量子物理工学Ⅰ

神戸大学工学部 電気電子工学科

小川 真人
1. 他講義との関連
2. 教科書
 ・内容 役に立つの? ⇒ 立ちます!
3. 量子力学の歴史
4. 古典力学の限界と量子力学
 ・「粒」と「波」の両方の性質
 ・Bragg反射, 黒体輻射, 光電効果 etc
5. まとめ
１．他講義との関連
2. 教科書
工学系のための量子力学【第2版】
量子効果ナノデバイスの基礎

・ 上羽 弘（富山大学）著森北出版（2005） ¥2,700

・ 参考書
[理解を助けるため]
(1)ゼロから学ぶ量子力学 竹内 薫, 講談社
(2)なっとくする量子力学 都筑 卓司, 講談社
(3)絶対分かる量子力学 白石 清, 講談社

[更に学習をしたい人のため]
(1)量子力学 I・II 朝永振一郎, みすず書房
(2)量子力学（上）（下） シップ, 吉岡書店
(3)グライナー量子力学 W. グライナー, シュプリンガー・フェアラーク東京
教科書の内容

第1章 古典力学の限界と量子力学の萌芽
第2章 量子力学の基礎（シュレディンガー方程式）
第3章 自由粒子と量子閉じ込め
第4章 有限井戸型ポテンシャルと量子井戸
第5章 トンネル効果
第6章 調和振動子
第7章 水素原子模型とその応用（結合, 結晶）
第8章 磁気モーメントとスピン
第9章 摂動論
第10章 レーザの原理と半導体レーザの基礎
第11章 量子効果ナノデバイス

04/10/08 QPE
大きさ談義: ナノ・ピコ

<table>
<thead>
<tr>
<th>10^n</th>
<th>接頭辞</th>
<th>記号</th>
<th>漢数字表記</th>
<th>十進数表記</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{24}</td>
<td>ヨタ(yotta)</td>
<td>Y</td>
<td>一・</td>
<td>1 000 000 000 000 000 000 000 000</td>
</tr>
<tr>
<td>10^{21}</td>
<td>ゼタ(zetta)</td>
<td>Z</td>
<td>十垓</td>
<td>1 000 000 000 000 000 000 000 000</td>
</tr>
<tr>
<td>10^{18}</td>
<td>エクサ(exa)</td>
<td>E</td>
<td>百京</td>
<td>1 000 000 000 000 000 000 000 000</td>
</tr>
<tr>
<td>10^{15}</td>
<td>ペタ(peta)</td>
<td>P</td>
<td>千兆</td>
<td>1 000 000 000 000 000 000 000 000</td>
</tr>
<tr>
<td>10^{12}</td>
<td>テラ(tera)</td>
<td>T</td>
<td>一兆</td>
<td>1 000 000 000 000 000 000 000</td>
</tr>
<tr>
<td>10^{9}</td>
<td>ギガ(giga)</td>
<td>G</td>
<td>十億</td>
<td>1 000 000 000</td>
</tr>
<tr>
<td>10^{6}</td>
<td>メガ(mega)</td>
<td>M</td>
<td>百万</td>
<td>1 000 000</td>
</tr>
<tr>
<td>10^{3}</td>
<td>キロ(kilo)</td>
<td>k</td>
<td>千</td>
<td>1 000</td>
</tr>
<tr>
<td>10^{2}</td>
<td>ヘクト(hecto)</td>
<td>h</td>
<td>百</td>
<td>100</td>
</tr>
<tr>
<td>10^{1}</td>
<td>デカ(deca, deka)</td>
<td>da</td>
<td>十</td>
<td>10</td>
</tr>
<tr>
<td>10^{0}</td>
<td>なし</td>
<td>なし</td>
<td>一</td>
<td>1</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>デシ(deci)</td>
<td>d</td>
<td>一分</td>
<td>0.1</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>センチ(centi)</td>
<td>c</td>
<td>一厘</td>
<td>0.01</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>ミリ(milli)</td>
<td>m</td>
<td>一毛</td>
<td>0.001</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>マイクロ(micro)</td>
<td>μ</td>
<td>一微</td>
<td>0.000 001</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>ナノ(nano)</td>
<td>n</td>
<td>一塵</td>
<td>0.000 000 001</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>ピコ(pico)</td>
<td>p</td>
<td>一漠</td>
<td>0.000 000 000 000 001</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>フェント(femto)</td>
<td>f</td>
<td>一須臾</td>
<td>0.000 000 000 000 000 000 001</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>アト(atto)</td>
<td>a</td>
<td>一刹那</td>
<td>0.000 000 000 000 000 000 000 001</td>
</tr>
<tr>
<td>10^{-21}</td>
<td>ゼプト(zepto)</td>
<td>z</td>
<td>一清浄</td>
<td>0.000 000 000 000 000 000 000 000 001</td>
</tr>
<tr>
<td>10^{-24}</td>
<td>ヨクト(yocto)</td>
<td>y</td>
<td>一涅槃寂靜</td>
<td>0.000 000 000 000 000 000 000 000 000 000 000 001</td>
</tr>
</tbody>
</table>
さて、地球上では

