detector-level distributions

- anti-k_T: $R = 0.4$, $|\eta| < 2.8$, $p_T > 20$ GeV
- p_T of leading jets and jet multiplicity
- predictions normalised to data
- ME + PS simulation (Alpgen + Herwig) describes data well

electron channel

<table>
<thead>
<tr>
<th>Leading Jet p_T [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events / 5 GeV</td>
</tr>
<tr>
<td>10^5</td>
</tr>
<tr>
<td>10^4</td>
</tr>
<tr>
<td>10^3</td>
</tr>
<tr>
<td>10^2</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

ATLAS Preliminary

Data 2010 (\sqrt{s} = 7 TeV)

Njets ≥ 1

$\int L dt = 36$ pb$^{-1}$

MC normalised to data

Statistical Errors Only

muon channel

<table>
<thead>
<tr>
<th>Inclusive Jet Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
</tr>
<tr>
<td>≥ 0</td>
</tr>
<tr>
<td>≥ 1</td>
</tr>
<tr>
<td>≥ 2</td>
</tr>
<tr>
<td>≥ 3</td>
</tr>
<tr>
<td>≥ 4</td>
</tr>
<tr>
<td>≥ 5</td>
</tr>
<tr>
<td>≥ 6</td>
</tr>
</tbody>
</table>

$\int L dt = 35$ pb$^{-1}$

Data 2010 (\sqrt{s} = 7 TeV)

W$\rightarrow$$\mu$ + jets (Alpgen)

QCD

Z$\rightarrow$$\mu$$\mu$ + jets

W$\rightarrow$$\tau$$\nu$ + jets

t\bar{t}

MC normalised to data

Statistical Errors Only

2011-01-06 W / Z and top at the LHC T. Matsushita (Kobe) 32/45
• Good agreement between the measured cross sections in terms of two leading jets in event and NLO predictions from MCFM
• Good agreement between the measured cross sections in terms of jet multiplicity and NLO (≤ 2 jets) and LO (jet = 3) predictions from MCFM
• JES is the dominant systematics

electron channel

muon channel
• ATLAS/CMS detectors
• \(W/Z \) at LHC
 • \(W \rightarrow l\nu: E_{T}^{\text{miss}}, M_{T} \)
 • \(Z \rightarrow ll: \) invariant mass
 • \(W \rightarrow l\nu, Z \rightarrow ll: \) cross sections
 • \(W/Z \) to \(\tau \)
 • \(W/Z \) distributions with full 2010 data
 • \(W/Z + \text{jets} \)

• **top at LHC**
 • top control plots
 • top cross sections

• summary
top at LHC

- **top quark**
 - The heaviest known elementary particle, \(m_t = 173.3 \pm 1.1 \) GeV
 - \(\tau_t = 5 \cdot 10^{-25} \) s \(\ll \tau_{\text{hadr.}} \). no bound states
 - \(V_{tb} \sim 0.999 \). almost always \(t \rightarrow bW \)

- **main production modes are gluon fusion (85%)**

- **remaining mode is \(q\bar{q} \) annihilation**

- **\(\sigma_{t\bar{t}}(\text{theory}) = 164^{+11.4}_{-15.7} \) pb**
 - assuming \(m_t = 172.5 \) GeV
 - 20 * \(\sigma_{t\bar{t}} \) (Tevatron)

proton - (anti)proton cross sections

2011-01-06 W / Z and top at the LHC T. Matsushita (Kobe)
top at LHC

- at early stage
 - re-discovery of top
 - first cross-section measurement
 - detector performance
 - leptons, jets, E_T^{miss}
- decay modesa
 - di-lepton (6.5%)
 - $l^+ l^- \nu \nu bb$
 - lepton + jets (38%)
 - $l \nu qqbb$
 - all hadronic (55.5%)
 - $qqqqbb$
 - additional jets come from ISR/FSR

ainclude tau decays
$\bar{t}t \rightarrow \text{lepton + jets candidate}$

$\mu + 4 \text{ jets}$

Jet $p_T = 56.6 \text{ GeV/c}$, $\eta = 0.389$, $\varphi = 2.38$

Jet $p_T = 82.2 \text{ GeV/c}$, $\eta = -1.79$, $\varphi = 1.03$

Jet $p_T = 152.2 \text{ GeV/c}$, $\eta = 0.354$, $\varphi = -2.75$

Jet $p_T = 43.4 \text{ GeV/c}$, $\eta = 0.827$, $\varphi = -0.587$

Muon $p_T = 30.6 \text{ GeV/c}$, $\eta = -1.67$, $\varphi = -2.06$

$\mathcal{E}_T = 119.0 \text{ GeV}$, $\varphi = 0.010$

W/Z and top at the LHC

T. Matsushita (Kobe)
\(\bar{t} t \rightarrow \text{di-lepton candidate} \)

\(e - \mu \) with two \(b \)-tagged jets

\[p_T(\mu) = 51 \text{ GeV}, \quad p_T(e) = 66 \text{ GeV}, \quad p_T(b\text{-tag jets}) = 175, 45 \text{ GeV}, \quad E_T^{\text{miss}} = 113 \text{ GeV}. \]
Event selection for σ_{tt} measurement

ATLAS analysis

- lepton
 - electron or muon
 - $p_T > 20$ GeV, $|\eta| < 2.5$, isolated
- jet
 - anti-k_T: $R = 0.4$, $|\eta| < 2.4$

lepton + jets

- one lepton
- ≥ 4 jets with $p_T > 25$ GeV
- ≥ 1 jet(s) with b-tag at 50% efficiency working point
- $E_T^{\text{miss}} > 20$ GeV
- $E_T^{\text{miss}} + m_T(W) > 60$ GeV