\[\text{nano} = 10^{-9} \]

・塵
・原子

1 個の大きさ～

0.5 nm

地球の直径～

\[1.2 \times 10^9 \text{cm} \times 10^{-9} \]

地球上の1 cmの大きさの物
google Earth (http://earth.google.co.jp/)で確かめてみて下さい。
小さな領域を扱う学問
量子力学
量子力学を作った人々

It’s I who invented Quantum Mechanics!
歴史　QED

$1 \text{Y (yukawa)} = 10^{-13} \text{cm} = 10^{-15} \text{m} = 1 \text{fm}$ (フェムトメートル)
電子デバイスの歴史

1900年:
- 真空管
- 二極管
- 三極管

1930年代:
- bipolar
- IC

1950年代:
- Si-MOSFET
- IC

1960年代:
- LSI
- MOSFET
- MISFET

1970年代:
- ULSI
- VLSI

1980年代:
- トランジスタの誕生

2000年:
- CMOS
- Low Power
- High speed
- High integration

QPE-I
Vision Map: 将来のナノテクノロジー

計算科学

- デザイン: 量子輸送, 大規模第一原理
- 理論: 成長・反応ダイナミクス, ヘテロ系（無機/有機）

微細化
高性能
低消費電力

Si-CMOS

Flash Memory (Toshiba)

デバイスサイズ

デバイスサイズ

2010年 2020年 2030年 2040年
第1章 古典力学の限界と量子力学の萌芽
眼を開けた瞬間に星がみえるのはなぜ？
ストーブで日焼けしないのはなぜ？

光

- 波の性質（電磁波）
- 粒の性質（フォトン）
 - エネルギー量子→量子論の芽生え
 - 光電効果→フォトン
連続量（古典）⇒離散的な量（量子力学）

(エネルギー) \[\frac{1}{2} m \dot{r}^2 + V(r) = E \] = (一定)かつ (連続量)

「微視的」に見た場合に

(エネルギー) \[E_n = n \cdot \hbar \omega \] (n: 整数 = 飛び飛びの量) (粒々 = 「量子」)

古典論では説明できない実験事実を説明できる！

それではそれらの例を見てみましょう。
電子は「粒子」？

• クルックスは、陰極線管（クルックス管：1875）を用いて、以下のような実験を提案した。

• 陰極線管に磁石を近づけてみると、
 – 負に荷電した粒子であれば磁界によって偏向するだろう
 – 波動であれば磁界によって偏向することはない
 – また、もし陰極線の正体が荷電した粒子であれば、電界によってより容易に偏向するだろうことが予測される。

• 1897年に、イギリスの物理学者ジョセフ・ジョン・トムソンは磁気と電気をもちいて陰極線の正体が負に荷電した粒子、すなわち電子であるということを示した。
電子は「波」？ 粒子は「波」？

「ド・ブロイ波」
- 光：波動と考えられていた → 粒子の性質
- 電子：粒子と考えられていた → 波動の性質

光の角振動数 ω や 波数 $k=\frac{2\pi}{\lambda}$ と、光子のエネルギー E や 運動量 p とを結びつける アインシュタインの関係

$$E = \hbar \omega \quad p = \hbar k$$

粒子は波だ！

が、物質波に対しても 成り立つとのことではないか（1924）

Louis-Victor Pierre Raymond, 7. duc de Broglie
Bragg反射、ラウエ像

\[2d \sin \theta = n\lambda \quad (n = 1, 2, \cdots; d = \text{層の間隔}; \lambda = \text{X線の波長}) \]

Si結晶のラウエ像
「電子の波動性の実証」

・電子線を結晶に当てると、ラウエの斑点と同様な干渉縞が観測される

・ニッケルの単結晶による電子線の回折・干渉現象…デビスン（USA）とジャーマー（USA）（1927）。

・金属多結晶による電子線の回折・干渉現象…G.P.トムソン（UK）（1927）。

・雲母の薄膜によって同様な実験に成功…菊池正士（日本）（1928）。

電子線の回折・干渉現象
黒体=外部から入射する熱放射など（光、電磁波）を、あらゆる波長に渡って完全に吸収し、また放出できる物体

光は粒子だ！

\[
I(\nu, T) = \frac{8\pi}{c^3} \frac{h\nu}{\exp\left(\frac{h\nu}{k_B T}\right) - 1}
\]

（振動数）

Planck's law (1900)
光電効果

(1) 電圧 V を十分高くして、光電効果により飛び出した電子（光電子）を全て陽極に集めると、流れる電流は陰極に照射した光の強さに比例する。

(2) どのような金属面に対しても、光電効果の起こり得る最小の振動数があり、それ以下の振動数の光ではどんなに強い光でも光電効果は起こらない。

(3) 光電子のもつ最大の運動エネルギーは光の強さに無関係である。

(4) 光電子のもつ最大の運動エネルギーは光の振動数によって直線的に変化し、アインシュタインの仮説

$$E = h\nu - W$$

に完全に一致している。

$$eV_{\text{min}} = -W$$

ν_0 と ν_0B における光電効果が起こらない。
コンプトン散乱

電磁波を物質に照射した時に、散乱してでてくる電磁波の波長が入射電磁波のそれより大きくなるという現象

\[\lambda_s - \lambda_i = \frac{h}{mc}(1 - \cos \theta) \]

\(\lambda_s \): 散乱光の波長
\(\lambda_i \): 入射光の波長
\(h \): ブランク定数
\(m \): 電子の質量
\(c \): 光速
\(\theta \): 散乱角

Arthur Holly Compton (USA @1923)
物質の比熱，理想気体の比熱

理想気体（単原子分子）の比熱

\[C = \frac{3}{2} N_A k_B = \frac{3}{2} R \]

結晶の比熱：Dulon-Petitの法則
←古典論

\[C = 3 N_A k_B = 3R = 25.0 \text{[J/mol}\cdot\text{K]} \]

低温では一致しない

Debyeモデル = 格子振動の量子化 ⇒ フォノン
（調和振動子：第6章）
水素原子輝線スペクトル

放射光のエネルギー

\[E = h\nu = E_n - E_{n\rightarrow j} \]

\[h\nu = \frac{1}{13.6} \left(\frac{1}{n^2} - \frac{1}{n_j^2} \right) [eV] \]

\[\frac{1}{\lambda} = 1.097371 \times 10^7 \left(\frac{1}{n^2} - \frac{1}{n_j^2} \right) [m^{-1}] \]

\[\frac{1}{\lambda} = R \left[\frac{1}{(m+a)^2} - \frac{1}{(n+b)^2} \right], \quad m, n = 整数 \]

リュードベリーの公式
まとめ

光

Einstein

- 波の性質（電磁波）
- 粒の性質（フォトン）

E = \hbar \omega \quad p = \hbar k = \frac{\hbar}{\lambda}

de Broglie

物質

- 波の性質（物質波）
- 粒の性質（粒子）

Schrödinger方程式へ
神戸大学電子物理工学系研究室

電気電子工学科のHP http://www.eedept.kobe-u.ac.jp

P1: メゾスコピック材料学
半導体超微粒子、アモルファスの物性

P2: フォトニック材料学
半導体材料科学、半導体表面物性

P3: 量子機能工学
半導体物性、半導体中のカオス・フラクタル

P4: ナノ構造エレクトロニクス
計算ナノエレクトロニクス、量子ナノ構造デバイス、光電子デバイス

P5: 電磁エネルギー物理学
半導体工学、光物性、固体表面物性
- Very strong size dependence
- High energy shift of the band gap with decreasing the size