CMS uses similar analysis

di-lepton

- two leptons with opposite charge
- ≥ 2 jets with $p_T > 20$ GeV, no b-tag
- ee: $|M_{ee} - M_Z| > 5$ GeV, $E_T^{\text{miss}} > 40$ GeV
- $\mu\mu$: $|M_{\mu\mu} - M_Z| > 10$ GeV, $E_T^{\text{miss}} > 30$ GeV
- $e\mu$: $H_T^a > 150$ GeV

a: scaler sum of p_T of leptons and selected jets
\(\bar{t}t \rightarrow \text{lepton} + \text{jets}: \text{control plots} \)

ATLAS: 2.9 pb\(^{-1}\)

- \(\mu + \text{jets} \)
- \(e + \text{jets} \)

- \(\mu \) channel without \(E_T^{\text{miss}}, M_T \) cut
- QCD multi-jet estimation is data driven
- Acceptable agreement between data and prediction
\(\bar{t}t \rightarrow \text{lepton + jets} \)

ATLAS: 2.9 pb\(^{-1}\)

- **Data**
 - \(\bar{t}t \) single top
 - \(Z + \text{jets} \)
 - \(W + \text{jets} \)
 - \(\text{QCD} \)
 - Uncertainty

Events

<table>
<thead>
<tr>
<th>Number of jets</th>
<th>(\bar{t}t) (MC)</th>
<th>Single t (MC)</th>
<th>Z+jets (MC)</th>
<th>W+jets (DD)</th>
<th>QCD (DD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.9±3.5</td>
<td>0.7±0.2</td>
<td>0.2±0.1</td>
<td>1.9±1.1</td>
<td>4.8±3.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3.2±1.7</td>
<td>0.8±0.5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total BG

<table>
<thead>
<tr>
<th></th>
<th>(e+\text{jets})</th>
<th>(\mu+\text{jets})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}t) (MC)</td>
<td>7.2±3.4</td>
<td>3.3±1.7</td>
</tr>
</tbody>
</table>

Clear excess of top like events with \(\geq 4 \) jets
$\bar{t}t \rightarrow \text{di-lepton: control plots}$

ATLAS: 2.9 pb^{-1}, CMS: 3.1 pb^{-1}

- **ATLAS**
 - $\int L = 2.9\text{ pb}^{-1}$
 - Control region
 - Events vs. number of jets

- **CMS**
 - Events vs. number of jets
 - Data
 - Single top
 - $Z + \text{jets}$
 - Diboson
 - Fake leptons
 - Uncertainty

- Good agreement between data and prediction

- Dominant background
ATLAS

<table>
<thead>
<tr>
<th>Category</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z+$jets (DD)</td>
<td>0.25±0.18</td>
<td>0.67±0.38</td>
<td>-</td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau+$jets (MC)</td>
<td>0.07±0.04</td>
<td>0.14±0.07</td>
<td>0.13±0.06</td>
</tr>
<tr>
<td>non-Z leptons (DD)</td>
<td>0.16±0.18</td>
<td>-0.08±0.07</td>
<td>0.47±0.28</td>
</tr>
<tr>
<td>single t (MC)</td>
<td>0.08±0.02</td>
<td>0.07±0.03</td>
<td>0.22±0.04</td>
</tr>
<tr>
<td>dibosons (MC)</td>
<td>0.04±0.02</td>
<td>0.07±0.03</td>
<td>0.15±0.05</td>
</tr>
<tr>
<td>Total BG</td>
<td>0.60±0.27</td>
<td>0.88±0.40</td>
<td>0.97±0.30</td>
</tr>
<tr>
<td>$t\bar{t}$ (MC)</td>
<td>1.19±0.19</td>
<td>1.87±0.26</td>
<td>3.85±0.51</td>
</tr>
<tr>
<td>Data</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

CMS

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z+$jets (DD)</td>
<td>1.4±0.5</td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau+$jets (MC)</td>
<td>0.18±0.09</td>
</tr>
<tr>
<td>non-W/Z (DD)</td>
<td>0.1±0.5</td>
</tr>
<tr>
<td>single t (MC)</td>
<td>0.25±0.13</td>
</tr>
<tr>
<td>dibosons (MC)</td>
<td>0.13±0.07</td>
</tr>
<tr>
<td>Total BG</td>
<td>2.1±1.0</td>
</tr>
<tr>
<td>$t\bar{t}$ (MC)</td>
<td>7.7±1.5</td>
</tr>
<tr>
<td>Data</td>
<td>11</td>
</tr>
</tbody>
</table>
ATLAS

<table>
<thead>
<tr>
<th></th>
<th>lepton + jets</th>
<th>di-lepton</th>
<th>combined</th>
<th>approx. NNLO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>142 ± 34</td>
<td>$151 +78\ ^{+37}_{-62}$</td>
<td>145 ± 31</td>
<td>$164^{+11.4}_{-15.7}$</td>
</tr>
</tbody>
</table>

CMS

<table>
<thead>
<tr>
<th></th>
<th>di-lepton</th>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$194 \pm 72 \pm 24$</td>
<td>158^{+23}_{-24}</td>
</tr>
</tbody>
</table>

- dominant systematics are due to statistical uncertainties in data-driven measurements, jet energy reconstruction
- measured cross sections agree with theoretical predictions within errors
Summary & Outlook

- W/Z cross sections measured and the results are in good agreement with NNLO predictions
- Measurements are being updated with full statistics of 2010
- Differential measurements in preparation
- Cross section measurements of $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ underway

- Top cross section measured and the results are in good agreement with theoretical predictions
- Measurements are being updated with full statistics of 2010

- Re-discovery of W/Z and top have been performed
- Understanding of detectors and backgrounds continues for discovery
- This year will be an exciting year