CdTe

3.3nm 3.0nm 2.6nm
バンド構造 → 固体物性（3年）
→ P系研究室

バンド構造 = 材料の中で電子の動きを表現する図

Bandstructure at High Symmetric Points

Iso-Surface of the Conduction Band
量子閉じ込め→量子物理Ⅰ
→P系研究室（QD LD）

電子の波長\(\lambda \)程度で閉じ込め→電子の波長って？？

(a) 三次元 (b) 量子井戸 (c) 量子細線 (d) 量子ドット

エネルギー

状態密度

04/10/'08 QPE-I
量子ドット（QD）からの発光（P2）
世界最小のMOSFET→量子閉じ込め
→P系研究室

H. Wakabayashi, IEDM Tech. Dig. 2003

S-Dトンネル電流
反転層電荷のエネルギー量子化

(a) トンネル現象
(b) 量子サイズ効果
水素原子→固体物性, 半導体電子工学→物性研究

http://www2.kobe-u.ac.jp/~ssouma/handoutai1.html

水素原子の角度部分→結晶の電子状態
半導体レーザ

- 光通信（光電話、光源、光増幅器）
- 光線治療（短波長LD）
- センサ
- ポインタ
量子力学の用→固体物性, 電子デバイス I II, 材料 etc → ナノデバイス設計

- デバイスモデリング
 - 第一原理電子状態計算
 - 材料パラメータ抽出（Si、SiO₂、InAs…）

- ナノ構造デバイス解析
 - MOSトランジスタ
 - 共鳴トンネルダイオード（RTD）
 - 量子細線（QWR）トランジスタ, レーザ
Fig. 3.15 (a) Scanning capacitance micrograph of the two-dimensional doping profile in a 60-nm gate length n-type MOSFET. The effective channel length is measured to be only $L_{\text{eff}} = 30 \text{ nm}$. (b) Transmission electron microscope cross-section through a 35-nm gate length MOSFET. The channel length is only about 100 silicon lattice sites long. An enlargement of the channel region delineated is shown in (c). The gate oxide thickness estimated from the image is only about 1.0 nm. Images courtesy of G. Timp, University of Illinois.
ナノ構造MOSFETの量子輸送特性（P4）

古典的な手法：
電子を「粒子」として取り扱う

量子力学的な手法：
電子を「波」として取り扱う

MOSFETのナノ微細化（素子の大きさ～5nm）
量子力学の応用例

- 汎用シミュレータのプロトタイプ完成
 - 2D, 3D 非平衡Green関数法
 - 並列分散化による超高速・高精度計算
- ナノ構造デバイス解析（解析次元：2〜3次元）
 - 微細MOSFET、量子ドット（単電子メモリ）
 - 古典、半古典理論による従来モデル＊、量子補正モデルの妥当性（適用限界）検証 ← よりミクロ（正確）なNEGFの解と比較
分子デバイスの例

(a) PDT-class molecular device
DNAの構造

Fig. 1.1 Ball and stick model of a DNA molecule. Atom types are indicated.
Fig. 1.2 Photograph (left) of the first transistor. Brattain and Bardeen’s p-n-p point-contact germanium transistor operated as a speech amplifier with a power gain of 18 on December 23, 1947. The device is a few mm in size. On the right is a scanning capacitance microscope cross-section image of a silicon p-type metal-oxide-semiconductor field-effect transistor (p-MOSFET) with an effective channel length of about 20 nm, or about 60 atoms. This image of a small transistor was published in 1998, 50 years after Brattain and Bardeen’s device. Image courtesy of G. Timp, University of Illinois.
sub-10 nm MOSFETにおける問題点

ゲートポリシリコンの空乏化

ゲートリーク電流
S/D抵抗
S-Dトンネル電流

不純物原子の離散分布
反転層電荷のエネルギー量子化

端の容量

（a）トンネル現象
（b）量子サイズ効果
量子力学的デバイスシミュレーション
電子を「波」として取り扱う

nonequilibrium Green's function (NEGF)

\[G^R = \left(E - H - \Sigma \right)^{-1} \]

有限行列

Boltzmann:
\[f(r, k) \]

NEGF:
\[G^R(r, r', E) \]
原子を観る

Fig. 5.5 Transmission electron micrograph showing an InGaAs quantum well in cross-section that is three monolayers thick and is sandwiched between InP barrier layers. The spots in the image represent tunnels between pairs of atoms. The minimum separation between tunnels in InP is 0.34 nm. Image courtesy of M. Gibson, Argonne National Laboratory.